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1. Introduction. [2, 3, 4, 5], the Hamilton-Jacobi formulation of constrained sys-
tems has been studied. This formulation leads us to obtain the set of Hamilton-Jacobi
partial differential equations (HJPDE) as follows:

95 98 ) =0, «,f=0n-7r+1,....m;a=1,....n—7, (1.1)

HO((tﬁ-Qaa@,E

where
Hy = Ha(tg, da, Pa) + Doy (1.2)
and Hj is defined as
Ho = paWa + Pudulpy--ny —L(t,di,4v,da = Wa), M, V=n—-7r+1,...,n. (1.3)

The equations of motion are obtained as total differential equations in many vari-
ables as follows:

0H, oH., 0H,
aq. = Ldty, aAp, = ——%dty, dpg = ——%dty,
da apa « Pa aqa x ps at[; «
, (1.4)
0H,
dz=|-Hx+pa dty; o«,f=0n-r+1,...,n,a=1,....n-7r,
0Pa
where z = S(ty;q4). The set of equations (1.4) is integrable (see [4, 5]) if
dHy=0, dH,=0, p=n-r+1,..,n (1.5)

If conditions (1.5) are not satisfied identically, we consider them as new constraints
and again test the consistency conditions. Hence, the canonical formulation leads to
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obtain the set of canonical phase space coordinates g, and p, as functions of t,; be-
sides, the canonical action integral is obtained in terms of the canonical coordinates.
The Hamiltonians H,, are considered as the infinitesimal generators of canonical trans-
formations given by parameters t, respectively.

In [1], the singular Lagrangians are treated as field systems. The Euler-Lagrange
equations of singular systems are proposed in the form

0 oL’ oL _ 0da
ot [a(aaqa)] BT T (1.6
with constraints
oL’
dGy = — 3t dt, (1.7)
oL’
aG, = — dt, (1.8)
H aqu
where
7 . _ s . . dqﬂ
L (trx,achayQu:Qa) = L(Qa;@a;@u = (aaQa)t(x): qu = W,
(1.9)

oL
G(x = er <Qa,t5,l7a = a)
a

In order to have a consistent theory, we should consider the variations of the con-
straints (1.7) and (1.8).

In this paper, we study the link between the treatment of singular Lagrangians as
field systems and the canonical formalism for the parametrization invariant theories.

2. Parametrization-invariant theories as singular systems. In [4], the canonical
method treatment of the parametrization-invariant theories is studied and will be
briefly reviewed here.

Consider a system with the action integral as

S(ai) =Jdt5£(qi,q'i,t), i=1,...,n, (2.1)

where ¥ is a regular Lagrangian with Hessian n. Parametrize the time t — 7(t), with
T =dt/dt > 0. The velocities g; may be expressed as

di = a;, (2.2)
where g; are defined as
o dqi
a;= 0. 2.3)

Denote t = qo and g, = (40,9:), 4 = 0,1,...,n, then the action integral (2.1) may be
written as

S(ay) :JdTﬂB(qu,?), (2.4)
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which is parametrization invariant since L is homogeneous of first degree in the ve-
locities q,, with L given as

L(au,dy) = fiﬁ(fzu,%)- (2.5)

The Lagrangian L is now singular since its Hessian is n.
The canonical method in [2, 3, 4, 5] leads us to obtain the set of Hamilton-Jacobi
partial differential equations as follows:

H'o = p+ —L(q0,4i,4do,4di = i)

+p7q;+pedolp——m, =0, Ppr= g—i, (2.6)
H'i=pi+H =0, p= %Z,
where H; is defined as
Hy = -%(ai,wi) + p{ wi. 2.7)

Here, p] and p; are the generalized momenta conjugated to the generalized coordi-
nates gq; and t, respectively.

The equations of motion are obtained as total differential equations in many vari-
ables as follows:

o0H OH’ oH’

i_ ‘o0 t 3.0 _ t 3.0
dq' = T art + i dq i daq”, (2.8)
; O0H'y oH'y | oH't , o
dp' = — aTt — dq’ = ———dq", (2.9)
P 0qi aq; 1 aq; 1
0H'y oH'y ,
dpy = — dt—-——dq"” = 0. (2.10)
P 040 g0 1
Since
dH,t :dpt-l-Ht (2.11)

vanishes identically, this system is integrable and the canonical phase space coordi-
nates q; and p; are obtained in terms of the time (qo = t).

Now, we look at the Lagrangian (2.5) as a field system. Since the rank of the Hessian
matrix is n, this Lagrangian can be treated as a field system in the form

ai = qi(T,t), (2.12)
thus, the expression
,04; 0qi -
a; = ﬁ+%t, (2.13)

can be substituted in (2.5) to obtain the modified Lagrangian L':

L= f$<qu,%<%+%f)). (2.14)
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Making use of (1.6), we have

oL 0 oL’ 0 oL’
oo~ ot \aaen) ~or (aaem) = 1)
Calculations show that (2.15) leads to a well-known Lagrangian equation as
oL d o0&
Using (2.7), we have
0 .
Hy=-%+ a—qlql (2.17)

In order to have a consistent theory, we should consider the total variation of H;.
In fact,

o0&

dH; = _Edt' (2.18)
Making use of (1.8), we find that
oL’
dH; = — 3t ar. (2.19)

Besides, the quantity Hy is identically satisfied and does not lead to constraints.
We notice that (2.8) and (2.9) are equivalent to (2.15) and (2.16).

3. Classical fields as constrained systems. In the following sections, we study the
Hamiltonian and Lagrangian formulations for classical field systems and demonstrate
the equivalence between these two formulations for the reparametrization-invariant
fields.

A classical relativistic field ¢; = ¢;(X,t) in four space-time dimensions may be
described as the action functional

S(pi) = Jdtjd3x{££(¢i,au¢i)}, u=0,1,2,3;i=1,2,...,n, (3.1)
which leads to the Euler-Lagrange equations of motion as
o0& o0&
— —0y| =s—— | =0. (3.2)
I “[a(audn)]

We can go over from the Lagrangian description to the Hamiltonian description by
using the definition

M = ag_g ) (3.3)
0y
then the canonical Hamiltonian is defined as
Hy = Jd3x(m<f>i—§£). (3.4)
The equations of motion are obtained
. 0H, - O0H
M = 0 ¢i = 0 3.5)

B aﬂi-

i’
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4. Reparametrization-invariant fields. In analogy with the finite dimensional sys-
tems, we introduce the reparametrization-invariant action for the field system:

S=JdTJ£BRd3x, “4.1)
where
Pr =tL(Pi,0ucbi). 4.2)

Following the canonical method [2, 3, 4, 5], we obtain the set of [HJPDE],

H,0=1TT+7Ti<T)%+7Tt£—§£R=O, 1TT=a—S,
art art oT
5s (4.3)
Hy=m+H =0, 1= ot
where H; is defined as
T doi
Hy = ~%(i,0upi) + 11" i (4.4)

dat”’

and 1Ti(T), 1T; are the generalized momenta conjugated to the generalized coordinates

¢i and t, respectively.
The equations of motion are obtained as follows:

~_0H'y oH'y , 0H
ad; = o at+ o at = o dt, (4.5)
o0H'y 0H'y oH'y
arm; = — aTt — dt = — dt, 4.6
o0 T o ocb: 0
_ OH'g, OoH't .
damg = 3t aTt 3t dt =0. 4.7)
Now the Euler-Lagrangian equation for the field system reads as
o0& 0 o0&
o _axu(a o~ /axu)) 0. 4.8

Again as for the finite-dimensional systems, (4.5) and (4.6) are equivalent to (4.8)
for field systems.

5. Conclusion. As it is mentioned in the introduction, if the rank of the Hessian
matrix for discrete systems is (n —7r), 0 < ¥ < n, then the systems can be treated
as field systems [1]. The treatment of Lagrangians as field systems is always in exact
agreement with the Hamilton-Jacobi treatment for reparametrization-invariant theo-
ries. The equations of motion (2.8) and (2.9) are equivalent to the equations of motion
(2.15) and (2.16). Besides, the variations of constraints (2.18) and (2.19) are identically
satisfied and no further constraints arise.

In analogy with the finite-dimensional systems, it is observed that the Lagrangian
and the Hamilton-Jacobi treatments for the reparametrization-invariant fields are in
exact agreement.
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