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ABSTRACT. Sufficient conditions have been found to ensure that all oscillatory

solutions of
(r(e)y"(£))" + a(t)y(e-g(t)) = £(t)
are slowly oscillating. This behaviour is further linked to nonoscillation.
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1. INTRODUCTION.
In studying the asymptotic nature of oscillatory solutions of the equation
(r(B)y' (£))' +a(e)y(e-z()) = £(b), &
this author in [9, Theo. 2] showed that a nontrivial oscillatory solution y(t)

of (1) satisfies 1lim y(t) = o if fmla(t)ldt < o fw[f(t)ldt < o and féédt < o,
t>oo
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In theorem 4 in [9], it was observed that f?%dt = o Jlead to slowly oscillating
solutions which do not approach zero as t + .

In this work, we give sufficient conditions which cause all oscillatory

solutions of the equation
(x()y'(£))' + a(t)h(y(g(t))) = £(t) (2)
to oscillate slowly.

Even though voluminous literature exists about various types of oscillatory
and nonoscillatory criteria for such equations, the asymptotic nature of oscillatory
solutions of these equations has not been so extensively studied. For a good
literature study of related results Graef [1l] and Graef and Spike [2] have in-
cluded an exhaustive reference list. The work of Travis [11] (c.f[8]) shows that
common techniques found for ordinary differential equations fail on retarded
differential equations even when the retardations are small. For oscillation

criteria see T. Kusano and H. Onose [4] and this author [7].

2. ASSUMPTIONS AND DEFINITIONS

The entire study in this work is subject to the following assumptions:
(i) a(t), r(t), £(t), h(t) and g(t) are CO(R), where R is the real line,
(1) r(t) > o, g(t) > o, g'(t) > o0 ;
(iii) g(t) <t and g(t) * as t > ;
(iv) h is odd, sign (h(t)) = sign(t) and there exists positive constants o,m
such that o < a fhﬁéﬁl. < m on some positive half line.
In order to reckon the half line we shall assume that it would mean for
t Z.to for some positive tg. tg will be referred to without further mention.
All functions considered are real valued.
We call a function H(t) € CO[to,w) oscillatory if H(t) has arbitrarily
large zeros in [to,w); otherwise we call it nonoscillatory. In order to be more
precise we shall use the term "solution" only for those nontrivial solutions (of

equations under consideration) which can be extended continuously for t > tg.
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We define a function Hl(t) € Co[to,w) to be slowly oscillating if Hl(t)
is oscillatory and the set: ZHl = {yo = X5 ' Y > xq 3 Yo and xO are
consecutive zeros of H,(t) , x; > to}

is unbounded. If Zy is bounded, Hy s called "moderately oscillating'.
1

3. ON SLOW OSCILLATION
Theorem 4 in [9] states that moderately oscillatory solutions of (1) approach
zero if fmla(t)ldt < o and fmlf(t)Idt < o, Our next Theorem gives sufficient

conditions for all oscillatory solutions of (2) to be slowly oscillating.

az(t)
THEOREM (1). Suppose a(t) = aj(t) + a;(t) where al(t) > o and EITEY

is bounded for large t. Further suppose that

fm|f(t)|dt < o and lim inf if%%%l > o0 . Then all oscillatory solutions y(t)
o 1

of equation (2) satisfy

lim sup |y(t)| > o 3
oo
and
y(t) 1is slowly oscillating. (4)
PROOF. Let y(t) be an oscillatory solution of (2). Rewriting (2) we
have
(ry")' ay(t) n(y(g(t))) = £(t) . (5)
;I?Ey— + h(y(g(t))) + EfTET yie al(t)

a(t)
Suppose to the contrary that 1lim y(t) = o. Since girfy is bounded and
>0

h(x) o as x > o we get that

a+ az(t)/al(t)) h(y(g(t))) 0o as t »> o ., Since

lim inf (If(t)| / al(t)) > o0, (t) reveals that y'(t) assumes a constant
t-roo
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sign making y(t) nonoscillatory. This contradiction shows that

lim sup |y(t)| > o .
Lo

Now

[ la®) |dt < faj()dt + [ |ap(t)]dt
T T T

"

fwal(t:)dt+ !“Jfg_(_t)_J_ aj(t)de
T

T al(t)

az(t) ©
is bounded as t > ® and f If(t)ldt < © ., By Theorem

al(t T

since

4 of this author [9], y(t) is slowly oscillating. The proof is now complete.

EXAMPLE (1). Consider the equation.

" 5 __1 5
y'(t) + ie? y(t) 377 t>o. (6)
Here aj(t) = a(t) = 225 . All conditions of Theorem 3 are satisfied. Hence
t

all oscillatory solutions of (6) are slowly oscillating and satisfy

lim sup Iy(t)| >0 . In fact y(t) =/t (1 + 2 sin(&nt)) is one such

00
solution.

EXAMPLE (2). Let y(t) be a solution of

Cos t

y(t—1'r)=%—3—+t4 , t>m . @)

V(L) + 1+ 2 sin t
t3

Taking aq(t) = 1/¢3 ay(t) = 2sint / t3 we find that all conditions of
this theorem are satisfied. Hence either y(t) is nonoscillatory or slowly
oscillating with no limit at « ,

Example 1 suggests the following theorem:

THEOREM (2). Suppose a(t) = aj(t) + ap(t) where a;(t) > o and

ap(t) / aj(t) 1is bounded for large t . Further suppose that



OSCILLATION AND NONOSCILLATION IN RETARDED EQUATIONS 527

e}
[ |£(t)|dt < » and i{%%%L +®as t >, Let y(t) be an oscillatory

solution of (2) . Then y(t) is slowly oscillating and 1lim sup Iy(t)l =® ,
£

PROOF. We only need to show that 1lim sup Iy(t)l = © , Suppose to the
oo

contrary that y(t) is bounded. Then (5) immediately reveals that
(ryD'/aj(t) + e as t >,
Since aj(t) > o, lY'(t)|> o eventually. This forces y(t) to be

nonoscillatory, a contradiction. This proves the theorem.

EXAMPLE (3). The equation

S + (Z%T R Si:ilnt)j> y(t) = ;3%2 + 2737 sin(fn t) + 2 sin?(fn t»’ (8)

t>o0,
satisfies all conditions of Theorem 2 by choosing aj and aj as

aj(t) = 225 and ap(t) = Q_EEB_E%BE). This equation has
t t

y(t) =/t (Q + 2 sin (4nt))

as an oscillatory solution satisfying the conclusion of this theorem.

Our next theorem gives conditions for boundedness of all moderately oscillating
solutions of equation 2. It is well known that if a(t) = aj(t) + a(t)

where aj(t) *L >0 as t >« ; aj(t) is of bounded variation and

fm[a (t)|dt < o then all solutions of

y'(t) + a(t)y(t) = o (9
are bounded with bounded derivatives. See Cesari [3, p.85]. It is not true
for retarded equations

y'(£) + a(t)h(y(g(t))) = o (10)

as the following example shows.
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EXAMPLE (4). The equation
y" + 2™ 2y(t - 1/2) = o 11)

has y(t) = e sin t as a solution. However our next theorem gives the partial
result. We prove it in more generality for equation 2.

THEOREM (3). Suppose a(t) = al(t) + aj(t) where al(t) +L>0as t > o
) )
f Iaz(t)ldt < @ and f |f(t)|dt < ®» , Further suppose that there exists a A > o
such that L + A < (A—A)/azm where for any oscillatory solution y of (31),
o = sup {xz - %3 y(xg) =y(xy) =0, y&x) $o0, xe(xq, xzzg < @

then y(t) is bounded.

PROOF. Let T be large enough so that for t > T , al(t) <L+X. Let

T; > T be large enough so that g(Ty) > T and y(T;) =o ,

o 0
om[ |ap(t)|dt < A/2 and [ |£(t) dt < A/2 .
T T
Suppose to the contrary that 1lim sup Iy(t)l = o ., Then there is a

t>c0
T;' > T, > Ty such that y(T,) = o and P; = max {1y(t)[ :T<t<T t} = |y(T | > A,
y(x3) = y(x3) = o . Let M} = Max {]y(t)| tx3 <t f_ng , where [xl,xz] is the
smallest closed interval containing Tl'. It is clear that Ty 2 xq,
[y(e)| < (12)
and

[y(g(e))] < My (13)

for te [x, xp]. Let =xge[xy, x3] such that My = |y(x0)| . Since

X0 X0

M= [ y'(t)dt = - [ y'(t)dt
Xl XZ

we have

XZ ,
M < Tly'(e)|dat
X1
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X 1
[y o Ply o %
X1

2 X9
4M1 <

A
[=9)
t

)
[ “y'(e) ¢ y'(v)de | .
X1 X1

by Schwarz's inequality. Integrating by parts and using (2) we get

2 X2 X9
4M] < (xp - %) i y(t)a(t)h(y(g(t)))dt - iyunumc : (14)
1 1

From (14) we have

X X
< o f 2a(t) b (8CE))) y(g(r))de + o f 2|f(t)|dt
X1 y(g(t)) X1

since xp - x; < a . This yields in view of (12) and (13)

X2 2 X2
42 am [ “(ag(e) + |ay(e)]dde + 5 [ T£(e) |de (15)
X 1 X
1 1
which gives
2 *2 a *2
4<amL+A) +am [ “ay(t)]de +a [ Tl e (16)
or
4<alm@ + ) +A, an

x x
since %<1, o mf Zla (t)|dt < A/2 and [ zlf(t)[dt < A2 .
" X x -

1 1

This contradiction, in (17) , completes the proof.

REMARK. Coming back to example (4) we see that for the solution

y=etsint, a=m, L= Ze“/z,m =1, f(t) =0 and a,(t) =0 . Thus
2

T/2

far any A > o> azm (L+A) = NZ(Z e +A) >4 - %4}/satisfying the

conclusion of the theorem.
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has

L=

B. SINGH
EXAMPLE (5). The equation
yUE) + 2 e 32y - 3Ty - (18)
y3= et sin t as a solution. Here a =T
=T
e 2 = e—"’7 ,m =1,

Therefore for A = .01

muz(L +A) = “Z(e—4.7 + .01) < 4 , once again, satisfying this theorem.

10.

11.

12.
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