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1. Introduction. [2, 3, 4, 5], the Hamilton-Jacobi formulation of constrained sys-

tems has been studied. This formulation leads us to obtain the set of Hamilton-Jacobi

partial differential equations (HJPDE) as follows:

H
′
α

(
tβ,qa,

∂S
∂qa

,
∂S
∂tα

)
= 0, α,β= 0,n−r +1, . . . ,n; a= 1, . . . ,n−r , (1.1)

where

H
′
α =Hα

(
tβ,qa,pa

)+pα, (1.2)

and H0 is defined as

H0 = pawa+pµq̇µ|pν=−Hν −L
(
t,qi, q̇ν , q̇a =wa

)
, µ,ν =n−r +1, . . . ,n. (1.3)

The equations of motion are obtained as total differential equations in many vari-

ables as follows:

dqa = ∂H
′
α

∂pa
dtα, dpa =−∂H

′
α

∂qa
dtα, dpβ =−∂H

′
α

∂tβ
dtα,

dz =
(
−Hα+pa ∂H

′
α

∂pa

)
dtα; α,β= 0,n−r +1, . . . ,n, a= 1, . . . ,n−r ,

(1.4)

where z = S(tα;qa). The set of equations (1.4) is integrable (see [4, 5]) if

dH
′
0 = 0, dH

′
µ = 0, µ =n−r +1, . . . ,n. (1.5)

If conditions (1.5) are not satisfied identically, we consider them as new constraints

and again test the consistency conditions. Hence, the canonical formulation leads to
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obtain the set of canonical phase space coordinates qa and pa as functions of tα; be-

sides, the canonical action integral is obtained in terms of the canonical coordinates.

The HamiltoniansH′
α are considered as the infinitesimal generators of canonical trans-

formations given by parameters tα, respectively.

In [1], the singular Lagrangians are treated as field systems. The Euler-Lagrange

equations of singular systems are proposed in the form

∂
∂tα

[
∂L′

∂
(
∂αqa

)
]
− ∂L

′

∂qa
= 0, ∂αqa = ∂qa∂tα

, (1.6)

with constraints

dG0 =−∂L
′

∂t
dt, (1.7)

dGµ =− ∂L
′

∂qµ
dt, (1.8)

where

L′
(
tα,∂αqa, q̇µ,qa

)= L(qa,qα, q̇a = (∂αqa)ṫα), q̇µ = dqµdt ,

Gα =Hα
(
qa,tβ,pa = ∂L

∂q̇a

)
.

(1.9)

In order to have a consistent theory, we should consider the variations of the con-

straints (1.7) and (1.8).

In this paper, we study the link between the treatment of singular Lagrangians as

field systems and the canonical formalism for the parametrization invariant theories.

2. Parametrization-invariant theories as singular systems. In [4], the canonical

method treatment of the parametrization-invariant theories is studied and will be

briefly reviewed here.

Consider a system with the action integral as

S
(
qi
)=

∫
dt�

(
qi, q̇i,t

)
, i= 1, . . . ,n, (2.1)

where � is a regular Lagrangian with Hessian n. Parametrize the time t → τ(t), with

τ̇ = dτ/dt > 0. The velocities q̇i may be expressed as

q̇i = q′iτ̇, (2.2)

where q
′
i are defined as

q
′
i =

dqi
dτ

. (2.3)

Denote t = q0 and qµ = (q0,qi), µ = 0,1, . . . ,n, then the action integral (2.1) may be

written as

S
(
qµ
)=

∫
dτṫ�

(
qµ,

q
′
i

ṫ

)
, (2.4)
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which is parametrization invariant since L is homogeneous of first degree in the ve-

locities q′µ with L given as

L
(
qµ,q̇µ

)= ṫ�
(
qµ,

q
′
i

ṫ

)
. (2.5)

The Lagrangian L is now singular since its Hessian is n.

The canonical method in [2, 3, 4, 5] leads us to obtain the set of Hamilton-Jacobi

partial differential equations as follows:

H′
0 = pτ−L

(
q0,qi, q̇0, q̇i =wi

)
+pτi q

′
i+ptq̇0|pt=−Ht = 0, pτ = ∂S∂τ ,

H′
t = pt+Ht = 0, pt = ∂S∂t ,

(2.6)

where Ht is defined as

Ht =−�
(
qi,wi

)+pτi wi. (2.7)

Here, pτi and pt are the generalized momenta conjugated to the generalized coordi-

nates qi and t, respectively.

The equations of motion are obtained as total differential equations in many vari-

ables as follows:

dqi = ∂H
′
0

∂pi
dτ+ ∂H

′
t

∂pi
dq0 = ∂H

′
t

∂pi
dq0, (2.8)

dpi =−∂H
′
0

∂qi
dτ− ∂H

′
t

∂qi
dq0 =−∂H

′
t

∂qi
dq0, (2.9)

dpt =−∂H
′
0

∂q0
dτ− ∂H

′
t

∂q0
dq0 = 0. (2.10)

Since

dH′
t = dpt+Ht (2.11)

vanishes identically, this system is integrable and the canonical phase space coordi-

nates qi and pi are obtained in terms of the time (q0 = t).
Now, we look at the Lagrangian (2.5) as a field system. Since the rank of the Hessian

matrix is n, this Lagrangian can be treated as a field system in the form

qi = qi(τ,t), (2.12)

thus, the expression

q
′
i =

∂qi
∂τ

+ ∂qi
∂t
ṫ, (2.13)

can be substituted in (2.5) to obtain the modified Lagrangian L′:

L′ = ṫ�
(
qµ,

1

ṫ

(
∂qi
∂τ

+ ∂qi
∂t
ṫ
))
. (2.14)
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Making use of (1.6), we have

∂L′

∂qi
− ∂
∂t

(
∂L′

∂
(
∂qi/∂t

)
)
− ∂
∂τ

(
∂L′

∂
(
∂qi/∂τ

)
)
= 0. (2.15)

Calculations show that (2.15) leads to a well-known Lagrangian equation as

∂�

∂qi
− d
dt

(
∂�

∂
(
dqi/dt

)
)
= 0. (2.16)

Using (2.7), we have

Ht =−�+ ∂�

∂q̇i
q̇i. (2.17)

In order to have a consistent theory, we should consider the total variation of Ht .
In fact,

dHt =−∂�

∂t
dt. (2.18)

Making use of (1.8), we find that

dHt =−∂L
′

∂t
dτ. (2.19)

Besides, the quantity H0 is identically satisfied and does not lead to constraints.

We notice that (2.8) and (2.9) are equivalent to (2.15) and (2.16).

3. Classical fields as constrained systems. In the following sections, we study the

Hamiltonian and Lagrangian formulations for classical field systems and demonstrate

the equivalence between these two formulations for the reparametrization-invariant

fields.

A classical relativistic field φi = φi(�x,t) in four space-time dimensions may be

described as the action functional

S
(
φi
)=

∫
dt
∫
d3x

{
�
(
φi,∂µφi

)}
, µ = 0,1,2,3; i= 1,2, . . . ,n, (3.1)

which leads to the Euler-Lagrange equations of motion as

∂�

∂φi
−∂µ

[
∂�

∂
(
∂µφi

)
]
= 0. (3.2)

We can go over from the Lagrangian description to the Hamiltonian description by

using the definition

πi = ∂�

∂φ̇i
, (3.3)

then the canonical Hamiltonian is defined as

H0 =
∫
d3x

(
πiφ̇i−�

)
. (3.4)

The equations of motion are obtained

π̇i =−∂H0

∂φi
, φ̇i = ∂H0

∂πi
. (3.5)
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4. Reparametrization-invariant fields. In analogy with the finite dimensional sys-

tems, we introduce the reparametrization-invariant action for the field system:

S =
∫
dτ

∫
�Rd3x, (4.1)

where

�R = ṫ�
(
φi,∂µφi

)
. (4.2)

Following the canonical method [2, 3, 4, 5], we obtain the set of [HJPDE],

H′
0 =πτ+π(τ)i

dφi
dτ

+πt dtdτ −�R = 0, πτ = ∂S∂τ ,

H′
t =πt+Ht = 0, πt = ∂S∂t ,

(4.3)

where Ht is defined as

Ht =−�
(
φi,∂µφi

)+π(τ)i
dφi
dt

, (4.4)

and π(τ)i , πt are the generalized momenta conjugated to the generalized coordinates

φi and t, respectively.

The equations of motion are obtained as follows:

dφi = ∂H
′
0

∂πi
dτ+ ∂H

′
t

∂πi
dt = ∂H

′
t

∂πi
dt, (4.5)

dπi =−∂H
′
0

∂φi
dτ− ∂H

′
t

∂φi
dt =−∂H

′
t

∂φi
dt, (4.6)

dπt =−∂H
′
0

∂t
dτ− ∂H

′
t

∂t
dt = 0. (4.7)

Now the Euler-Lagrangian equation for the field system reads as

∂�

∂φi
− ∂
∂xµ

(
∂�

∂
(
∂φi/∂xµ

)
)
= 0. (4.8)

Again as for the finite-dimensional systems, (4.5) and (4.6) are equivalent to (4.8)

for field systems.

5. Conclusion. As it is mentioned in the introduction, if the rank of the Hessian

matrix for discrete systems is (n− r), 0 < r < n, then the systems can be treated

as field systems [1]. The treatment of Lagrangians as field systems is always in exact

agreement with the Hamilton-Jacobi treatment for reparametrization-invariant theo-

ries. The equations of motion (2.8) and (2.9) are equivalent to the equations of motion

(2.15) and (2.16). Besides, the variations of constraints (2.18) and (2.19) are identically

satisfied and no further constraints arise.

In analogy with the finite-dimensional systems, it is observed that the Lagrangian

and the Hamilton-Jacobi treatments for the reparametrization-invariant fields are in

exact agreement.
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