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We verify the following three basic results on the free loop space LM. (1) We show that the
set of all points, where the fundamental form on LM is nondegenerate, is an open subset.
(2) The connections of a Fréchet bundle over LM can be extended to S!-central extensions
and, in particular, there exist natural connections on the string structures. (3) The notion
of Christoffel symbols and the curvature are introduced on LM and they are described in
terms of Christoffel symbols of M.

2000 Mathematics Subject Classification: 53Cxx, 58Dxx.

1. Introduction. In this paper, we consider the infinite-dimensional Fréchet mani-
fold LM, the free loop space on M, which is the space of all smooth maps from the
circle S! to a finite-dimensional manifold M. We discuss three different topics as a
contribution to the general knowledge on the geometry of loop spaces.

If M is a finite-dimensional Riemannian manifold, Atiyah [1] indicates that LM has
a fundamental closed 2-form w which, unlike the finite-dimensional case, can be de-
generate at certain points. A point in LM is a smooth map ¢ : S' — M. The Levi-Civita
connection on M induces a connection on the pullback bundle ¢*TM, and hence a
covariant operator Dg. The fundamental form w is degenerate, precisely at those ¢
for which D¢ has zero eigenvalue. In the first part of this paper, by using the Nash
embedding theorem [4], we show that the set of points, where (v is nondegenerate, is
an open set.

Loop spaces are of a particular interest to physicists working on the grand unifi-
cation theory. String theory involves a theory of spinors on LM; a string structure
is defined as a lifting of the structural group to an S'-central extension of the loop
group [3]. Let G — P — X be a principal Fréchet bundle over a Fréchet manifold X that
has enough smooth functions to admit a smooth partition of unity. Let S! — G-G
be an S'-central extension of G and let G — P — X be a lifting of the principal bundle
G — P — X. Although the existence of connections on a general Fréchet bundle is in
general not guaranteed, the second part of this paper verifies that every connection on
the principal bundle G — P — X together with a G-invariant connection on S — P — P
yields a connection on G—-P-X.In particular, as a corollary of this result, we prove
that there exist connections on the string structures of LM.

In the last part of this paper, we give a detailed construction of Christoffel symbols
on LM by using “Fourier coordinates” and compute the corresponding curvature. Both
Christoffel symbols and the curvature on LM are given in terms of the Christoffel
symbols on M by a Fourier type series. We hope that these constructions of Christoffel
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symbols and the curvature will be useful to obtain local geometrical results on LM.
The proofs of our results are rather straightforward and do not use any sophisticated
method of functional analysis or differential geometry.

2. Fundamental form. The tangent space Ty (LM) at any ¢ € LM can be iden-
tified with T'(¢p*TM), the sections of the pullback bundle ¢p*TM — S! of the tan-
gent bundle TM — M. For any fixed nonnegative integer v, we have an inner product
(N :T(P*TM) XT(p*TM) — R defined by

({s,s')), = ZLI (Dis(t),Dis'(t))dt, @.1)
i=0

where D is the covariant derivative of the Riemannian connection on M. This can
be viewed as a Riemannian structure on LM for each r > 0. Define wfb” 1Ty (LM) X
Ty (LM) — R by wfg)(a,ﬁ) = ((D«, B)), and we can easily see that the fundamental
form wg) is bilinear and skew-symmetric. The energy function is defined by e™ (¢p) =

(D, D))y

REMARK 2.1. Hereafter, we simply use the notations w and e for w and e”,
respectively.

We verify that (i) w is a closed form and (ii) de + i, = 0, where i, is the contraction
along the vector field A associated to the natural S!-action. Since M can be isomet-
rically embedded in RN for some large N (by the Nash embedding theorem [4]), LM
equipped with the Riemannian metric provided by ((,)), is isometrically embedded
in LRN with new metric provided by ({(,)), for each > 0. Therefore, it is enough to
prove (i) and (ii) for M = RN, In this case, the vector field A on an open subset U of
LRYN is given by (A¢)(t) = ¢p(t). Define the 1-form 0 : U x LRN — R as the following
composition:

UxLRN 24, RN o pgN 2 p 2.2)

so that 6(¢,x) = ((D¢, x)),. Clearly 0 is a smooth 1-form and d6 = 2w. Therefore,
w is a smooth closed form. Now

de(dp,00 =lim " [e(¢+ 500 ~e()]

~lim L [((D +5De, D +5D)), ~ (Db, Dp)) ] 23)
= 2<(D¢!DO(>)V = _2<<D2¢!0(>>‘r
= 2wy (A($),&) = — (i) (b, 0).

Hence de + i w = 0. The fundamental 2-form w described above can be degenerate
by the following lemma.

LEMMA 2.2. The fundamental form w is degenerate at ¢ if and only if the corre-
sponding covariant derivative D has zero eigenvalue.
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PROOF. The fundamental form w is degenerate at ¢
< Jx e Tp(LM) such that wg(x,p) =0 VB e Tp(LM)

= ((Dypo,B)), =0 VB (2.4)
— D¢O( = 0.

In other words, w has degeneracy at ¢ if and only if there exists «in T4 (LM) which
is parallel along ¢. For example, w is degenerate at any closed geodesic, since ¢ is
parallel along a closed geodesic ¢. a

THEOREM 2.3. The set of points where w is nondegenerate is an open subset of LM.

PROOF. For each x € M™ and T € LM that passes through x, the parallel transport
H,(T) of Tx (M) along T is an element of the holonomy group H, of M at x. Since
the length of a vector and the angle between two vectors are preserved by the parallel
transports of the Levi-Civita connection along a curve, the holonomy group at each
point x of a connected orientable manifold M is a subgroup of SO(n). The funda-
mental form w is degenerate at some ¢ if and only if for some 0 (and hence for any
0) the corresponding element of the holonomy group Hg ey has eigenvalue 1. Notice
that every element of SO(n) has eigenvalue 1 if n is odd and hence in this case w is
degenerate at every ¢ € LM.

So we should restrict our attention to only the even-dimensional manifolds. For
every A € SO(n), let ev,(A) be the evaluation of the characteristic polynomial of A
at 1. Let A be the following composition:

evy

LM% LM x st 2 som) LU R,
¢ — (P,0) — Hgp o) (P).

We can easily see that A is independent of 0 and w is degenerate at ¢ if and only if
A(¢) = 0. Hence we have proved the theorem. a

(2.5)

REMARK 2.4. Notice that whether the set of all nonsingular points of w is dense
or nondense in LM heavily depends on the Levi-Civita connection of M. For example,
if the curvature of M is zero on a nonempty open subset of M, then the set of points,
where w is degenerate, contains a nonempty open subset of LM and hence its com-
plement, the set of points where w is nondegenerate, is not dense in LM. This will not
be the case if the Riemannian metric on M (supposed to be a real analytic manifold)
is real analytic. In this case, the set of degenerate points is a real analytic subset and
hence of topological codimension 1. Then the set of nondegenerate points is dense.

3. Lifting of connections. A Fréchet space F is called niceif for every open subset U
of F there exists a nonzero real-valued smooth function which vanishes outside U. For
example, the space of sections of a smooth vector bundle over a compact connected
finite-dimensional manifold is a nice Fréchet space and hence LM is locally modeled
on nice Fréchet spaces. A manifold locally modeled on nice Fréchet spaces has enough
smooth functions to admit smooth partitions of unity. Hereafter, we assume that X
is a manifold locally modeled on nice Fréchet spaces.
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DEFINITION 3.1. A connection on a principal G-bundle G — P =~ X is a smooth
G-invariant splitting map p : t*TX — TP in the exact sequence

= (3.1)

0 T, P TP T*TX 0

of the bundles over P where T, P is the vertical tangent bundle.

Let S — G — G be an S!-central extension of the Fréchet Lie group G, or in other

words, S lies in the center of G and G/S! = G.Let G — P . Xbe aliftingof G — P — X.
Then we have the diagram

2
“,

(3.2)

A<—Q<——
<~— " <—

—_—
7
A A\
_— E——
™
Of course, a connection on G — P — X together with a connection on S! — p-p may

notyield a connection on G — P — X, because a splitting map A* TPL TP correspond-
ing to a connection on S! — P — P is S!'-invariant but not necessarily G-invariant.

X

PROPOSITION 3.2. The space <€5(Sl - P~ P) of G-invariant connections is non-
empty.

PROOF. Let TS ' P be the vertical tangent bundle over p corresponding to the bundle
S! — P — P. We wish to show that we can produce a G-invariant splitting map u in
L
0 TS'p TP A*TP 0 (3.3)

or equivalently a G-invariant splitting map n in

n
1Ny <

0 T5'P TP AXTP 0. (3-4)

Fortunately, T3 'P is the trivial 1-dimensional bundle over P. Indeed, for each x € ﬁ,
consider the map {x} xS! — P defined by (x,0) — 0 - x. Since S! acts locally free, the
derivative of this map, defined as

IX}XT,(s") — (13 P) ,
x (3.5)
(x,V) — vy,

provides a nonzero vector field A, and hence Tﬁlﬁ — P is trivial.
Since S! lies in the center of G, the action of G and that of S! commutes. Hence
Ay is G-invariant and descends to a nonzero vector field on T;flP/G — P/G = X. Thus
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Tglﬁ/ G — 13/ G is also a trivial line bundle. So it is enough to define a morphism
(splitting map) y in

Y
XxR=TS'P/G =F

\ / (3.6)

such that y oi =id. Since X admits partitions of unity and the convex combination of
splittings is a splitting, it is enough to produce a splitting locally on

U xR >—> UXF=m1(U)

S

For each x € U, let v(x) = p2i(x,1) € F, where p» is the projection map. Choose a
point xy € U. Since Hahn-Banach theorem holds on any Fréchet space F, there exists a
linear map ¢ : F — R such that /(v (xp)) = 1. By restricting to a smaller open subset
U, < U, we can assume that ¢(v(x)) = 0 for all x € U. Let £(F,R) be the space of
linear maps from F to R. Define y : U — £(F,R) by

p)
w(v(x)

Since y(x)(v(x)) =1 for all x, y yields a splitting map. This completes the proof of
the lemma and immediately yields the following theorem. ]

y()(f) = VfEF. (3.8)

THEOREM 3.3. Every connection on the principal Fréchet bundle G — P — X together
with a G-invariant connection on S' — P — P yields a connection on G — P — X.

REMARK 3.4. The lifting of a G-connection on P to a G-connection on P is not
unique. The failure of uniqueness is measured by G-invariant S!'-connections on S! —
P — P and hence by a 1-dimensional form on P which is G-invariant.

COROLLARY 3.5. IfF is any Fréchet space with a 5-action, then every connection on
G — P — X defines at least one connection on P x s F — X.

PROOF. The proof is the same as the finite-dimensional case. Every connection
on P defines a connection on P x F — X. Since P x F — P xzF is a submersion and
the horizontal subspaces are mapped injectively (or in other words, horizontal sub-
spaces of P x F intersect trivially with the kernel), there is an induced connection on
PxsF - X. m

Let M™ be an even-dimensional smooth compact connected orientable manifold
with the spin structure Spin(n) — Q — M. Let LSpin(n) — LQ — LM be the associated
LSpin(n)-principal bundle. It is shown in [3] that such a bundle can be lifted to a
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new bundle LSY);I?TL) - I:a — LM provided that p; (M) = 0, where p; (M) is the first
Pontrjagin class of M and L S;i\r_lfn) is the nontrivial S!-central extension of L Spin(n).
The spinors w are defined as the sections of the vector bundles LQ x Lipintn) A* —
LM where LSpin(n) acts on A* by two inequivalent irreducible representations. The
reader may consult [5] for the construction of such infinite-dimensional irreducible

representations.

COROLLARY 3.6. Any connection on LSpin(n) — LQ — LM induces connections on
the spin bundles LQ X1 $pintn) A* — LM.

4. Christoffel symbols on LM. If M" is an orientable Riemannian manifold and
¢ € LM, we can choose a frame {ei,...,e,} of the pullback bundle ¢p*TM — S'.
Consider the Riemannian structures ((,)), 4 induced by the Riemannian structure
of M. Let 51,52 € Ty (LM) with s; = > sie; and 52 = Y s)ej. We can explicitly calculate
((s1,52))r,¢. For example, if r = 0,

(s1,520)0 = [ 51,520 (010
n ) (4.1)
=2 Ll s{(0)s3(0)gij($(0))do,

i,j=1

where g;;($(0)) = (ei(P(0)),e;(P(0))); and if r = 1,

(51,5019 = 2 | 51015101915 (0)) 0
+3| BGD O (s (019, ((0))do
+ZL,q’b(s{)<9>ci>f<9)s§<e>rt’§.(¢><9))gki<¢<e>)d9 4.2)
2 B @@ @51 ()1 ($(0) g ($(0)d0

+ZLI BL(0) " (0)51(0)54 (OITETL gia((0))d0,

where {Filj.(x)} represent the Christoffel symbols of the Levi-Civita connection on M.
We use the Einstein convention where the sums run through super- and subscripts.
In all of our further calculations, we restrict ourselves to the case » = 0, and denote
({(,))0,¢ simply by ({,))4 for each ¢ € LM.

A connection on a Fréchet vector bundle E =~ X over a Fréchet manifold X is a
rule that assigns to each point of E a complementary subspace for the vertical tan-
gent space, called the horizontal subspace, such that the local representation of the
connection is given by a smooth map I as follows: if 7t is locally U X G — U where
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U < F is open and F and G are Fréchet spaces (i.e., X is locally modeled by F and G is
the fiber), then the horizontal vectors consists of all (b,c) € F x G with ¢ =T (u,a,b)
where I': U X G X F — G is bilinear in a and b (see [2]).

By a connection on a manifold X, we always understand a connection on its tan-
gent bundle. Unlike Banach manifolds, the existence of a connection on an arbitrary
Fréchet manifold is not guaranteed. However, every connection I' on M determines a
connection on LM, also denoted by I', which is given locally at ¢ € LM by the formula

L(,f,9)(0) =T($(0),£(0),9(0)), 4.3)

where f(0),9(0) € Typ)M and T is bilinear in the last two variables.
Every f € LR™ has Fourier series

F~> (Fipsfoprerorfup) 4y (0) (4.4)

pezZ

such that 3, £ 12p2k < oo for every integer k, where

cospl if p<0,
xp(0) =1 ) (4.5)
sinp0 ifp>0.

In other words, f ~ >,z Z,?:lfk,, &y (0)ex where {é1,...,€y} is the standard basis of
R™. The numbers {fx,} are called the Fourier coordinates of f € LR™. Notice that
though every element f € LR™ has Fourier coordinates which is a sequence {fi,} of
real numbers, only the sequences {fx,} satisfying additional convergence conditions
are coordinates for elements of LR (see [6, Proposition 10.2]).

By choosing a frame {ey,...,e,} of the pullback bundle ¢p*TM — S, just like above
(beginning of Section 4), each s € I'(¢p*TM) can be assigned Fourier coordinates {sip}
where s ~ > ¢z S Skp&p (0)ek. Let I be a connection on LM. For a fixed ¢ € LM, let
{Exp () }1<k<n,pez be defined by Exp, () (0) = & (0)ex (¢ (0)). We define the Christof-
fel symbols {fkp,lq,mr(d))} of I with respect to {Ex,(¢)} by

Tiptamr () = ((T(b,ExprErq)  Emr)) (4.6)
where 1 < k,l,m <n and p,q,v € Z.

NOTE 1. Similar definition in the finite-dimensional case yields {ﬁ;,g (x)} which are
connected to the usual Christoffel symbols {l"gy(x)} by

12, (x) = Tpyu (30) (g7 (20)) . (4.7)

Now we can describe the Christoffel symbol I’ in terms of the Christoffel symbols
of M as follows.

PROPOSITION 4.1. Let {I]}} be the Christoffel symbols with respect to a connection
I' of M and {fky,lq,mr} be the Christoffel symbols of the induced connection I of LM.
Then

lNHkp,lq,mr(‘:l)) = Z ,[51 O<p(9)0(q(9)0(r(9)r1§1(¢(9))g1m(¢(9))d9 (4.8)
i=1
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PROOF. The formula for Christoffel symbols can be obtained as follows:
<<r(¢:Ekp:Elq)|Emr>>¢

= ||, (@0 By ($)(0),Erg () (0)). Enr () (0)) 0

= [ (010,01 (0) (T (b0, ex (#(0)),e1(b(0))).m ((0))) A0

(4.9)
= [ @ (@), (01 (O)uim (#(0))0
n .
-3 Ll 0 (0) 0 (0) ot (O)TE, ($(0)) i ((0)) O
i=1
This completes the proof of the proposition. |
The curvature R of a connection I' is given locally by the map
R(d)!f’g’h) = D¢r{f!g)h} _Dd)r{f) h,g}
(4.10)

—F(d),r(d),f,g),h) +r(¢vr(¢!f|h)1g)

which is trilinear in the last three variables. Here DgI'{f,g,h} is the derivative of I' at
(¢, f,g) in the direction of h.

If T (with the curvature R) is induced by the connection I); (with the curvature Ry;)
then

R(,f,9,h)(0) = Ru((0),f(0),9(0),h(0)) (4.11)
for all 0 € St. As before let

ﬁkp,lq,mr,ns (¢) = <<R (d)yEkvalqumr);Ens))d)- (4-12)

PROPOSITION 4.2. By a similar argument as in Proposition 4.1, we have the follow-
ing formula for the curvature

ﬁk]zi,lq,mr,ns(d)) = Z Jsl O(p(9)O(q(9)O(V(Q)O(S(Q)R]ilm(d)(e))gir(¢(9))d9; (4.13)
i=1

where R},,, (x) is defined by
Ry (x,ex(x),e1(x),em (X)) = Rl (X)e;i(x) (4.14)
for x = ¢p(0) € M.
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