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1. Introduction.

The purpose of this article is to give a survey and some proofs of
known results concerning Bloch functions. The basic idea goes back to
Andre Bloch [ 6 ]. He considered the class F of functions holomorphic
on the unit disc D, with normalization £'(0) = 1. The image of D
under f 1is considered as a Riemann surface wf = f(D). A schlicht
(unramified) disc in wf is an open disc A c wf such that there
exists a domain Q ¢ D with f mapping Q one to one onto A. We
denote the radius of the largest schlicht disc in wf with center £(z)

as df(z). Let r_, be the supremum of df(z) as 2z varies over D

£

and set
b = inf {rf : £ e F}.

Bloch showed that b was positive.

During the period from 1925 through 1968 Bloch's result motivated
works of various nature. One group of mathematicians considered the
generalizations of Bloch's result to balls in K and ¢". A group of
mathematicians calculated upper and lower bounds for b. A third group
concentrated on the function theoretic implications for the case of the
disc. The Bloch theorem has been an ingredient in supplying a proof of
the Picard theorem which avoids the use of the modular function. We will
not go into the generalizations for the n dimensional case but refer the
interested reader to the papers of S. Bochner [ 7 ], S. Takahashi [ 25 ]
and K. Sakaguchi [ 20 ]. We will also not discuss the best bounds but only
refer to the papers of L. V. Ahlfors [ 1 ], L. V. Ahlfors and H. Grunsky

[ 2 ] and M.H. Heins [ 13 7.
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In the period from 1969 to the present a Banach space B of
holomorphic functions called the '"'Bloch functions'" has been studied.
Of course the requirement for membership in B is derived from the idea
of the Bloch theorem. Some progress has been made in studying the
functional analytic properties of B. The Banach space point of view has
allowed a somewhat broader viewpoint and consequently has given rise
to a new set of questions concerning the Bloch space.

This article will give a proof of the basic Bloch theorem. We
will follow a theme developed by W. Seidel and J. Walsh [24] and by
Ch. Pommerenke [17]. We will supply proofs of the major results and
outline proofs of other ideas when they are not central to our interests.
We have borrowed freely from the text material available (especially
M. Heins [13]). 1In many instances we have selected only partial results
from the journal articles quoted in the bibliography. The reader should
consult the original article if he desires a more complete exposition.

Finally, I wish to point out a few other results which will not be
included in this article but are extremely important to the overall
picture concerning Bloch functions. First, L. A. Harris [12] has obtained
a strong form of the Bloch theorem for holomorphic mappings from the unit
ball B, of a Banach space X into X. The second topic concerns the
thesis of R. Timoney. He has made a definitive study of Bloch functions
on bounded symmetric domains in ¢n. This work is quite expansive and
deep and would require material from areas which are not considered in

the disc case.

2. The Theorem of Bloch.
Let Aut (D) denote the group of holomorphic automorphisms of D.

For a ¢ D we write ¢ _(2) = (z—.a)(l—gz)-1 e Aut(). The inverse of
a
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¢a is ¢_a. It can be shown that for z €D,

(2.1) l¢|a|(|2|) I<| ¢_a(2)|.

Let a € (0,1) and denote Aa = A the family of holomorphic functions
f :D~> D with normalization £(0) = 0, £'(0) = a. A is a nonempty

compact family. It contains the function
B(z) = - ¢4(2)-¢_(2).
For f € A set
U, = sup {r | £ 1s univalent in D = (Jz] <)}

and

hel
"

inf {Uf : f e A},
A calculation shows that B' wvanishes at a point of D, hence p <1.

Theorem (2.1). The number p is positive. The number Uf =p 1if and

only if
£(z) = AB())
where A 1is a constant of modulus one.

Proof. Fix f € A and assume Uf < 1. Recalling the normalization of

f we see that equation
£(z), _
$, (579 = zk(2)

yields a function k, holomorphic in D and bounded by one. Hence, by (2.1)
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(2.2) €] = |z ¢_, (zk(2))]

-] zk - -
: |a) (L@ ) 121 (L8 )= vaaD.

Either f fails to be one to one on |z| < Uf or there exists
a zg, Izol = Uf and f'(zo) = 0. We will complete the proof by
assuming that there exists distinct points z, and z,, Izll = |zz| = U

and f(zl) = f(zz) = c. The other case is similar. The function

m(z) = (o o £(2)) - gicz) : g;(z)

has removable singularities and is bounded by one in [D. Hence,
|m(0)| < | implying |c| < Ui - Setting z =12z, in (2.1) and using

the last inequality we have

a - Uf
uf 2 1-a Uf .

The functions x and - ¢a(x) have a common value at
0= a-l (1- /E - a2 ) € (0,1) and - ¢a(z) >x 1if 0 < x < Xy
Thus Uf 2 a-1 (1-v/1 - az ). We note that B'(xo) = 0. Thus p = UB.

X

The remaining uniqueness part of the theorem is handled by noting that
1f U = p then |m(0)| = 1.
We proceed to a second necessary result. For r > 0 let

o - {|lw| <r}. To each f e A 1let

L. = sup {r | 3 a domain @ cD such

that 0 e 2  and f maps Q_  univalently onto Dr}
and

s = inf {lf : f e A},
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Theorem 2.2. The number s 1is positive, equaling
- 2
o2 = a7t - /101

Equality holds for some f in A, 2f =g, if and only if £(z) = AB()Az)

for same constant A, |A| = 1.

Proof: For any f € A inequality (2.2) implies that for ]zl =r <1

(2.3) l£@| 2 minl£@)] 2 v = r (35)

IZ -r l-ar
Y 1is a positive function on (0,a) and achieves a maximum value of pz
at r = p(<a). Let & be the component of f_lﬂDpz) containing zero. If
there is z ¢ (D \ Dp) n 2 then there exists a z¥*, Iz*] = p and
£(z*) e Dpz. By inequality (2.3) this is absurd. Hence Q E_mp. Using
(2.3) again and the open mapping property one sees that f maps the
boundary of 2 into (|w] = pz) and maps Q onto Dp. Since f(z) = 0
has only one solution in Q it follows by the argument principle that f
maps the (simply connected) domain € wunivalently onto Dpz. By definition
it follows that p2 < s. Since Y(p) = B(p) = p2 and B'(p) = 0 we
observe that B cannot be univalent on any domain containing p. Thus

p- <8 £ 4 < p2 and so s = pz. The remaining uniqueness results follow

in a routine way by a close examination of when equality holds in (2.2)

We are finally in a position to prove Bloch's theorem. The notation

is that used in the introduction.

Theorem (2.3). The number b is positive.
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Proof. Elementary considerations show that for f ¢ F, 0 <t <1 and

g(z) = £(tz) t™l we have T, 5 t™. Thus it is sufficient to

consider those f ¢ F which are analytic on the closed disc D. Let f

be so chosen and let |a]| <1 be selected so that

max [£'(z) |(1-]z]|) = [£'(@) |2-]a[?) = 1.
zeD

Now form the function

fo¢-a(z)
g(z) = —-_T_(f°¢_a) (0) o
Note that g ¢ F and is analytic on D with
r < 1 ; r, <r. .
g |(f°¢_a) ] "¢ £

Further,

() 1 - 1) < el @ - i
and so
a-lz/» | g'@| =<1.
Replacing g by h(z) = g(z) - g(0) and integrating we deduce

1 1+ [z
|h(z)| < 7 log IT-I-;|~

Let t be fixed in (0,1) and normalize h as follows

%-L(|z]).

h(tz)
S . (z) = ——~ .
t 2L(t)

S, maps D -+D, S(0) = 0 and Sé(o) = 2t/L(t). The number a

2t
t L(t)
is in (0,1). Hence, st € Aa. We apply Theorem (2.2) to St and note

375
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==

2

Since, r_ > r we conclude
£ ht

oo [ 6 )

2

If one checks the value of this expression (preferably with a calculator)

at t = %~ one concludes re 2 0.2.

The papers refered to in the introduction establish the bounds

%-¢§‘< b < 0.472 .

We proceed to the paper of W. Seidel and J. Walsh [24]. They introduced
the expression df(z) = d(z) as the radius of the largest schlicht disc in
f(D) with center f£(z). In this paper they collect some known results
concerning df(z) and they prove several theorems about its growth. The

following two theorems are interesting and motivating.

Theorem (2.4). Let f be holomorphic and univalent in D. Then for

ZED
d@@) < [£'@) |-z < 4 d(2).

Proof. Let zy € D be given. We prove first the right inequality. Form

the function

£fo9_, (2) - f(z)
= ~Z0
¥(z) = f'(zo)(l’lzoll)

where z e¢D. ¢ 1s a normalized univalent function and if w ¢ f(D) then

y omits the value a,
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w-f(zo)

@ = 2
(£' (z)) (- 2| D)

Applying the Koebe one-quarter theorem and choosing w suitably on 3f(D)
we conclude that
d(zo)

1
———————————————————————————— 2 — °
-lzg| D" (zp)

To obtain the left inequality again let z, be fixed in © and form
a function y(z) = f o ¢'zo(2). If f(zo) = u, ( =y(0)) then ¢y has an
inverse h mapping the disc Iwo - < d(zo) into © with h(wo) = 0.
The Schwarz lemma yields |h'(mo)| < (d(zo))_1 and this completes the
proof.

Notice that the univalence of f 1is not used in the proof of the
left inequality and hence d (z) < |[£'(z)| @ - Iz]z) is valid for any

holomorphic f. A second result of interest in that paper is the following.

Theorem (2.5). Let f be a bounded holomorphic function on D,

[£(z)| < ||£]|_, =M. Then
2 1
d(z) < [£'(2)| @-]z|7) < [8M d(2)] 2 .

Outline of proof. We have noted that the left inequality is valid. The

idea of the proof in the right inequality is to fix zy € D and form the

function

£o9¢_, (2) - £(zp)
y(z) = 0 7 =2z 4+ ... .
f'(zo)(l-lzol )

M
\ 2
| £ (zo)l(1-|z0| )

Then ¢(z) = 0 and Iw(z)| <
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One can then normalize ¢ and apply a variant of Theorem (2.2) to con-
clude that ¢ covers the disc

£ (zg) | (1-] 24| D)
lel = 8

univalently. This in turn implies that £ covers the disc

l£'(z)1? a-lz4)®)
lo - £Czp)] = e

univalently. From this it follows that
1
[£' (20| (-2, |?) < [8M d(z.)1?
0 0 - 0 :

The next theorem is a statement of several equivalences. The term
Bloch function will be defined by any of these equivalent conditions. The
equivalence of (1) and (2) is in Seidel and Walsh [ 24 1. The fifth
condition is due to Zygmund. The last is in Anderson and Rubel [ 4 1.
The conditions (3) and (4) were given by Pommerenke [ 17 ]. We recall a

few terms. A holomorphic function £(z) (on D) 1is said to be finitely

normal if the family of functioms
{f¢(2) = £(¢(2)) - £(4(0)) ;
¢ € Aut (D)}

is a normal family, where the constant infinity is not allowed as a limit.
A function g continuous on |z| =1 is in the class J\* if the following

condition holds

lget®)y _ 2518 4 gt My | 2 o)
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uniformly for all 6 ¢ [0,24) and h>0.
For f holomorphic in D, the absolute convex hull of the orbit

of f under Aut(D) is defined as the family

n
(J2) (0@ 1 ne N, oy b,

n
ay € ¢ with g ]ajl <| 1}

Theorem (2.6). The following conditions on a function £ holomorphic
in D are equivalent:

(1) sup {d(z) : z ¢ D} < 4= ,

@) sup (A-]z|H]E'@)] : z e DY < 4= .

(3) £ is finitely normal.

(4) there exists a constant a > 0 and a univalent holomorphic g

on D such that

f(z)

(5) the primitive

a log g'(2) .

z
g(z) f f£(t) dt

0

is in the disc algebra and g(eie) € A*.

(6) The absolute convex hull of f is a normal family on O.

Proof: We know that (2) implies (1). Assume then d(z) <M for ze D.

Form the functions ¢y and g

v(2) =feo¢_, (2) and
0
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¢[zl+(1-|zll)z]

N ¢o PR T oY

where we have 2gs 2 € D and for the moment we assume w'(zl) # 0. The
function g 1is analytic with g'(0) = 1. It follows by Bloch's theorem
that there exists Z#* ¢ D such that dg(z*) 2 b. Then with

w* =z + (1 - |z |)T*
dp@*) 2 b (1~ |z]) [y Cz)].

Note that if w'(zl) = 0 the above inequality is still valid. Hence, for

all z ¢ D we have
[v'(z)] (1-|z]) < M/b.

Normalize ¢ by considering

z

o(z) = y(z) - y(O) = j P'(t) dt.
0

Fixing t ¢ (0,1) and noting that

lo(2)| s - T log (1-t)

if |z| < t, we apply Theorem (2.5) to the function n(z) = #(tz) to

conclude
tzlf'(z0>l2 (1—|zOI2> < §§(— log(1-t)) d.(z,) .

The maximum of the function (t) = (—1:2)(log(l-t))-1 occurs when
- log (1-t) = t/2(1-t) (O<t<l) which is approximately to = ,72. Hence,
b 2 2.2
a4 (zg) 2 gz Ule) |81 G % a-lz|%%

Assume that (2) holds and recall that a family {f¢} defined and
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holomorphic on ID is normal if for every compact K c D there exists a

positive number M(K) such that

£ (2)
sup l;*;i_l_z.s M(K) .
zeK 1+|f¢(z)|

Thus for ¢ ¢ Aut@) and K c D compact

su

o

( If'(Z)l )= SUP(If'(@(z))”EI'EZ))l

2eK (1+|f¢(z)]2) 2eK (1+|f¢(z)|2)

sup 1 a-le@ D £ een|\ .
a-lz|% (1+lf¢(z)|2)

=

Ze

For the converse let w ¢ D and choose y(z) = (z+w)(1+52)-1. There is a

positive number M(0) such that

[£1(0) ]
— < M(0)

e, @)%

for all ¢ € Aut(D). Thus

-l e @ | = el won | < 1.
The equivalence of (2) and (4) is dependent upon some results from the
theory of univalent functions. Let f£(z) have the representation
o log g'(z), where g is univalent and o > 0. It is known [ 11 ]

that for such g

|g"(2) <_6 , z € D.
g' (2) C1-]z)?

The expression (1-|z|2)|f'(z)| is then bounded by 6a. If (2) holds

define o > 0 by the equality
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o lz3 sup {(1—|z|2)lf'(z)| : z e D}
and define g so that

z
g(z) = I exp { £02) l ac .
0 a

The definitions of g and o yields

a-lz|% . g"(z)| 1

g'(z)| =3~

This is sufficient to conclude that g is univalent.

The proof that (2) and (5) are equivalent requires a lemma.

Lemma (2.7). Let f be analytic in D with f£"(z) = O((l—lzl)-l),

then f is continuous on D.

Proof. The growth condition on f" implies that £'(z) = 0(log(1-|z])).
An integration of f' proves that f 1is a bounded holomorphic function
and has radial limits at each point of 10 e 3D. 1If

el’ ez € [0,211') and 0<p<1

ie.
{re J : p<r<l}

Pj = j=1,2

- ie .
Iy {pe :0, 0289,

- (el .
r,=1e" 10, =0 <0,}

the Cauchy integral theorem implies
r
192 _ ie1, _ 1 '
f(e774) - £(e™7) eyl £'(8) ds
—Fl u FZ u F3

Each of the integrals can be evaluated and there is a constant c¢> 0
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(independent of 91) such that
18, CH
l£e ™) - " | <cle, -0 [10gle, -0 || .
This completes the lemma.

Proof of the equivalence of (2) and (5). Assume (2) holds. Lemma (2.7)
implies that f is continuous on . Let 1>h>0 be given and fixed. It

is convenient to assign a symbol to the difference expression

] i6
£ty _ £ 2 4 (o)
and to ignore the dependence of A on h. A is linear and homogeneous.

We are required to show
2 i6
A" £(e7) = 0(h)
uniformly in 6, (as h*0). Fix t = 1-h and write

f(eie)

6 io io
£ - £(eet® + £eel?).
An integration by parts yields that

1
018 j (1-1) £"(ret®) ar =
t

(a-t) e £reee®® + £el®) - £(reld
The integral in this equality is 0(h), uniformly in 6. With
g(t,0) = Acel® £r(eel®)) =
£ (e Oy e84 10 acer(eel®y)

i6

= 0(h|1log n|) + e¥® a¢e' (tel®))
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we can compute

h
ACE' (eel®) = 1t j e10+8) pu(  1G+8) 4o _ o (qy,
0

Hence, g(t,8) 0(1) and

A% £(e®®) = n AGg(£,0)) +0h) = 0.

We need only show that
A% fee®®y =om) .

Since,

A2 £(eet@D)) |

h
s tf (ei(0+s)_eie) f,(tei(e+s)) ds
0

h
+1it f eie(f'(tei(e+s)) - f'(tei(e-S)))ds
0
e i(e-t) 1(6-s)
+1it (e7 -e ) £'(te )ds
0
and the integrands of the first and third integrals are dominated by
¢ s |log h| , while that of the second is dominated by ¢ s (h)-1
i6
)

we conclude that A2 f(te = 0(h) uniformly in 0.

Let us show that (5) implies (2). As usual P(r,6) is the Poisson kernel.

The partials

Pe(r,e) = - 2r(l—r2) [sin® (1-2r cosp + r2)-2]

2r(1-r2)[2r(1+sinze) - cosh (1+r2)]
(1-2r cos 6 + r2)3

Pee(r,e) =

have the following properties. The second derivative Pee is an even function

of 6 and



PROPERTIES OF BLOCH FUNCTIONS 385

1
JO Pee(r,t) dt = 0 .

For r fixed in (0,1), P is zero on (0,) only at the point s(8) = s

68
which satisfies
coss _ _2r
1+sinzs 1+r2
A computation shows that
s = /3 (1-1) .

Since f 1is in the disc algebra it has a representation

I
f(z) = 5% J P(r,6-t) f(eit) dt
-1

where z = reie. Taking the partials and changing variables yields

n
1 1(0+t) 1(6-t)
fee(Z) = 3 Jo Pee(r.t) {f(e ) + f(e )} dt

1(e+t)) i(e-t

= ;—n J“ P (r,t) {f(e - 28 % 4 fce )} dt .

o 99

The hypothesis £ e}\* implies
Il
Ifee(z)l <A Jo t lpee(r,t)l dat.

We compute the integral on the right
s i
- Jo t Pee(r,t) dt + Js t Pee(r,c) dt =

- 2s Pé(r,s) + 2P(r,s) - P(r,0) - P(r,N) .

The expression
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4r(1-r)3

-2s P (r,s) =
8 a-n*

and so there is a constant c¢ so that
-1
0 < -2s Pe(r,s) < ¢(1l-r) .
A similar inequality is valid for the P(r,s) term. Hence
£ (2) = 0((-|zD7H.
[L¢]

The Poisson integral representation for £ implies

I
|fe(z)| < C(l'rz)llfllw [ 2rsin t dt s
9 (1-2r cos t + ")

thus
-1
£,(2) = 0((-]zD7).

An easy computation yields

-2

£7(z) = r 2 e 210y £,(2) - £g,(2))

-1
= 0((1-r) ) .
This completes the equivalence of (2) with (5). We omit the proof for (6).

A perusal of these equivalences and a slight amount of study give
some insight into the size of the set of Bloch functions. We have observed
that the bounded holomorphic functions are Bloch functions. In general
there are no containment relationships between the classical Hardy spaces
Hp(D) (O<p<») and the set of Bloch functions. In fact one can construct

Bloch functions using gap series which are not of bounded characteristic.



PROPERTIES OF BLOCH FUNCTIONS 387

Although a BLoch function need not have angular (non-tangential) limits
almost everywhere on 3D ={|z[ = 1} , one can prove using the Gross star
theorem (from the theory of cluster sets) that every Bloch function has

finite or infinite angular limits on an uncountably dense subset of aD.

o

If f(z) = Z a z" is a Bloch function a straight forward estimate
n=0
yields
|a | < c sup {(l-|z|2) |f'(z)| tze D)
N :
for n=1, 2, 3,... . The following result will be useful in posing

some unanswered questions later in the paper.

©

Theorem (2.8). Let f£(z) = 54 aj z0 be a Bloch function with radial
j=1
limits almost everywhere on 3D. Then a > 0.

Proof. Integrating [f'(z)[2

© z
) j2|a.|2 o E%- J ]f'(reie)l2 do .
j=1 3 0

Choosing r, = (1- %) we can find a constant c¢ > 0 so that
n

1 2
- 13la

O

I 2 C

21
2
S o Jo (l—rn)lf'(rneie)|

. de
J

A known property of normal functions (see Lehto and Virtanen [ 15 ]) states
that if f 1is analytic in D with radial limit A at a point A = e:lﬁ

then f has angular limit A at A. With) = e19 assume

1lim f(rA) = A. The discs
r>1

1
e, = {[z - A| < E—(l - rn)}

lie in a fixed angle at ) and tend to )X as n > ». Apply the Cauchy formula
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(1-rn)|f'(rnx)|

_1_ J (f(zz"A) dz i

2ni 2
acn (z-rnk)

= (l-tn)

< 2 max |£(z) - o] ~ 0.
zedc neo
n
Since the integrand (1-rn)[f'(rneie)l is uniformly bounded we may apply
the Lebesgue bounded convergence theorem to conclude.
n
2 2
1im 1§~( 113 Iaj| )=0.
n+ n-  j=1

Thus a, + 0.

3. The Banach space structure.
Theorem (2.6) implies that the set of Bloch functions B 1is a complex
vector space. It is possible to equip B with a norm in which it becomes

a Banach space. If f ¢ B we can define
el = 1I£l] = €] + sup{|£'(2)| (1-|2|®) : z € D} .

The addition of the term |£(0)| 1is to account for the constant functionms.
We prefer to work with the quantity sup{|f'(z)]| (1-|z|2)} = M(f) and so

limit ourselves to functions holomorphic on D for which £(0) = 0 and
el]g = mce) .

Henceforth when norm considerations for Bloch functions are involved we
always assume this normalization is in force. There is a natural subspace

of B denoted as BO and defined as
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= {feB: lim (1-|z|2) |£'(z)] =0} .

B
0 z|{+1

It is straightforward to check that BO is a closed subspace of B.

Also if f € B, and fp(z) = f(pz) then fp tends f in Bo as p /1.

0
Since each fp can be uniformly approximated on D by polynomials we

Thus B, 1is a separable closed

see that polynomials are dense in Bo. 0
subspace of B. B 1is nonseparable as we can easily see by checking the
norms of (log(l—zeih) - log(l-z) for h>0. There is one result which

is very useful and should be noted.

M(£) = M(f ° ¢)

389

for every ¢ € Aut(D). Although there is no natural inclusion relationship

between the Hardy spaces B’ and B(i.e. g(z) = (log(l-z))2 € HP, ¥ p<w
yet g & B) there are some other interesting containment relations. Let
us show for example that each holomorphic function with finite Dirichlet

-]
integral is in B. Assume f£(z) = ) anzn and
n=1

j l£)|%0(z) = T nla_|? < o
D 1 0

Then for |[z|=r <1

N
(1—r2) [€£'(2)| < (1-r?) [ ) nlanlrn-l] +

1=n

2 v 2 2n-2
(1-r°) V//— v//s nr
* Ng-l-nnlanl N§1=n 1
N N \2
< (1-12) [Z nla rn-ll-F(;z nla ]%)2 :
1 ° #l=n ©°

For each € > 0 we may choose N so that the last square root is less

than Ve,
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Hence,

1im sup (1-r2) [£'(2)| s /&
1

and f € Bo.

For a second and less obvious example we consider an F ¢ LZ(BD). Let
I(F) be the average of F over an interval I c 3D, |I| = the measure

of I, and

1(F) 'T%l' J F(0) do .
I

F 1is said to have bounded mean oscillation 1if

1
;2;3 []qfr J |F(x) - I(F)|dx | < =.
I

In the case of a function f in the Hardy space 32(0) this is equivalent

to being able to write f as the sum of two holomorphic functions fl and
~

for ﬁbich Re f and Im £ are bounded. This is a nontrivial

2 1 2

equivaleﬁce and the reader might wish to refer to the notes of Sarason [ 21 ]

f

for a comprehensive discussion of this topic. But if f 1is decomposed as

above
£(z) = £,(2) + £,(2)

since fl and f2 are Bloch functions it follows that f 1is a Bloch
function. Thus BMOA (the space of analytic functions with bounded mean
oscillation) is a subspace of B.

We establish now the basic duality relationships. The fundamental

idea really begins with the paper of Rubel and Shields [ 18 ]. In that
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paper the following basic principle is confirmed. Loosely stated it
shows that the second dual of a Banach space of holomorphic functions
satisfying a "little oh" growth condition is isomorphic to the Banach
space of analytic functions satisfying the corresponding 'big oh"

relationship.

Theorem (3.1). The inclusion mapping of Bo into B extends to an

isomorphism of Bo** onto B.

We prove this theorem by a sequence of results. It is necessary to
introduce an auxiliary space I. I 1is the space of functions g holomorphic

on D, g(0) =0 and

I Ig'(reie)| drdg < = .,
D

The functions in I are the normalized holomorphic functions whose derivaties
are in the Bergman one space. One checks that I g.Hl(D) and hence each
g € I has well defined boundary values

lim g (reie) = g(eie) a.e.
>l

with g(eie) € L'(). The next lemma is crucial to the development.

Lemma (3.2). For f(z) = Z anzn € B and g(z) = z bnzn € I the
n=1 n=1
Hadamard convolution
v n
h(z) = fxg(z) = nglanbnz

is in the disc algebra.
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Proof. The function h is analytic on D. We show that it is uniformly

continuous on D and so can be extended to a continuous function on OD.

Let z = re10 and 7 € D,

1 21
% [ f (1-r2) £'(z2) (zg(2))* e-iededr =
0 0

@
) anbncn-l .
n=1

Also

=

1 r2n
! Ig(reie)l dodr
0

O

1 28 r
si J I J lg' (te®) |acarde
0

0

< Nell,
We find using this result
In@)| < clsup (1-|2|DH|£'@2)| : z e )| |||,
< o1l gl 8l
Let points L1 &y be given in D and observe
Inep - nepl < e lldly g -5 | »
where gc(z) = g(zg). It is routine to check that as ¢ +1 (|z]<1)

|lg - g +0 .

1
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Hence, h 1is uniformly continuous on D.

Theorem (3.3). The spaces B and I* are isomorphic. The pairing is

given by y > f where

lim( Ja b ™),
r+1 n=1" n

Vv(g) = <f,g>

o

-] ©
n n
f(z) = § az €B, g(z)= § bz € I.
Proof. In the notation of Lemma (3.2) we have for f ¢ B and g e I

Ih)| = [exg)] = |<f,8>| < e [|£]l5-1lelly -

*
Hence each f € B can be identified witha y in I . Now assume

* n
v €1 and let a = Y(z) for n 2 1. The function £(z) = Z az
n=1

n

is analytic in D. Let 0<p <1 and select ge I ,
-

g(z) = )l: b 2"

v n
W(gp) = nzl anbnp = <gp, £ .

393

But & tends to g in I° and hence the analytic function £ corresponds

to V. It remains to prove that f is in B. The kernel

g (2) = z (1%2)2 1sin T for ¢ fixed 4n D. With z = rel

2n
J dé dr

5 [1-cz| 2

1
1 1
laglly se | ey (ﬁ—
0
<e (1—|c|2)'1 .

Thus

ler @l = I<, g2l < e - [Ivl]- a-lel®H™
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and so f 1is in B.

The next theorem will be the last result we need. This result and

Theorem (3.3) will immediately yield Theorem (3.1).

Theorem (3.4). The spaces I and BO* are isomorphic. The pairing is

given by ¢ + g, with
V(f) = <f,g>

for each f € Bo.

«©

* and form the holomorphic function g(z) = J bnzn,
n=1

Proof. Let V¢ € BO

¥(z) =b,n21. For pe (0,1) and fe B,

lwee )] = <€ 02| = [<fg>] < e |lvl] - |l£]] .

But for any f € B, fp € BO hence

e ll; = sup |<f,g>| < < |lv]| .
A TH) R

Thus g e I.

We have already observed that g induces a bounded linear functional
on Bo.

a_z" e B the mapping

We have already noted that for f£f(z) = =

Ne~—18

n=1

m: B+ g”
defined by

m(f) = (an)
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is a one to one continuous linear mapping. It can also be shown if
(nk) is a strictly increasing sequence of positive integers with
nk+1/nk 2 2, and (ak) e 2~ then the function
f(z) = Z az
k=1

is in B and ||f]]| < 4 !l(an)ll = . Hence, the mapping
-]
n:4% >B

given by
I oo
2(a,) = z
K7L %k

is a (continuous) isomorphism onto its range. In particular the map

P: B> B given by

P(}oazn)siu a zzk
it k=1 2%

is a projection. Although this is not sufficient to conclude that B 1is
linearly isomorphic to 2°  one might anticipate this result. A denoue-
ment to the results of this nature was given by Shields and Williams [ 22 ].
Their work coupled with a result of Lindenstrauss and Pelczynski [ 16 ]
will show that indeed B is isomorphic to 27 They also obtain the result
that B0 is isomorphic to <y (sequences tending to zero) with the usual
sup norm (Shields and Williams, [ 22, 23 ]). Shields and Williams
establish a direct sum decomposition for LlQD) in terms of a copy of

and a complemented subspace. One can then apply the result of Lindenstrauss
and Pelczynski on bounded projects to prove that I 1is isomorphic to 2%

Thus



396 J. A. CIMA

We prefer to use the notation of Shields and Williams and simply identify
notational connections necessary. To begin they choose positive continuous

functions ¢ and ¢y on [0,1) with ¢(r) >0 as r -+ 1 and

1
I Y(r)dr < .
0

The space A(D) consists of holomorphic functions f on D. Three other

spaces are denoted by

A=A () = {fecA@) : sup {|£(2)] ¢(|z]) : 2z € D} < =}
Ay = Ay(4) = {f e AD) : lim |£¢z)|¢(|z|) = 0}

z|+1
Al =al@) = {fe 20 : I |[£) |[v(]|z]) do(z) < =}

D

where o 1s normalized Lebesgue measure on D. We make the obvious

identifications and isomorphic correspundences

#(lzD = a-lz[* , vz =1, B=A , B =a

and I-= Al. Letting M(D) denote the Banach space of complex-valued,

bounded Borel measures on D (with variation norm) and CO(D) the
Banach space of continuous functions on D such that each f ¢ Co(D)
vanishes on 3D we define some isometries. For f € A, g € Al we

define

Tf=¢f, T;g=yg and Mg =gy do .

-]
Then T_  is an isometry of A_ to L (D) (T“’IAO = A) 1s an isometry of A, to C

and

0

0)
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T, 1is an isometry of Al to1l! and M is an isometry to M@®). The

following netational pairing is used

(£,8) = I £(2) @ ¢(|z2]) v(|z|) do(2)
[

- j £(z) g2 (1-]2|%) do(2)
D

with feA, ge¢ Al. For example if f and g are polynomials
£(z) = ; az" and g(z) = Ib 2"
n n
a.by
€8 = 1wy -
1 3
The pair {¢,9¥} is a normal pair with e¢ =3, k=3 and a=1.

Lemma (3.5). Let z, weD

2(1 - wz)-(a) .

Kw(Z)
Then

(1) g = (K,g) all geal;
(2) f(w) = (f,Kw) all f e A, ;

(3) span {Kw : we D} is dense in Al and Aj

(4) span {Kw; w € D} is weak star dense in A_.

Proof. This is just a computation and we limit ourselves to proving the

1

case of A~ 1in (3) and part (4). By the Hahn-Banach theorem it suffices

to show that if he L (D) and if

J Kw(z) h(z) do(z) = 0
)
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for all w € D, then h amnihilates all of T1 Al =T Al. A calculation

yields
T n n -
0= 27 (nHl)(n+2)w J z h(z) do(z)
n=0
D
for all w e D. Hence, h annihilates all polynomials. The polynomials

1
are dense in Al and thus span {Kw} is dense in A .

For part (4) we recall that if o, (f) denotes the nth Cesaro

means of the partial sums of the Taylor series for f then

sup |cn(f)(reie)|s sup |f(reie)| .

0<px<2y 0<6<2™m

Hence,

sup sup la (f)(reie)l (l-rz;]
Osr<1 ) n

< sup [(sup \f(reie)l) (1-r2) .
0<r<l

If f ¢ A, we apply the above inequality to conclude that
2 ]
(1-r7) Un(f)(rei ) converges pointwise and boundedly to (1-r2) f(reie).

By the Lebesgue domginated convergence theorem we have

lim J a-1z1%) o_(£)(2) hE) do(2)
"o

- j (1-121%) £(2) w(@) do(2)
D
for all h e L'(@). Thus each £ in A_ is the weak star limit of a

sequence of polynomials.
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The L1(D) - L”(D) duality implies that each weak star continuous

functional on A& is given by
2 -
J (1|23 £(2) b @ do(2)
where h ¢ Ll(D). But as above if

j K () h@) (-|2|D) do@) = 0
D

then h annihilates polynomials and thus span {Kw} is weak star demnse in
A .
«©

The next lemma is well known and the second follows by a calculation.
Lemma [3.6]. For 0 < r <1,

2n
J |1-1:e:“:|_2 dt = 0 ((l—r)_l) .
0

Lemma [3.7]. For m 22 and O < b <1

1
Juwﬁ“u-o<wﬁf“»

0
Theorem 3.8. The transformation ( defined by
@ = [ 1,® a-lzh) @

with p e M(D), we D 1is a bounded operator mapping M(D) onto A,
The transformation Ql = QlLl(D) is a bounded operator mapping Ll(D) onto
Al. The operator T1 Q_1 is a bounded projection of LIGD) onto the

subspace TAl.

Proof. We consider only Q,1 the proof for Q is analogous. For
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1
f e L (D)

f [ (g )0 |dotw) <
D

l

<c - J |£(z)|da(z) ,
D

K, (2) do(w{) 1213 |£(2) |40 (2)

It

where we have used Lemmas 3.6 and 3.7. If Qlf =g,
2
Q1) ) = (K ,8) = g(w) = Q) @) .
Hence, Ql is a bounded projection from L1 (@) onto Al.
Corollary 3.9. We have the following direct sum decomposition

o =l e (z.a)"

1

(T,A)" = {ge L'(D) : (95,8) = O,

all f ¢ A}

Proof. We show that the null space of Ql(-TlQl) is (TmAn)J‘. A
g € 1 (@) 1s in the kernel of Q; 1f and only if
0= [ a-l21%) & (2 g(2) @ ()
D

for all we¢ D. The finite linear combinations of Kw are weak star dense

in A (which is weak star closed) and hence g ¢ (TmAw)L.

Theorem 3.10. Al is topologically isomorphic to 21,
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Proof. Let {rn} be a strictly increasing sequence of positive numbers

with 1lim r, = 1. Let Aj denote the annulus

|z| < r.}

A, ={zeD: 2z 5

] j-1

IA

1<j. Let R.j : LIGD) - Ll(Aj)’ j =1,2,... be the natural projection

(restriction), with respect to Lebesgue measurz. The operator
R:L@® > (L,A)eL A, el A)e ...
defined by

RE = (R f, Ryf, ... )

is an onto isometry.

A normal families argument shows that BjIA} is a compact operator.

Hence, if S 1is the unit ball in Al, then R, S 1is a totally bounded

3
set in Ll(Aj)'
Consider E E_Eg a Lebesgue measurable set and do Lebesgue
measure on E... Further assume with out loss of generality that

0(E) = 1. For each n, let P be a partition of E into disjoint

measurable sets E?,...,Egn with u(Ez) = —%- for each 1i. Assume that
Pn+1 refines Pn for each n. Now for f ¢ Ll(E,u), define
on
n n i
i=1 u(Ei)
n
Ey

Of course xEn is the characteristic of the set E:. One can prove that
i

Pn f>f in L., norm, uniformly on compact subsets of Ll(E,p)- Each

1
Pn f 1is of the form

21‘1

Z C, Xpn =P_ £f.
=1 1 "Ej m

401
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Hence the map

P e ( ¢, Cna
) Xen — e
=1 17E) P "
on
is an isometry of the range of Pn onto 21 . One can check that
2

Pn = Pn and hence Pn is a projection.

There is for every given Ej > 0 a projection Pj = Pj(sj) of
L, (ﬁj) into itself is given so that Ile|| <1, Pj L1 (Aj) is isometric to

some 2.J for a suitable integer k, and

1 3

||Pj Ry £ - R £]] < e

for every f € S. It is now clear that the subspace X,
X = (Pl L1 (Al) P, L (Az) ® ... )
of
Ll(D) = L1 (Al) ® L (AZ) ® ...

is isometric to 21.

The operator T : R A; + X defined by

T(Ry £, Ry £, .o ) = (B R £, B, Ry £, «o0 )

satisfies

||T e = RE|| < jzl ey &y £ - & 1] sq ;)

for f € S. Thus, if ¢ > 0 is given we can choose the ¢, > 0 so that

® 3
) ej) <e or
1

T rE - REJ| < e |[RE]]

for f ¢ A,.



PROPERTIES OF BLOCH FUNCTIONS 403

Since R Al is complemented in R Ll we claim that for € > 0O
sufficiently small T R A1 is complemented in RL1 and so in X. Let
us consider the general situation of a Banach space U with Y a com-
plemented subspace of U. Then U= Y ® Z and there is a projection P
on U with range P equal Y. We claim there is %—>n> 0 such that if

||Y|| =1, yeY then
(lx-yll <2y nz= 9.
For if not Yo € Y, z € Z with
Iy - 2, < L.
Thus
lellm = [leey, - 2Dl =1

and this is absurd. Now let T be an operator on Y into U which

satisfies
Ity - yl| <n [ly]] .

We claim that T(Y) 1is a complemented subspace of U. First, T is
invertible as an operator on Y + T(Y). Next define T on all of U as

follows,
T(y) =T() , yeX
T(z) = z , z€Z.

Computations show T is linear on U and is one to-one. For if there

is a Yo € Y, ||yo|| =1 and Ty0 = Z0 € Z, then
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2n < 115, - 341 = l1zg - ol| <n

Next if ||y @ z|| < 1 then

A

[zl

llyezl| + [[PGea|| < 1+][?]] <M.

A

Similarly, ||y|| M if Hy ® zll = 1. Hence,

HT e 2] < 1Tl [vll + [lzl]sm.

This establishes the claim that T R A, 1is complemented in R Ll. But

1
it is known that an infinite-dimensional complemented subspace of L4

is isomorphic to &%, and since T 1is an isomorphism we find that Al

1
is isomorphic to 2 1°
There are other results of interest which are known in regard to the
Banach space structure. Anderson and Shields [ 5 ] have characterized
the multipliers from B into 2P in the following sense. If A and

B are two vector spaces of sequences the multipliers from A to B,

denoted (A,B) are defined as
(A,B) ={A= {)\n} : {)\nan} e B for

every {an} e A} .

For I = k:2® <k < 2n+1} ,n=20,1,2,... and 1 < a, B < o denote

by 2(a,B) the set of sequences {ak} (k 2 1) for which
1 ©

(z |ak|°‘>2 L)
I n=0

n

and

z B
sup |a, | € (a==) .
{ keIn %k }n=0
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These are Banach spaces when they are given the obvious norm. Anderson

and Shields prove that

(8,2%) =
2(x,p) , 2<p<o .

Questions of rotundity of the unit ball have also been investigated.
Examples of extreme points in the unit ball of BO are anzn, n22, and

other powers of Blaschke factors, suitably normed e.g.

n
3.1 oy [ i_gzq;) - (-a)n] , la]<l .

No other examples of extreme points are known. A characterization of the

extreme points of the unit ball of B, is given in Cima and Wogen [ 8 ].

0
We are considering functions f din Bj with ||f|| = 1. Let

Le={zeb: [£@)] A-]z]?) =1} .

Theorem 3.11. Let f be in the unit ball of BO' Then f 1is an extreme point

if and only Lf is an infinite set.

A second result is also noteworthy in this regard.

Theorem 3.12. If f 1s an extreme point of the unit ball of BO’ then
there are simple closed pairwise disjoint analytic curves Y1r YoreeesYy
with k > 1 and points Wis Wos eee wj with j > 0 so that

k

L, = (éﬁl Yi) u {wl, Wos eee s wj} .
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There are other examples of extreme points of the unit ball in B.

The function log (%%f) is an example and scalar multiplies of singular

inner functions corresponding to a point mass on 93D are also examples.

The observation that

M(£) = sup {|£'(2)| (1-|z]?) : z ¢ O}

=M (fo9)

for every a € Aut(D) leads one to consider the isometries of B0 and B.
In particular the extreme points of the unit ball are permuted under an
onto isometry. The process of composing a ¢ € Aut(D) with f ¢ B or B,

is a composition operator on the space. We write
C¢ : By > BO (or B > B)

and this is defined as
C¢(f) (z) = £ ° ¢(2) .
In [ 9 ] Cima and Wogen have proven the following results.

Theorem 3.13, If S : B, - B

0 0 is an isometry, then

(sf) (z) = Af(¢(2)) - A£($(0)) ,
where A € 3D and ¢ € Aut(D).
Corollary 3.14. Every isometry of B, is onto.

0

Theorem 3.15. If S : B+ B is an onto isometry, then there is a holo-

morphic automorphism ¢ and a A € 3D such that

() (2) = A(£(4(2))) - A£($(0)).
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We conclude with the following interesting result of Rubel and Timoney
[ 19 ]. A linear space X of analytic functions is said to be Mobius-
invariant if ¥ f ¢ X and every Mobius transformation ¢, fo¢ e X.
A real valued function p : X » [0,») is said to be a Mobius-invariant
semi-norm on X if p(f o ¢) = p(f) for every Mobius transformation
¢ of D and every f € X. A non-zero linear functional L on X 1is

said to be decent if
IL(f)l < M sup {|f(z)| : z € K}
for all f ¢ X, for some M > 0 and same compact subset K of D.

Theorem [3.16]. Let X be a Mobius-invariant linear space of analytic
functions on the unit disc and let p be a Mobius-invariant seminorm

on X. If there exists a decent linear functional L on X continuous
with respect to p, then X ¢ B and there exists a constant A > 0

such that
py(E) < A p(£)
for all f € X. In this theorem pB(f) is the seminorm given by
pB(f) = ::B (1-|z|2)|f'(z)| so that pB(c) =0 ¥ce ¢. We observe that
pp(f) = sup {[(£20)'(0)] : ¢ € Aut(D)} .
This motivates the following lemma.

Lemma [3.17]. For each n < 1, the expression

pn(f) = Sup {l(f°¢)n(0)| : ¢ € Aut (D)}
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defined on analytic functions, is a seminorm equivalent to the Bloch

seminorm.

Proof. We follow Rubel and Timoney and consider the case n = 3. The general
case requires more bookkeeping but is similar. Let
o_o(2) = (z+a) (1+43z) ' and observe that
3 2 -
o4 )P0 = D@ a-z1H - 6 e@a-|a|H? a +

ie

6f'(a)(1-|z[2) 52. Choose a = (%) e and observe that

2n 21
= [ a2 )P (0) a0 = 55 (% J £'(a) de)
6=0 0

9
=33 £'(0) .

Taking absolute values we find
€@ = & py) .
- 97 73
If ¢ 4is in Aut(D) we apply this last inequality to obtain
8
Sup {[(£24)'(0) : ¢ € Aut(D)} s (g) py(f) .

Hence, pB(f) < p3(f).

For the converse we apply the Cauchy integral theorem

2n _,
£(2) = 3= J EQ g
0 (-2)

with |¢| = -112"‘—1

. An easy computation shows that if ¢(0) = z
[(Eo)" (@] < ¢ py(6) + |£7(2)| (1-]z|H)?

e (py () +sw| £1@| -z

<c pg (£) .
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A similar estimate will show that £"'(z) also satisfies such an

inequality. Hence, there is a constant c¢ such that
P, (£) <c Py (£) .

Proof of the Theorem.

Let (X, p) satisfy the hypothesis of the theorem and let I be a

linear functional satisfying
L(f) <p (D)
and
[L(E)| < A sup {|£(2)| : z € K cc D}

for all f ¢ X, A > 0.

By the Hahn-Banach Theorem L extends to a continuous linear
functional (denoted again as L) on #(D) (all holomorphic functions
on D) and the inequality for L on K remains valid. It is well
known that L can be identified with a function g(z) = E an°n

n=N20
(bN + 0) holomorphic in |z|2>r, r < 1, in the following way

T [ £z) g(2) & .

lz|= ¢

L(f) =

i)

Let ¢(z) = e” "z be a rotation and change variables to deduce

[L(£o ¢) | = iﬁ j £(z) gle*'z) d—: sp ()

|z|= =

An application of Fubini's theorem produces the following equality
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20
1 1N 1 i, dz ] _ N
T f e [ZIIi J £(z) gle "2) z] be 0).
A=0 lz|=r
This implies

p(5) > byl [£7(0) |

and replacing f by f o ¢ and taking the supremum we obtain

py(E) = Sup {[(£ o HVO] : p e Aut®) < ﬁ;r p(E) .

If N >0 we apply the lemma (3.17) to produce the result. If N = 0
we conclude X c H and that p dominates the supremum norm || -
The sup norm dominates Py and H” c¢ B. This conclude the proof of the

theorem.

4. Open questioms.
Of course the older question of getting a sharp estimate for b is
viable. Let us define subspaces of B as follows
L={feB: f has radial limits a.e. on 3D}
and
v n
M={f(z)=XaZ € B lim a_ = 0}.
n n
1=n
We know that if f ¢ L then the Taylor coefficients of f tend to zero

(Theorem 2.8). Hence, L c M. But M is closed in B. For if {fk} <M

is a Cauchy sequence and fk-) £f in B we recall that

la (8) - a ()] < c ||e-£|], .
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Hence,
la (B)] < ¢ llf-fk||B + Ian(fk)l
and 1lim an(f) = 0. The following inclusions have been pointed out
fEBmAsaﬂﬁﬁ)gusL.

It would be a useful result to describe the Bloch closure of H
or BMOA in L. A question raised by D. Campbell and the author is
the following. Produce a function f ¢ B n(§ Hp) which is not in BMOA.

In answer to a question posed by the author R. Timoney has produced
a function f € B such that f has radial limit values in LG(BD)
but f ¢ urP. Are there any natural conditions which can be placed on a
Bloch fung:gon f so that if f has radial limits in LP(3D) then
£ e HP?

Several questions remain concerning the structure of the unit
ball in BO' Namely, is each extreme point of the unit ball of Bo of
the form (3.1)? What is the closed convex hull of the set of functions
given by (3.1)?

As a final question, we consider an oral communication of D. Sarason.
There are singular functions S*(z) in BO' This is not an obvious
result but follows by some work of H. Shapiro and an application of the
Zgymund criteria for Bo. Hence, for a € D \ K, where K has capacity

zero, the functions

are Blaschke products in B0 (Frostman). Give an explicit construction

for Ba by designating its zeros.
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ERRATA
On pages 15 and 16: Replace f by g
On page 15, line 3(b) Replace g by s
On page 16, lines 3, 4: Replace g by s
On page 16, line 4: Replace A2 f(eie) by

Az[f(eie) - f(teie)]

On page 33, line 6: The direct sum is taken in the Kl

norm.
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