

ON HAUSDORFF COMPACTIFICATIONS OF NON-LOCALLY COMPACT SPACES

JAMES HATZENBUHLER and DON A. MATTSON

Department of Mathematics
Moorhead State University
Moorhead, Minnesota 56560

(Received December 19, 1978 and in Revised form February 2, 1979)

ABSTRACT. Let X be a completely regular, Hausdorff space and let R be the set of points in X which do not possess compact neighborhoods. Assume R is compact. If X has a compactification with a countable remainder, then so does the quotient X/R , and a countable compactification of X/R implies one for $X-R$. A characterization of when X/R has a compactification with a countable remainder is obtained. Examples show that the above implications cannot be reversed.

KEY WORDS AND PHRASES. Countable remainders, compactifications, non-locally compact spaces, components of $\beta X - X$.

1980 Mathematics Subject Classification Codes: 54D35.

1. INTRODUCTION.

Let X be a completely regular, Hausdorff topological space. The question of characterizing when X has a Hausdorff compactification αX , where $\alpha X - X$ is countably infinite, has been answered for the locally compact case by Magill [2] and for the case when $\alpha X = \beta X$ by Okuyama [4] (where βX is the Stone-Cech compactification of X). In case X is an arbitrary completely regular space, no such characterization has been given. The purpose of this paper is to contribute results toward such a characterization.

Let R be the set of points in X which do not possess compact neighborhoods. Then for all compactifications αX of X , $R = \text{Cl}_{\alpha X}(\alpha X - X) \cap X$. (See [5].) Herein we observe that for compact R , a necessary condition for X to have a countable compactification is that X/R have one. The main theorem of this paper characterizes when X/R has a countable compactification.

2. CHARACTERIZATION OF $\alpha(X/R)$.

Throughout this paper all compactifications are Hausdorff compactifications. Let N denote the natural numbers. If R is a compact, non-empty subset of a completely regular space X and if X has a countable compactification γX , then a countable compactification of X/R can be obtained from γX by identifying R to a single point. It is readily verified that the resulting space is Hausdorff.

If $\alpha(X/R)$ is a countable compactification of X/R , then $\alpha(X/R)$ is also a countable compactification of $X - R$. Thus, we have the following:

THEOREM 1. If X is completely regular and R is compact, then each of the following conditions implies the next:

- (A) X has a countable compactification;
- (B) X/R has a countable compactification;

(C) $X - R$ has a countable compactification.

Examples will be provided to show that none of these implications can be reversed.

If R is non-compact, then (A) no longer implies (C) as in Theorem 1.

Let X be the unit disc in the standard plane with a countable dense subset removed from the boundary. The remaining boundary points constitute R . Then, clearly, X has a countable compactification but $X - R$, the open disc, has no countable compactification.

Let $Y = (\beta X - X) \cup R$.

THEOREM 2. Let X be a completely regular Hausdorff space with R compact and non-empty. Then the following are equivalent:

(A) X/R has a countable compactification.

(B) R is a G_δ -set in Y and components of R are components of Y .

PROOF. (A) implies (B). Take $\{p_n | n \in N\} = \gamma(X/R) - X/R$, where $\gamma(X/R)$ is a countable compactification of X/R , and let t_0 be the canonical mapping of X into $\gamma(X/R)$. Then t_0 has an extension t which maps βX onto $\gamma(X/R)$. We first show that t carries $\beta X - X$ onto $\gamma(X/R) - X/R$. Since the restriction of t to $X - R$ is a homeomorphism and $X - R$ is dense in βX and in $\gamma(X/R)$, t carries Y onto $[\gamma(X/R) - X/R] \cup \{r\}$, where $r = t[R]$ (cf. Lemma 6.11 [1]). If $x \in R$ and $y \in \beta X - X$, then since R is compact there exists a compact neighborhood N_R of R in βX such that $y \notin N_R$. Set $N = N_R \cap X$. Since $R \subseteq N$, $t_0[N]$ is a neighborhood of $t(x) = r$ in X/R . Thus, there is a neighborhood G in $\gamma(X/R)$ for which $t_0[N] = G \cap X/R$. If N_y is any neighborhood of y in βX , choose $z \in N_y \cap (X - N)$. Then $t(z) \notin G$ and it follows from the continuity of t that $t(x) \neq t(y)$. Hence $t[\beta X - X] = \gamma(X/R) - X/R$.

Next, let $K_n = t^{-1}(p_n)$, for each $n \in N$. Evidently, $\beta X - X = \bigcup \{K_n | n \in N\}$.

Since each K_n is compact, the sets $Y - K_n$ are open in Y and

$R = \bigcap \{Y - K_n | n \in N\}$. Thus R is a G_δ -set in Y .

Let C be a component of R and let C_1 be a component of Y , where $C \subset C_1$. If $C \neq C_1$, choose $x \in C_1 - C$. Now there exists a continuous injection f of $\{p_n \in N\} \setminus \{r\}$ into the real numbers. (See [3]). But $f \circ t|C_1$ must be connected and not a singleton, since $t[R] \neq t(x)$. This contradicts the fact that the image of f is countable. Thus, $C = C_1$, so that components of R are components of Y .

(B) implies (A). First we show that there exist sets $\{U_n | n \in N\}$ which are clopen in Y such that $\bigcap \{U_n | n \in N\} = R$. Note that Y is compact. Let $\{V_n | n \in N\}$ be open subsets of Y satisfying $\bigcap \{V_n | n \in N\} = R$. For each $n \in N$, set $K_n = Y - V_n$. We assume that each $K_n \neq \emptyset$. Let $(x, r) \in K_n \times R$. Since x and r are in distinct quasi-components of Y , there exists a clopen neighborhood $W_n(x, r)$ of r in Y , where $x \notin W_n(x, r)$. Now $\{W_n(x, r) | r \in R\}$ is an open covering of R so that a finite subfamily $\{W_n(x, r_i) | i = 1, \dots, p(x)\}$ covers R . Take $W_n(x) = \bigcup \{W_n(x, r_i) | i = 1, \dots, p(x)\}$. Thus $W_n(x)$ is a clopen subset of Y . $R \subseteq W_n(x)$, and $x \notin W_n(x)$. Since $\{Y - W_n(x) | x \in K_n\}$ is an open cover of K_n , there is a finite subcover $\{Y - W_n(x_j) | j = 1, \dots, q(n)\}$.

For each $n \in N$, let $U_n = \bigcap \{W_n(x_j) | j = 1, \dots, q(n)\}$. Then each U_n is a clopen subset of Y , $R \subseteq U_n$ and $K_n \subseteq Y - U_n$. Hence $R = \bigcap \{U_n | n \in N\}$.

Let $C_1 = Y - U_1$, and for $n > 1$, take $C_n = [Y - \bigcap \{U_i | i = 1, \dots, n\}] - \bigcup \{C_1 | i = 1, \dots, n-1\}$. Then each C_n is a clopen subset of Y and $\beta X - X = \bigcup \{C_n | n \in N\}$.

Let \sim be the equivalence relation in βX which identifies each C_n to a point and R to a point. The projection of βX onto $\beta X/\sim$ is denoted by Π .

For each $n \in \mathbb{N}$, consider the point $\pi[c_n]$ in $\beta X/\sim$. Now $\{c_n, Y - c_n\}$ is a partition of Y into disjoint open sets. Thus, c_n and $Y - c_n$ can be separated by open sets U and V in βX . Evidently, $\pi[U]$ and $\pi[V]$ are disjoint open subsets of $\beta X/\sim$. This shows that $\pi[c_n]$ can be separated from any other point of $\beta X/\sim$. Since points of $\beta X - Y$ have compact $\beta X -$ neighborhoods in $\beta X - Y$, it follows that $\beta X/\sim$ is a compact Hausdorff space.

It remains to show that X/R can be embedded in $\beta X/\sim$ in the desired manner. Let i be the natural embedding of X in βX and let p be the projection of X onto X/R . Since i is relation preserving, a continuous mapping j of X/R into $\beta X/\sim$ is induced such that $j \circ p = \pi \circ i$. It follows that j is also a closed mapping, hence an embedding of X/R into $\beta X/\sim$ as desired. This completes the proof.

In [2] Magill shows that a locally compact space X has a countable compactification if and only if $\beta X - X$ has infinitely many components. As an application of the proof of Theorem 2, the following is proven.

COROLLARY 3. Let X be completely regular with R compact. If X has a countable compactification, then $\beta X - X$ has infinitely many components.

PROOF. Let t be a continuous mapping of βX onto $\alpha(X/R)$ which carries $\beta X - X$ onto $\alpha(X/R) - X/R$. Since the subspace $K = (\alpha(X/R) - X/R) \cup \{t(R)\}$ is compact and countable, it contains an open countable discrete subspace. Since $\alpha(X/R) - X/R$ contains infinitely many components of K , Y must contain infinitely many components.

The converse of Corollary 3 is false when X is not locally compact. Example (A) shows that X/R can have a countable compactification, so that $\beta X - X$ has infinitely many components, but X has no countable compactification. Example (A) also shows that condition (B) of Theorem 1 is not sufficient to insure that X has a countable compactification when R is compact.

EXAMPLE (A). Let S be the closed unit square in \mathbb{R}^2 , I be the unit interval, $L_0 = I \times \{0\}$, and, for $n \in \mathbb{N}$, $L_n = I \times \{\frac{1}{n+1}\}$. For $X = S - \bigcup_{n \in \mathbb{N}} L_n$, it is clear that X is not rim compact, and hence does not have a countable compactification (cf. [6]). Furthermore, $R = L_0$ and S is a compactification of X . The existence of a continuous surjection from βX onto S which leaves X fixed and which carries $\beta X - X$ onto $S - X$ guarantees that condition (B) of Theorem 2 is satisfied. Hence X/R has a countable compactification.

The following example shows that for R non-empty and compact the implication of (C) by (B) of Theorem 1 cannot be reversed. It suffices to exhibit X , with R a singleton, where $X - R$ has a countable compactification but X does not.

EXAMPLE (B). In the plane \mathbb{R}^2 take

$X = \{(x, y) \mid -1 < x < 1; -1 < y < 1\} \cup \{(1, 0)\} - \{(\frac{-n}{n+1}, 0) \mid n \in \mathbb{N}\}$. Then $R = \{(1, 0)\}$. Since X is not rim compact, it has no countable compactification. However, a countable compactification for $X - R$ is obtained by adjoining the points $(\frac{-n}{n+1}, 0)$, for each $n \in \mathbb{N}$, and taking the one-point compactification of the resulting space.

REFERENCES

1. Gillman, L. and Jerison, M. Rings of continuous functions, The University Series in Higher Math., Princeton, N.J., 1960.
2. Magill, K. D., Jr. Countable compactifications, Canad. J. Math. 18 (1966), 616-620.
3. Mrowka, S. Continuous functions on countable subspaces, Port. Math. 29 (1970), 177-180.
4. Okuyama, A. A characterization of a space with countable infinity, Proc. A.M.S. 28 (1971), 595-597.
5. Rayburn, M. On Hausdorff compactifications, Pac. J. of Math. 44 (1973), 707-714.
6. Zippin, L. On semicompact spaces, Amer. J. Math. 57 (1935), 327-341.

Special Issue on Space Dynamics

Call for Papers

Space dynamics is a very general title that can accommodate a long list of activities. This kind of research started with the study of the motion of the stars and the planets back to the origin of astronomy, and nowadays it has a large list of topics. It is possible to make a division in two main categories: astronomy and astrodynamics. By astronomy, we can relate topics that deal with the motion of the planets, natural satellites, comets, and so forth. Many important topics of research nowadays are related to those subjects. By astrodynamics, we mean topics related to spaceflight dynamics.

It means topics where a satellite, a rocket, or any kind of man-made object is travelling in space governed by the gravitational forces of celestial bodies and/or forces generated by propulsion systems that are available in those objects. Many topics are related to orbit determination, propagation, and orbital maneuvers related to those spacecrafts. Several other topics that are related to this subject are numerical methods, nonlinear dynamics, chaos, and control.

The main objective of this Special Issue is to publish topics that are under study in one of those lines. The idea is to get the most recent researches and published them in a very short time, so we can give a step in order to help scientists and engineers that work in this field to be aware of actual research. All the published papers have to be peer reviewed, but in a fast and accurate way so that the topics are not outdated by the large speed that the information flows nowadays.

Before submission authors should carefully read over the journal's Author Guidelines, which are located at <http://www.hindawi.com/journals/mpe/guidelines.html>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/> according to the following timetable:

Manuscript Due	July 1, 2009
First Round of Reviews	October 1, 2009
Publication Date	January 1, 2010

Lead Guest Editor

Antonio F. Bertachini A. Prado, Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, 12227-010 São Paulo, Brazil; prado@dem.inpe.br

Guest Editors

Maria Cecilia Zanardi, São Paulo State University (UNESP), Guaratinguetá, 12516-410 São Paulo, Brazil; cecilia@feg.unesp.br

Tadashi Yokoyama, Universidade Estadual Paulista (UNESP), Rio Claro, 13506-900 São Paulo, Brazil; tadashi@rc.unesp.br

Silvia Maria Giuliatti Winter, São Paulo State University (UNESP), Guaratinguetá, 12516-410 São Paulo, Brazil; silvia@feg.unesp.br