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ABSTRACT. Let S be a subset of a metric space (X,d) and T: S+ X be a
mapping. In this paper, we define the notion of lower directional increment
QT(x,y] of T at x & S in the direction of y « X and give sufficient
conditions for T to have a fixed point when QT(x,Tx] < 1 for each x & S.
The results herein generalize the recent theorems of Clarke (Canad. Math. Bull.
Vol. 21(1), 1978, 7-11) and also improve considerably some earlier results.
AMS (M0S) SUBJECT CLASSTIFICATION (1970) CODES. Primary 47H10, secondary 54H25.

INTRODUCTION.

In a recent paper [2], Clarke introduced the notion of lower derivative
DT(x,Tx) for a mapping T: X ~ X on a metric space X and obtained suffi-
cient conditions for a continuous mapping T to have a fixed point in X

when DT(x,Tx) < 1 for each x € X. However, in order that DT(x,y) be
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finite, it is necessary that (x,y) (to be defined later) contain points
arbitrary close to x whenever x # y. The purpose of this paper is (a)

to remove the : ove restriction by introducing the notion of lower directional
increment (see below), (b) to consider mappings that are not necessarily con-
tinuous and are defined on a subset S of X with values in X. As a
consequence of our main result, we obtain the results contained in [2] and also

some other results (see [3] and [5]).

1. PRELIMINARIES.
Throughout this paper, let (X,d) denote a complete metric space and S
a nonempty subset of X. A function ¢: S > R+ (nonnegative reals) is lower
semicontinuous (l.s.c.) on S iff for each x, € s {xeS: ¢(x) >r} is
open for each real r. It is easy to verify that given a function ¢: S > R+,
the function ¢ induces a partial order < in S given by
x <y in S iff d(x,y) < ¢(y) - ¢(x). (1.1)

The following Lemma is well-known (see Brondsted [1] or Kasahara [4]).

LEMMA 1. Let S be a closed subset of X and ¢: S > R+ be a 1l.s.c.
function on S. Then there is an element u & S which is minimal with respect
to partial order (1.1) in S.

As a consequence of Lemma 1, we have

LEMMA 2. Let S be a closed subset of X and ¢: S > R+ be a 1l.s.c.
function on S. Then for each € with 0 < € < 1, there exists a u = u(g) & S

such that
o(u) < ¢(x) + ed(x,u), (1.2)

for each x & S,
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PROOF. The proof is immediate by Lemma 1 (if we replace the metric d by

d , d_ = e<d).

€’ e
LEMMA 3. Let S be a closed subset of X and ¢: S » R+ be a 1l.s.c.

on S. If for a sequence {xn} © S with a cluster point x_,

() < 6(0) + T d(x,x),

for each xe€S, then ¢(xo) < ¢(x) for each x € S,

PROOF. The proof is immediate since for any l.s.c. f, d(yn,Y) -+ 0 implies

that £(y) < lim f(yn).
n>o

2. MAIN RESULTS.
Let S be a subset of X. For an x < Sand y < X with x # vy,
define
(x,y] = {z « X: z# x and d(x,z) + d(z,y) = d(x,y)}
note that y & (x,y].
Let T: S>X be a mapping. For x & S and y <X, define the lower

directional increment QT(x,y] of T at x in the direction y as

QT (x,y] =0, if x =1y,
= inffgﬁl&iz&l: z & (x,y]n S}, 1if (x,yln S # ¢,
d(x,z)
=o, if (x,yl n S = ¢.
For the convenience of the notation, we shall denote p(x,y) = §é%§;§§l
’
if x # y.

REMARK. It may be noted that if QT(x,y] is finite and x # y, then
there is a sequence {zn} < (x,y] n S such that p(x,zn) -+ QT(x,y).
The following is the main result of this paper and is related to the lines

of argument in [2].
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THEOREM 1. Let S be a closed subset of X and T: S + X be a mapping
satisfying the following conditions:

The mapping ¢:S - R+ defined by ¢(x) = d(x,Tx) is l.s.c. on S, (2.1)

For each x & S, QT(x,Tx] <1, (2.2)

If o = sup{QT(x,Tx]: x « S} then either (a) o <1 or (b) if a =1

then any sequence {xn} < S for which QT(xn,Txn] + 1 implies that the

sequence {xn} has a cluster point. (2.3)

Then T has a fixed point in S.

PROOF. It follows by Lemr: 2, that for each positive integer n, there
is a u < S such that
1
$u ) < o(x) + ;’d(x,un), (2.4)
for each x € S. We assert that if o < 1 then u = Tun for some n and
if «a =1, then QT(un,Tun] -+ 1. Suppose u # Tun for any n. Then by the
remark, for each fixed n, there exists sequence {zm} < (un,Tun] n S such
that
pluy sz ) > QT(u ,Tu ] (2.5)
as m > o, It now follows by (2.4) that for each m,
1 1
¢(un) §.¢(zm) + Y d(un,zm) < d(zm,Tun) + d(Tun,sz) +~; d(un,zm). (2.6)

Since for each m, d(un,zm) + d(zm,Tun) = ¢(un). We have for each m,

1

(1 - n) i p(un’zm)o

Therefore, as m > ©, it follows by (2.5) and (2.2) that for each fixed n,
1
- = <
(1 n) j_QT(un,Tun] 1.

Consequently, if u # Tun for any n, then QT(un,Tun) -+ 1, Therefore, if
(2.3a) holds, then u = Tun for some n and the theorem is established in

this case, otherwise by (2.3b), the sequence {un} has a cluster point u & S.
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It follows by Lemma 3, that
oCu) < d(x), .7

for each x € S. We assert that Tu = u. Suppose Tu # u. Then again by the
remark, there is a sequence z, < (u,Tu] n S such that as n > ®,

p(u,z ) ~ QT (u,Tu] (2.8)
However, by (2.7) and the relation d(u,zn) + d(zn,Tu) = ¢(u), we have for each
n,

d(u,z ) + d(z ,Tu) = ¢(u) < ¢(z) < d(z,Tu) + d(Tu,Tz ).

This implies that p(u,zn) > 1 for each n and hence by (2.8) QT(u,Tu] > 1.

This contradicts (2.2). Thus u = Tu.

3. SOME APPLICATIONS.

For a mapping T: X - X, Clarke [2] defined lower derivative DT(x,y) of

T at x 1in the direction of y as

DT(x,y) = 0, if x =y,
= lim o(x,2), 1if (x,y) = (x,yN{y} # ¢,
z+X
z & (x,5)
=o, if (x,y) = ¢,
where 1lim p(x,z) = 1im [ inf p(x,2)].
Z>% e*0 z < (x,y)
z & (x,y) d(z,x) < €

Since for any x,y < X, QT(x,y] < DT(x,y), the following results in [2] are

special cases of Theorem 1.

COROLLARY 1. Let T: X + X be a continuous mapping such that

sup{DT(x,Tx): x + X} < 1. Then T has a fixed point.

COROLLARY 2. Let T: X+ X be a continuous mapping such that
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DT(x,Tx) < 1 for each x « X. If for any sequence {xn} in X with
QI(xn,Txn) + 1 implies that the sequence {xn} has a cluster point, then T
has a fixed point.

The following simple examples show that both Corollaries 1 and 2 are

indeed special cases of Theorem 1.

EXAMPLE 1. Let X = {0,1} with the discrete metric and T: X - X be a
constant mapping defined by Tx = 0 for each x & X. Since (1,Tl) = ¢,
DT(1,T1) = », T does not satisfy the conditions of Corollary 1. However,
since T 1is continuous and QT(x,Tx] = 0 for each x & X, T satisfies

conditions of Theorem 1 and it follows T has a fixed point.

EXAMPLE 2. Let X be the closed interval [%33] with the usual metric.
Let T: X > X be the mapping defined by
Tx = i-+ 1.
X
Clearly, T 1is continuous, strictly decreasing and for each x with Tx # x,
(x,Tx) # ¢. Further, it is easy to verify that for any x # z, p(x,z) = f;

and therefore, for any x & X with x # Tx, DT(x,Tx) = Consequently, if

=5
X
x <1, DT(x,Tx) > 1 and hence T does not satisfy conditions of Corollary 2.
However, since for any x # Tx, Tx & (x,Tx],

QT (x,Tx] = inf {-}3‘—2: z & (x,Tx]} 5_; =——< 1.
Since X is compact, T satisfies conditions of Theorem 1. In this case
X = l%;é is the only fixed point of T in X.
For a set S c X, let s® denote the interior of S and &S its

boundary. A mapping T: S - X 1is a contraction mapping if there exists a

constant k < 1 such that for all x,y ¢ S, d(Tx,Ty) < kd(x,y). As another
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consequence of Theorem 1, we have

COROLLARY 3. Let S be a closed subset of a Banach space X and

T: S > X be a contraction mapping. If T(8S) < S, then T has a fixed point.

PROOF. Since T is continuous and for any x,z ¢ S, p(x,z) <k <1,

it suffices to show that for any x & S with x # Tx, (x,Tx]n S # ¢. Now,

if x e So, then for some € > 0, S(x,g) = {y:l|y—x” < €} € S. Choose a A,

0 <X <1 such that (l-A)Ik-TxH < €. Then z = (Ax + (1-\)Tx) <

S(x,e) n (x,Tx] and hence (x,Tx]n S # ¢. If x & §S, then by hypothesis

Tx ¢ S and consequently Tx & (x,Tx]n S. Thus o = sup{QT(x,Tx]: x « S} < 1.
The result below was obtained by Su and the author [5] (see also

Edelstein [3]) and is again a consequence of Theorem 1.

COROLLARY 4. Let S be a compact subset of a Banach space X and

T: S > X be a mapping satisfying the condition: for all x,y €S, x # y,

[rx-Ty |l < |-yl

. If T(6S) < S, then T has a fixed point.

PROOF. As in the proof of Corollary 3, for any x & S with x # Tx,
(x,Tx] n S # ¢. Therefore, it follows by hypothesis that for any x & S,
QT (x,Tx] < 1. Since compactness implies (2.3b), T satisfies the conditions

of Theorem 1 and has a fixed point in S.
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