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ABSTRACT. Let X be a completely regular, Hausdorff space and let R

be the set of points in X which do not possess compact neighborhoods. Assume
R 1is compact. If X has a compactification with a countable remainder, then
so does the quotient X/R, and a countable compactification of X/R implies
one for X-R. A characterization of when X/R has a compactification with

a countable remainder is obtained. Examples show that the above implications
cannot be reversed.
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1. INTRODUCTION.

Let X be a completely regular, Hausdorff topological space. The question
of characterizing when X has a Hausdorff compactification oX, where
aX = X 1is countably infinite, has been answered for the locally compact case
by Magill [2] and for the case when aX = BX by Okuyama [4] (where BX 1is
the Stone-Cech compactification of X). In case X 1is an arbitrary completely
regular space, no such characterization has been given. The purpose of this
paper is to contribute results toward such a characterization,

Let R be the set of points in X which do not possess compact neighbor-
hoods. Then for all compactifications oX of X, R = Clyy(aX - X)) X. (See [5].)
Herein we observe that for compact R, a necessary condition for X to have
a countable compactification is that X/R have one. The main theorem of this
paper characterizes when X/R has a countable compactification.

2, CHARACTERIZATION OF a(X/R).

Throughout this paper all compactifications are Hausdorff compactifications.
Let N denote the natural numbers, If R 1is a compact, non-empty subset of
a completely regular space X and if X has a coutable compactification vX,
then a countable compactification of X/R can be obtained from yX by iden-
tifying R to a single point. It is readily verified that the resulting space
is Hausdorff,

If «(X/R) 1is a countable compactification of X/R, then a(X/R) 1s also
a countable compactification of X - R, Thus, we have the following:

THEOREM 1, If X is completely regular and R is compact, then each of
the following conditions implies the next:

(A) X has a countable compactification;

(B) X/R has a countable compactification;
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(C) X - R has a countable compactification.

Examples will be provided to show that none of these implications can be
reversed.

If R 4is non-compact, then (A) no longer implies (C) as in Theorem 1.
Let X be the unit disc in the standard plane with a countable dense subset
removed from the boundary. The remaining boundary points constitute R. Then,
clearly, X has a countable compactification but X - R, the open disc, has
no countable compactification.

Let Y = (8X - X)U R,

THEOREM 2, Let X be a completely regular Hausdorff space with R compact
and non-empty., Then the following are equivalent:

(A) X/R has a countable compactification.

‘B) R is a Gg-set in Y and components of R are components of Y,

PROOF, (A) implies (B). Take {p,|n e N} = y(X/R) - X/R, where Y(X/R)
is a countable compactification of X/R, and let tg be the canonical mapping
of X into Y(X/R). Then to has an extension t which maps B8X onto
y(X/R). We first show that t carries BX - X onto vy(X/R) - X/R., Since the
restriction of t to X - R is a homeomorphism and X - R 1is dense in B8X
and in yY(X/R), t carries Y onto [y(X/R) - X/RI{J {r}, where r = t[R]
(cf. Lemma 6,11 [1]). If x e R and y €BX - X, then since R 1is compact

there exists a compact neighborhood N_ of R in BX such that vy t NR.

R
Set N = NRf\ X. Since RSN, t;[N] is a neighborhood of t(x) =T in X/R.
Thus, there is a neighborhood G im vY(X/R) for which tO[N] = G\ X/R, If
Ny is any neighborhood of y in B8X, choose z ¢ Ny{’\(x - N). Then

t(z) ¢ G and it follows from the continuity of t that t(x) # t(y). Hence

t[BX - X] = y(X/R) - X/R,
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Next, let K =t (pn), for each n € N. Evidently, B8X - X '\.){Knln e N}.
Since each Kn is compact, the sets Y - Kn are open in Y and
R={\{Y -K |neN}. Thus R is a Gg-set in Y.
Let C be a component of R and let C1 be a component of Y, where

C C If C # Cl’ choose x € C1 - C. Now there exists a continuous injection

1°
f of {pn e N} {r} into the real numbers. (See [3]). But f o t C1 must be
connected and not a singleton, since ¢t[R] # t(x). This contradicts the fact

that the image of f 1s countable. Thus, C = Cl’ so that components of R

are components of Y,

(B) implies (A). First we show that there exist sets {U [n ¢ N} which
are clopen in Y such that (\{Un[n € N} = R, Note that Y is compact. Let
{Vn|n € N} be open subsets of Y satisfying r\{VnIn e N} = R, For each
neN, set K =Y-V. Weassume that each K +# 8. Let (x,r) ¢ K xR,
Since x and r are in distinct quasi-components of Y, there exists a
clopen neighborhood Wn(x,r) of r in Y, where x ¢ W,(x,r). Now
{W (x,)|r € R} 1s an open covering of R so that a finite subfamily
{Wn(x,ri)li =1,...,p(x)} covers R, Take Wn(x) = L){Wn(x,ri)|i = 1,...,p(x)}.
Thus W (x) 1s a clopen subset of Y. RS W (x), and x ¢ W (x). Since
{y - Wn(x)|x € Kn} is an open cover of K., there is a finite subcover
Y - Wn(xj)[j =1,...,q9()}.

For each ne N, let U, = (\{Wn(xj)lj =1,...,9(n)}. Then each u,
is a clopen subset of Y, RCU, and K, &Y - U,. Hence R = (\{Un|n e NI,

Let C; =Y-Uj, and for n> 1, take Cy = [Y - N{Uy[i = 1,...,0}] -
Uf{c i =1,...,n - 1}, Then each C, 1is a clopen subset of Y and BX - X =
\){Cnln € N}.

Let ~/ be the equivalence relation in BX which identifies each C, to

a point and R to a point. The projection of BX onto BX/~ is denoted by .
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For each n e N, consider the point T[C ] in BX/ev. Now {C,,Y - Cy}

is a partition of Y into disjoint open sets. Thus, C.

, and Y - C,, can be

separated by open sets U and V in BX. Evidently, N[U] and N[V] are
disjoint open subsets of B8X/~~, This shows that H[Cn] can be separated from
any other point of BX/~, Since points of BX - Y have compact BX - neigh-
borhoods in BX - ¥, it follows that BX/~ 1is a compact Hausdorff space.

It remains to show that X/R can be embedded in BRX/~~ in the desired
manner. Let 1 be the natural embedding of X in BX and let p be the
projection of X onto X/R. Since 1 1s relation preserving, a continuous
mapping j of X/R into BX/~/ 1is induced such that j e p =1 o 1, It
follows that j 1is also a closed mapping, hence an embedding of X/R into
BX/~s as desired. This completes the proof.

In [2] Magill shows that a locally compact space X has a countable
compactification if and only if BX - X has infinitely many components. As
an application of the proof of Theorem 2, the following is proven.

COROLLARY 3, Let X be completely regular with R compact., If X has
a countable compactification, then B8X - X has infinitely many components.

PROOF, Let t be a continuous mapping of BX onto a(X/R) which carries
BX - X onto a(X/R) - X/R. Since the subspace K = (a(X/R) - X/R) U {t(R)}
is compact and countable, it contains an open countable discrete subspace.
Since a(X/R) - X/R contains infinitely many components of K, Y must contain
infinitely many components.

The converse of Corollary 3 is false when X 1s not locally compact,
Example (A) shows that X/R can have a countable compactification, so that
BX - X has infinitely many components, but X has no countable compactifica-
tion., Example (A) also shows that condition (B) of Theorem 1 is not sufficient

to insure that X has a countable compactification when R 1s compact.
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EXAMPLE (A)., Let S be the closed unit square in R2, I be the unit
interval, Ly =1x {0}, and, for neN, L =1Ix =y}, For X =5 - n\e{q L,
it is clear that X 1is not rim compact, and hence does not have a countable
compactification (cf. [6]). Furthermore, R =1L, and S 1is a compactification
of X. The existence of a continuous surjection from BX onto S which leaves
X fixed and which carries BX - X onto S - X guarantees that condition (B)
of Theorem 2 is satisfied. Hence X/R has a countable compactification.

The following example shows that for R non-empty and compact the impli-
cation of (C) by (B) of Theorem 1 cannot be reversed. It suffices to exhibit
X, with R a singleton, where X - R has a countable compactification but X
does not.,

EXAMPLE (B). 1In the plane R?  take
X=HEy|-1<x<1;-1<y<13U0Q,0} - {(GF, 0Oln e N} Then
R={(,0)}. Since X is not rim compact, it has no countable compactification,
However, a countable compactification for X - R 1s obtained by adjoining the
points Gﬁgr, 0), for each n € N, and taking the one-point compactification

of the resulting space.
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