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ABSTRACT. We study an initial-boundary value problem for the nonlinear
Schrddinger equation, a simple mathematical model for the interaction between
electromagnetic waves and a plasma layer. We prove a global existence and
uniqueness theorem and establish a Galerkin method for solving numerically
the problem.
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1. INTRODUCTION.

This paper is concerned mainly with the initial-boundary value problem
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1ug +u, + klulzu = 0, u(0,x) = uo(x) , (1.1)
ux(t,O):in(Zao-u(t,O)) , ux(t,1)=i.l.1(u(t,1)-2a1) (1.2)

where i2=-1 , the subscripts t and x denote partial differen-
tiating with respect to the time coordinate tef0,T] , T>0,

and the spatial coordinate xe[0,13, respectively, k and ‘ij ,
j=0,1, are real constants, the aj's are (in general) complex
constants.

(1.1) is the standard form of the nonlinear Schrddinger
equation. Only technical modifications are necessary to extend
our results to somewhat more general equations like
iuﬁuXX+klu|2u+a(x)u=f(t,x).

The boundary conditions (1.2) can be written in the more sug-

gestive form

1
';%I (aoexp(idbx) + erxp(-iibx) - u)lx=0 =0, 1=0,1,

1
alx"-' (ajexp(-1d; (x=1)) + Ujexp(id; (x=1)) = | ., = O.

The problem (1.1), (1.2) may be considered as a simple mathe-
matical model for the interaction of stationary electromagnetic
waves aoexp(i.cox) for x<0 and :sa.1exp(-i,,l.1 (x=1)) for =x>1
with a plasma layer localized in the intervel [0,1] . The functions
Uj , Jj=0,1, defined by Uj(t)zu(t,j)-aj represent the reflection
and transmission properties of the plasma layer 1.

Recently, the initial value problem (1.1) has been studied
extensively for solutions which vanish at |x| =00 [2,161 or which

are periodic in x [3] . The nonlinear Schrddinger equation con-

nected with these boundary conditions has such distinguished pro-
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perties as an associated inverse scattering problem and an infini-
te set of conserved functionals Fn . Unfortunately, the boundary
conditions (1.2) do not imply such properties. Especially, the
functionals Fn are not conserved. Nevertheless, we shall use the
functionals F, and Fg (cf. 0]) to prove important a priori
estimates.

The paper consists of five sections. In the second section we
introduce notations and state some results concerning a linear or-
dinary differential operator. This operator turns out to be self-
adjoint with respect to the homogeneous boundary conditions corres-
ponding to (1.2) (i. e., ao=a1=0). In the third section we prove
an existence and uniqueness result for a regularized problem ori-
ginating from (1.1), (1.2) by addition of a regularization term
which may be interpreted physically as damping X]]. The fourth
section contains our main result, a global existence and unique=
ness theorem for problem (1.1), (1.2)e Our proof bases on the
approximation of (1.1), (1.2) by the regularized problems mentioned
above. In the last section we establish Galerkin's method as a
procedure to solve (1.1), (1.2) numerically. The eigenfunctions
of the self-adjoint operator studied in Section 2 serve us as

appropriate base functionse.

2. PRELIMINARIES

Throughout this paper ¢ denotes various constantge. For a
complex number z we denote by Zz , z , Re z and Im z conjugate
complex number, modulus, real and imaginary part, respectivelye.

ot 1

, H and LY are the usual spaces of complex-valued functions

defined on the interval (0,1) provided with the norms



506 H. GAJEWSKI

1 1
3 .
= dYv(x - 12 1/2
vl 32 x?gﬁjl_iili ’ llvllH1 ( z f‘L}I x )

1 1/
“vilq = (.glvlcl ax )%, 1sqcoo hvi,= ess sup | v(x)|.
x¢e[0,1]

We write
C = Co, "V"c = llvllco , H=H°=L2 , hvl = "V"2 , (vow) = l v * dxe.

1

The space H' 1s continuously embedded into C and it holds (cf.
(£3))
uvnisavn(nvumuv,gn , veH (2.1)
In what follows the operator A defined by
Avs= “Vix + Zipvx + (ip'+p2)v » D' = %'% ’ (2.2)

D(a) ={ve 52 | v, (0)=-i4 v(0) , v (1=t v(1) }
plays an important role. Here p=p(x) is a real function such that
peE’ , p(0) = =4 , p(1) =y, (2.3)
REMARK 2.1 The function p=(«¢.o+-(.1 )x-cl-o mey serve as an
example for D .

LEMMA 2.1 The operator A€ (D(A)-»H) 1is self-adjoint and
nonnegative., Ita energetic space is H1 « A has a pure point
spectrum. Its eigenvalues are )ln= n2‘n' 2 , n=0,1,2,4e¢ Each eigen-

value is single. The corresponding orthonormal eigenfunctions are

et oomllz, 2(x)= Zp“’)ds ’ rf{é i Rz, (2.0)

PROOF. The operator A is closely related to the Laplacian
with Neumann's conditions. Indeed, it is easy to checkthat v 1is
solution of the problem
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Av =f , feH, +veD(A)

if and only if w = e'in € H2 is solution of Neumann's problem
= ¢~1P = =
“Wy = e £ , WX(O) = wx(1) =0 .

From this fact and from the well-known properties of Neumann's pro-
blem (cfo (9] the lemma follows.
Provided with the scalar product
((v,w)) = (V+AV,w+Aw)
and the corresponding norm
IviZ = Nveav)®
D(A) becomes a Hilbert space V . We denote by < e,e» the pairing
between V and its dual space V' . Because of Riesz' representa-
tion theorem the mapping Ee (H— V') defined by
<Ef, v>= (f,v+tAv) , VveV

is one-to~one and isometric. Thus we can identify V' and H .

LEMMA 2,2 The V-norm and the H2-—norm are equivalent on V .
PROOF. Evidently we have Iviy £ c(p)livi , « On the other hand
H
it holds for vevVv
(Av,v)a(-vm+21pvx+(ip '+p2)v,v) ”
- 1 D VY =DVV T)+pe
- [(-vx+ipv)v + f(’vx| 2+i(pvxv p'vV pvvx+p'vv)+p lvi©)ax
0

2 2, .2 1, .2 2 (25)

(1v gl “+p%Iv| “=2pIn(v,¥)) dx z slv | <= clivi

and

N Oy

1
2
lAvI® = (Av,Av) = Hv I %+ ‘g{ 4p2|vxl Zrpte(p) )12
+ 2Re[vn2ipx'rx+vn(ip 1ap?) V-2ipv_(ip' -pz)V]gdx
ngaﬁ-ﬂﬂg.
Hence we get

1v125 = vl 2ehv 2eliv, 128 o (hvi2h2(av, v)+iavi)e o L)
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and the lemma is proved.
LEMMA 2.3 For geH let g = éo (g,hl)hl o Then g —>&g
(strongly) in H . Moreover, if ge V , then g,—> & in H2 .
PROOF. The first statement follows from Lemma 2.1 (cf. (9],
Satz 21.1). Let now ge¢V . On account of Lemma 2.1 we have the re-
presentation A g = fi 2l(g,hl)hl, that is g8 in V . Because
of Lemma 2.2 this impiies g,—g in H® .
In view of Section 4 we still note that for arbitrarily small
8§70 the following estimate is valid
llvxu2= -2 Re(v,vxx) ] 2ivillv é[lvxxu2+ %ﬂvla VveV . (2.6)
In what follows S = [0,T] denotes a bounded time intervel. For
a Banach space B we denote by
- C(8;B) the Banach space of continuous (B-valued) functions pro-
vided with the norm Julg(g,p) = x@g:énu(t)uB ’
- CW(S;B) the space of weakly continuous functions,
- LZ(S;B) the Banach space of Bochner-integrable functions pro-

vided with the norm ou122 = giu(t)ﬂ % ds ,

L°(S;B)
- H’(S;B) the Banach space of functions u.eLz(S;B) having a de-

rivative u' = %%GILZ(S;B) taken in the sense of distributions on
(0,T) with values in B .

REMARK 2,3 Clearly, the relation L2(S;H)=L2((O,T)x(0,1))
holds. Accordingly, we shall occasionally consider "ebstract" func-

tions as "ordinary" ones and vice-versa.

3. THE NONLINEAR SCHRODINGER EQUATION WITH DAMPING

In this section we consider the problem
i ut+k1uxx+(k2+k3(u|2)u =0, u(o,x)=uo(x), ueH1(S;H2) ’ (3.1)
u (t,0) = ik (2a,~u(t,0)) , u(t,1)= iL, (u(t,1)-2a,) (3.2)
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with real constants aLo,¢£1 and (in general) complex constants a,,

a4 k1, k2 and k3 satisfying the assumptions
ooRe kg 20, % Re k20, Imk,;<0, Imky 20. (343)
REMARK 3.1 Under the assumptions (3.3) the term Im k1uxx +
Im kBDuF u may be interpreted physically as damping (cfe. [71).
REMARK 3.2 It requires only technical modifications to treat
(3+1), (3.2) if a right hand side or functions ajaaj(t) are ad-
mitted.
In order to get homogeneous boundary conditions we make the an-

satz
u=v+u , u =v, +u (3.4)

a o a
with a function u, € B> satisfying (3.2).
REMARK 3.3 For instance we can choose
u, = -104630(1-x)2exp(iP) +-¢1a1x2exp(1(P-P(1)))),
where P=P(x) is the function from (2.4).
Now we can rewrite (3.1), (3.2) as follows

ivy+ k1(v+ua)xx +Bv=0, v(D) =v._, ve H1(S;V), (3.5)

o

where B v = (k2 + kBIv + ua|2)(v + ua) o

THEOREM 3.1 Suppose (2.3) and Vo = U ~u € Vr\H3 o Then the pro-

blem (3.1), (3.2) has a unique solution.
PROOF. For real parameters r >0 we define by

v(x) if lv(x)| £ r,
(P v((x) = (3.6)
T rlz i lif lv(x)] > r
operators Pre(C-—+C). It is easy to check that for v, v,, V,€V
Thus the operator B ¢(H'—»H') defined by

B, v = (kp + ky|Py (v4u,) [P, (viuy) (3.7)

satisfies for vjeH1 , W,

j = ua+v

3’ j=1,2, the estimate
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I Bovy=Bov ol = Nl 5 2wyl 2) (Bwy =B, )+ 5 (I Bowy | 2= 1wl 2)R_w,
£l ( 1k, +lk3l r?) | vy=vo | +lk,) | Pwy =B Wyl [P W, +P W, T | (3.8)
£ (kg + 3lk3lr2)ﬂv1-v2ﬂ = c(r)llvy=v,ll .

Moreover, for 'vefﬂ we have with w=v+u,

- 2 < 3
I BV = H(k2+k3|Prwi P wl £ lkzlﬂwﬁ+1k3leH6 (3.9)
S lk2luwn+lk3|uwn2(nwu+2nwxu) = c(vil) (1+livll)
For the time being we replace (3.5) by the problem
i vt+k1(v+ua)xx +Bv =0, v(0) = Vo o 'vélﬂ(S;V) ’ (3.10)
which we can write also as a standard evolution equation
vy + Cv =0, v(0) =v,, veH (S;V), (3.11)

where the operator C.€ (V—V') ist given by
C.v = -i(k1(v+u.a)xx + Brv) .
In order to apply results on evolution equations we now verify some
properties of Cr’ Using (3.8) we obtain for Vs v2eV with vav,=v,
“Crv1"crv2"V' = "Crv1-crvzﬂ= “k1vxx+BrV1'Brv2"

(3.12)
=3 |k1luvxxu + c(r)lvil & c(r)ivi

V 9
that is the Lipschitz-continuity of Cr « Next we note that Cr
posgesses the following monotonicity property

2Re<Crv1-Crv2,v1-v27= 21m(k1(vxx+Av+v-(v+Av))+Brv1-Brv2,v+Av)

2 -In ks - o(0)ivi?, . (3.13)
H

Finally, v, € Vr\H3 implies Crvoe H1 o Using these facts we can
conclude the existence of a unique solution v, of (3.11) from
Satz 3.1 and Bemerkung 5 in [5].

Now we want to show that for sufficiently large chosen 1r the
function wu,=v +u, is the (unique) solution of (3.1), (3.2). Clearly,
it suffices to find a r-~independent a priori estimate for w. in
C(S;H1) e« We proceed in two steps. Setting VaVy,, usu,
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Uj(t)aur(t,j)-aj y 3=0,1 , we get from (3.10)
0=21m(iut+k1uxx+(k2+k3lPrul2)Pru,u)=
= (uuuz)t+2Re(k1§;%¢j(Uj~ajl(ﬂs+Ej)) - 2Im$k1uuxu2 -
= ((eptieg | Pul)R ) = (Ilullz)t+2Rek1;f:%e63(lUjl2-|a3| 2)
-2Im(2k1}§ébjlm(§jUj)+k1nuxu2~((k2+k3ﬂPruuz)Pru,u))
2 (1ul?) j+Rek, %.Lj\ujﬁ-almkﬂluxuz-alkzl hul®+2Ink P, i} - <,

where the constant c¢ is independent of r . Hence by Gronwall's

lemma we conclude
2 2 2
N 5eg.qy - Im Kyl +Reki’ N0l $co (3.14)
Urlc(s;H) 1 12(s;0") 1J=0Jj 3l 125y
In the second step we multiply (3.10) by Av=-vxx+2ipvx+(ip'+p2)v
and obtain, using the symmetry of A ,

0

ZIm(ivt+k1uXx¢Brv,Av)

(v,Av); - 2Im(k1(Av-uaxx-2ipvx-(ip'+p2)v)-Brv,Av)

uv

(v,Av), - 2Im k1HAvH2 - 2“k1(uaxx+2ipvx+(ip'+p2)v-Brv"HAvH .
Taking into account (2.5), (3.9) and (3.14), we get by Gronwall*s

lemma the desired a priori estimate
I
which ends the proof.

THEOREM 3.1 has been stated mainly in view of its application
in the next section. For the sake of completeness we still formulate
an existence and uniqueness result for the damped problem holding
for arbitrary initial values uoeH « For this purpose we start from

the following weak formulation of (3.1), (3.2)
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1
JCCugreprieg 1w Z)u,n) i (1 1oy (ult, 3)-28)B(¢, 3)- (g, hy ) )at=0
S 3=0 (3.16)
2 1 2 1 1 1y,
u(0) =u , VheL(S;H) , ueL (S;H )INH (S3(H)') .
Then, using Theorem 3.1, (3.14) and the fact that V'<:H3 lies den-
sely in H (cf. Lemma 2.3), the following result is easily to prove.

PROPOSITION 3.1. Suppose (3.3) and u e H o Then the problem
(3.16) has a unique solution.

4., THE NONLINEAR SCHRODINGER EQUATION
We return now to the problem
1ug +ug, + klul®u = 0 » u(0,x) = u (x) , (4.1)
ux(t,O) = idb(Zao—u(t,O)), ux(t,1) = idq(u(t,1)-231) . (4.2)

Our main result is

THEOREM 4.1, Suppose dj

problem (4.1), (4.2) has a unique solution u.eC(S;H2) with

20, 3=0,1, V,=u,-u, € V . Then the

u, € C(S;H) . Moreover, it holds Uj=u(.,j)-ajeH1(S) , 3=0,1.
PROOF. (Uniqueness) Let uy, U, be appropriate solutions of (4.7
(4.2). Setting us=u,-u, and szu(.,j) we obtain from (4.1)
0 = 2Im(iugtu+He@uy) 2uy-tuyf 2uy),u)
= (Jud®) . + 2kIn(h g Zut(luq | 2=tusd Du,,u) + 2 i.z,.lul 23
N 1 1 2l vy o
2 2 2 2

Integration with respect to t yields
t 2
Fu(t)h2 & c(u1,u2){  u(s)ids »

Applying Gronwall's lemma, we conclude from this u=0, that is U =uge
(Existence) We approximate (4.1) b& equations of the form (3.1).

To this end let €> O be a regularization parameter and (voe) a

corresponding set of functions such that voteVr\H3 and Vo

t—-) Vo in
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V as g¢—>» O. (The existence of such a set is guaranteed by Lemma
2.3) We consider now the problem

1wy + (1-16)u+eiul®u = 0, ueH (S;H%), u(0)=u  =vo +u,  (4.3)

under the boundary conditions (4.2). By Theorem 3.1 for each ¢>0
there exists a unique solution u of (4.2), (4.3). In order to be
able to pass to the limit ¢~—~»O0 we need two a priori estimates.
The first one is

2
&

12(s)

which can be proved exactly as (3.14). The crucial part of this

2 2
hudd c(s;n)*‘““"Lz(s;H1) + J%«leUijl c, (4.4)

proof is the second a priori estimate which we are going to prove
now. For the time being we drop the subscript ¢ setting u=u, ,

Uj=u£(-,j)-aj, j=0,1. From (4.3) it follows

% 2 2
0 = 2Re.£ (iut+(1-ie)uxx+klul u,(1-i£)uxxt+% k [ul ut)ds
Tt _— . 2 2
= 2Re _g{[l(nie)utuxgo-i(wu)lluxtll +(1+87) (u g ug 1)+
+e(1416) (\ul Pu, u )+8 killu ug) 248 k(1-16) (utul?,u)+
+ % kz(lul4u,ut)}ds
and thus
% 2
e .21-:-;‘3“’;;46'2 + 2elu_i®as + (e2hu (012 £ (e
3=
2 % ‘
= 1+ (0434 %Hu(o)llg-k gRe(2(lu|2u,vnt)+3(un|ul2,ut))dS+
5 -
+exf m(2 w,u g )-3(u 1ul?,u;))as (4.5)

2 2 ko 6 t
= (e NMu (01T + FHu(O)llg + k | I, ds + €k {12 ds.
Let us now reform the integrands I1 and 12 + We have

I, = -Re(2(|u|2u,unt)+3(unlulz,ut))= 2Re{((|tig)xu+lu|2ux,uxt) -
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Ltui®u Gx,j +2(u_, (ul?) ut+|u|2utx)-2[ux\ulaﬁ-j. +Re (ugelulyuy)
= 301w, (g By + g(ll(lulz) 12), + Re(2Qul®) g + 1ulPu, uw,) -
2Re [{ut % (u Gy + 2uxut)%
where
Re(2(\u\2)xux+\u\2un,ut) = Im(2(|u\2) u + |ul un,(1-is.)un+k|ul %)
= £ (2Re (1wl 2) pu uy ) +luw 22l Wit B up )+
F(Qut?) gt $utPu, kiulfw
= t:(aRe((iu|2)xux.1&x)+uuunu2)+21m((|u\2)xux.un)+k1m[‘u‘4ux"(i)
end
2Im((1ul?) u,u ) = 2Im(ulugd ® + wod, up,)
= -2Im((2ugn B+ully, w) - ( gl 2,u)) + 2m[lu)%a u.xi
6Tm(ufug) 2,uz,) + 2Im[luy| 23 u;]
6Im(utuy |12, (1-1€)u  +kiul?u)-62Re (ulu,l .un)+21m[|uxt q %1)

3 ul®) g, fugh 2) - 6eRe(uiug) %, ug ) + 2Inf\ w ) %3 nx]

Hence we obtain

I, = 30luuh? 2) u -

] wa12), + 01 (Ml ®) %) e(2Re ((1ul ®) puy-3utugd ,un)*punf)
~[2Re ((ul 2 (ui 4 +2u,d,)) - EIm(Yuthu @) - 2Im(lug) uux)] .

Next we have

= mm(2(ul®u,uy) ~3ugiul®,ug) =
= Im{2[|ul zuixt1 - 2((|u|zu)x,uxt)-B(unlulz,i((1-i€)un+klu|2u))}
= mmf2[|ul?u 515)-2((|u52u)x.vxt)} + 3lun 12 + 3kRe(ugul®,w) .
Combining these expressions we get

4
k f (114 1p)as = Kl 3hug? + %!(\ulz)x“zi + 2tkIn z[lu'zu 1'3::1:% ds +
0
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-rke{{ Re(2((u]? ) gup=3u(2fu,l -k$u|4).un)+2(2lluunl =Im((lu| u)
uey))} ds -

k}[ 2Re (1ul (uuxt+2u.xut))-k1m(|ul uxu)-21m(lux\ uux)] ds (4.6)
=k[3!luuxl|2+%-ﬂ(lu| ) “Z tJj[UJ+aj| ] + k¢ {Re(z(\utz)xux

- 3u2hug) 2t ), u) + 220w -m((|u|2)xu+|u\ uou )} as
T jz::o 2{2’1‘“‘3‘"3*“3" " (3000t Ugeagl 101 B-agt %)

- uglUj-ajlz([Uj|2-|aj|2)} ds .
Now we want to estimate this expression term by term. Firstly, it

follows from Voe ™ Vo in V that

llu(O)qu = ﬂuf_(o)lle = Fu 2 lug+vgl 2 & IIual|H2 +clvly & o .

Hence we have

kGluugg? + HN0ul?) 13- £ j)l:o“a' lugtasH0) $0 0 (4
Since, because of (1.6) and (3.4),
gl 2 g —ug o+ fug U+ g 8 ~u 1+ %uu-uauﬂuaxuécfnunu-rc, (4.8)
we find that

k(M i u? ) %) € 51k ? 4 SIkIltvxufllullz

£ 51kl fugh (hugh + 2flug ) 1ui® $ Sug )
Next, applying (4.4) and (4.8), we obtain for sufficiently small ¢

(4.9)

ke { Re(2({ul?)u ~3u(2hug 2k 1w ®),u ) ds
\klig (4uuu|uxu..+3|\uu(2uux. 2, x| Ilull.,.)) | uggllds (4.10)
é\k\tgllull (10 lhugh (Rugh+24ug Il )+31 ki |lu|lz(\\ull+2||uxu )2 u,  uds

£

€ (1 Wi 205.)) 5 © + g 25,m)
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and

N

ksf (2luunl| -Im((lu\z) u + {ul? U ,ug,)) ds

[N

2\k\sf (2nuu.||uxxu +3ﬁul.oluxl\\luxtll) ds (4.11)

LT

2lkl € g(zluu(uuwznuxn)wnu +3uun(uuu+2uu,g\)t\uxtn) ds

<

£ c(1+ E'uxxnc(c;H)) + aagnuxtu ds% ¢ + §luxx“c(s;H)+2€g“‘5:t“ ds .
It remains to estimate the boundary terms. To this end we deduce
from (2.1), (4.4) and (4.8) that for arbitrarily small §>0

4 2 2
Wulocsy Bhu-aglces;n) u-elos;m) + 2Vuelo(s;m) )
£ c(n +5l\un||2

and t ¢ 5 A 5
“ 10 "am £ AU e N Uoes) € o1 HAluygd -
Thus we find

4 4 1 2
- f2-k j};’:c';cjwj(t)mj[ $ec(1+ jz;oacjluj(t)l )éc + TG“uxx“C(S;H) (4.12)

and

-k i‘ j{zm&, \uj+ay | (3a3-U5)0 ] -k [ U +aj\4(|U ‘2'\3:;‘2)'
Zd.glUj-a |2(|Uj|2-laj‘2)}ds$c + i‘ ! (czacalvjl6+-£ loj51%)as (4.13)
< 1
£¢c+ TG“"n“w;mJ' goijé’wjt‘

Now from (4.5)=(4.7) and (4.9)-(4.13) we obtain
)}.‘-6 fantl ds+l&urx(t)ll + llu(t)\ls z“uxx“?:(s;n) + Ceo

Hence the desired second a priori estimate

é U (4.14)

2
ull
e 2(s)

+lu
c(s;H%) el c(s,
follows. Via (4.3) we still get

“uituc(s;H) £c. (4015)
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According to a well known compactness lemma (cf. [6], Chape. I, Th.
1.5) (4.14) and (4.15) imply the precompactness of the set (u) in
LZ(S;H1) . Consequently, there exist a sequence (en) tending to
zero as n-—soe and a function ueL2(S;H2) with uteLz(S;H) and
U, = u(.,j)-aje H1(S) y j=0,1, such that the sequence (un) = (q‘n)

J
patisfies

u —> u (strongly) in LZ(s;u"),
u,— u (weakly) in L%(S;H?) , (4.16)
we — win IZ(SH) , U—~U; in 13(s).
Now we want to show that u is solution of (4.1), (4.2). From the
first relation in (4.16) it follows that fu | 2u —>lui®u in L2(s;H).
Thus we can pass to the limit ¢ -——> 0 in (4.3) and obtain (4.1).
Further, u €L?(S;H?) end u, e L°(8;H) imply ueC(S;H'). There-
fore by (4.14) we see (cf.[8]) that u belongs to CW(S;Hz) and
satisfies the boundary conditions (4.2). Then the inclusion
u, € Cw(S;H) is a consequence of (4.1).
In order to show that even u€C(S;H2) and uteC(S;H) we adapt
en idea of the paper {8]. We extend u by setting u(t)=u(0)=uo
for 140 . Let rarg=r, (t) be an appropriate even smoothing kernel
(cf.[8,9]) and
(g% W (%) =f r (t-8)u(s) as , [ =f

-0on

Further let h = hg = hs(s) be {1 for se[f,t-5] , 0 for s¢[o,t]
and linear in the intervals [0,6] and [t-&,t]}.

We set q=q = Ty and v=r«(h(qxu)t)=ra(h(q'*u))=r*(h(qwt)) .
From the evident relations

0 i.r (v,v)t ds = 2Imfi(vt,v) ds ,

-2Inf (vg,v) ds = 2Inf ((v,v) - (v, ] ) ds
0

0
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we deduce

0=2In { ((ivy+vy,v)= [ v, v] )ds=2Im f{ (r'w (B(qe (1ug+u )))-
= (' (g ), ru(h(qrwut))) - i Z.(jlr*(h(qY*th))lz}ds .
Letting y—0 and using ut,unecw(S;H), théL (s) , we find

0=2Im [{ (r W (h(1uy+u_ ) )=ra(h'u ), ralau,))-i ;'_‘Géjirl(hUJt)l 2} as
=2In f{ (o (8" (Hug+u ) +xwe(h(ingug ) )-retb ) , me(huy)) -

2 ) .
i:jg)“j'r*(hujt)l }ds = 2Imf{(1rx(h6ut) - r#(hg(klul u)t) ’

r(gp,)) - i jéodaj‘ra&(hﬂjt)[z}ds .
Next we let &§— O . Since |uj2ueH’(S;H) it follows (cf. |B))
0=2Im[(iu,, 7% rew(h, ut))] = 2Imf{ Gz (n, (efu®u) ), =% (houy))+
+ i 21: .{,J\rex-(hont)l ’ds.
Finally, letting ¢~->0 , we see that (cf. [8))
by (012 = llut(O)ll2-2Z({Im(k(|u|2u)t, uy) + Jz}oabjlujtlz?ds.

Because of u, € CW(S;H) this equation implies uteC(S;H) + Now
the remaining inclusion unéc(S;H) is a consequence of (4.1).

Theorem 4.1 is proved.

5¢ GALERKIN'S METHOD

In this section we establish Galerkin's method as a procedure
to solve the problems (3.1), (3.2) and (4.1), (4.2) numerically. We
look for approximative solutions of the form

n
"Hfun(t)=ua+:§obl(t)hl’ un(0)=t1n°=ua+3§)plhl, B1=(v,hy) (5.1)

Here h,, u, and v, are the functions given by (2.4) and (3.4).

A function wuw, having the form (5¢1) is said to be the n-th Galerkin
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approximation of the solution u of (3.1), (3.2) if the (complex-

valued) coefficient functions bl solve the initial value problem
2
(iunt+k1unxx+(k2+k3\Prunl Prun’hl)=’ bl(0)=Pl, 120, e 00 yNe (5.2)

Here P,, ist the operator defined by (3.6) and r is an arbitrary
bound for max{u(t,x)|, tes , =xel0,1] .

REMARK 5.1. We can get a suitable bound r by calculating ex-
plicitly the constant ¢ in (3.15).

REMARK 5.2. By introducing the operator P, in (5.2) we have
8lightly modified the usual Galerkin rule. We had to do so because
we could not find C(S;H1)-a priori estimates for the classical
@alerkin approximations.

REMARK 5.3+ In order to solve (5.2) numerically one can intro-
duce the functions vn=e"iPun=e"iPua+ gﬁ% bjcos 1M x and rewrite
(5.2) as follows

-iP, )

3 . . 2 .
b1+lkf)1b1=(l(k2+k3'Prvn| )Prvn+1(e o xx'k1(2pvnx+

+(p'£ip2)vn), cos 1Tx) , 51=%¥b1’ 1=0,¢e0,n , (5.2)

£ (0)=py
THEOREM 5.1. Let the assumptions of Theorem 3.1 be satisfied.

Let (un) be the Galerkin sequence given by (5.1), (5.2) and let
u be the solution of (3.1), (3.2). Then

u —u in C(S;H?), u y—u, in L2(S;H') and  C(S;H) . (543)

PROOF, We can regard the function Vo =Wy ~u, as n-th Galerkin

approximation of the solution of problem (3.11). Therefore, taking

1

into account (3.12), (3.13) and the relation C.v,€H', the theorem

follows from [4], Satz 2.3.
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COROLLARY 5.1. Let Unj(t)=un(t,j)—aj and Uj(t)=u(t,3)-aj ,
j=0,1. Then

Uy Us n G(S) ,  (Uy),— (U))y in L2(s) .

PROOF. The assertions follow immediately from (5.3) and (2.1).

Now we turn to Galerkin's method for the undamped problem (4.1),
(4.2). A function wu, of the form (5.1) is said to be the n-th
Galerkin approximation of the problem (4.1), (4.2) if the functions

bl golve the following initial value problem

(iunt.l.u +k,Pr%| 2Pr%,hl)=o, bl(O)=Fl sy 1=0,1,e0e,n0 (5.4).

Here again P, is the operator from (3.6), r is an arbitrary bound
for max|u(t,x)|, te€S, =xe[0,1]. (The existence of such a bound is
guaranteed by (4.14).)

REMARK 5.4. Introducing vn=e"ﬂua+ g b;cos 1T x, we can write

(5.4) in the form

iPu)

2
o) xx~ 2PV~ (P'+ip°)v,, cos 1T x) ,

L . 2 s -
by +if; b, =(ik|P v | “P v +i(e
bl(O)=Pl 9 l=0,1,...,n )

which is more convenient for numerical purpose.

THEOREM 5.2. Suppose .LjZo, i=0,1, v =u -u €V . Let (u,) be
the Galerkin sequence given by (5.1), (5.4) and let u be the solu~
tion of (4.1), (4.2). Set Unj=un(t,j)-aj, Uj(t)=u(t,j)—aj, j=0,1.
Then

w>u in G(S:H) , Ty U —NI Uy dn 12(s) .

L
PROOF. We write wj,=u + 2. (u-u ,hl)hl + Now from Lemma 2.3,
1=0 a

uo—uaeV and Theorem 4.1 it follows that

w, —>u, in B, wo—>u in 1L2(s;H%) ana C(S;H') ,
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(5.5)
Wy —>u, in LE(S;H) .
Setting qn=u"'%9 an=("j)"1ln(‘aj) s Zn=wn"‘u ’ an Wn(',j)"u('nj)’
we conclude from (5.1) and (5.4) that

t
0= ZIm‘£ (iqnt+qnxx+k(IuFu-lPrunlzPrun), q,*tz,) ds
t t
2 2 2 2
= la, () “= K q, (0)) “+ gg% g“j‘an‘ +2Im.£(k(|?ru] P u-
1

2 R .
'Prun' Pu, o, qn+zn)'1(qn’znt)+21 gE%JJanznj+(qnznxx)} ds +
2Re[(q, (+),2,(£)) = (q,(0),2,(0))].

Using' (3.8) (for k,=0 , k3=k) and (5.5) we deduce from this equa-

tion the theorem.

REMARK 5.5. The proved convergence of the boundary values
un(t,j) is of some physical interest because they represent the
reflexion and transmission properties of the plasma layer described

by (401), (4.2).
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