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ABSTRACT. The four known biplanes of order 9 (k = 11) are described in terms
of their ovals, A-chain structures, and automorphism groups. An exhaustive
computer search for all biplanes of order 9 with certain chain structures
has produced but two, one of which is new. None of these four biplanes yield
the putative plane of order 10.
1. INTRODUCTION

Only finitely many biplanes (projective designs with A = 2) are presently
known and it is conjectured that for any fixed A > 2 but finitely many projective
designs exist. The authors know of four biplanes of order 9. All are self-dual.
The most symmetric of these has repeatedly been uncovered. A group-theoretical

treatment of this design was given by Hall, Lane, Wales [5]. The authors
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discovered a second with the aid of a computer, and R. H. F. Denniston has
constructed two more [4]. A description of these will be provided in sections
3 and 5.

There exists an algebraic coding theoretic technique whereby certain projective
planes of even order can be constructed via biplanes of odd order and it is
successful in obtaining the planes of orders 2, 4, and 8 from biplanes or orders
1, 3, and 7, respectively [1]. Unfortunately, the four known biplanes of order 9
fail to yield the putative plane of order 10 since none admit a sufficient number
of ovals. An exhaustive computer research for all biplanes of order 9 with chain
structures consisting of (4-4-3)-chains, conjectured to admit the largest number
of ovals, failed to produce any additional biplanes.

2. DEFINITIONS AND REMARKS. A (v, k, 1) design or projective design on a v-set S
(a set consisting of v elements, called points) is a collection, D, of k-subsets
of S (called blocks) such that every 2-subset of S is contained in precisely A

elements of D. The order of a projective design is m = k-A. The incidence matrix

of a projective design is a vxv matrix (aB P) where ag P=l if P is contained in B
’ ’

and O otherwise. The automorphism group of the design is {o € Sym (S) | o*B ¢ D,

for all B ¢ D }. The dual of a projective design is obtained by switching the

roles of blocks and points. A projective design is called a projective plane if

X =1, and a biplane if A = 2.

Assmus and van Lint [3] have generalized the notion of an oval in a projective
plane to arbitrary projective designs. An oval in a biplane of even order, m, is
a set of E%ﬁ points, and in a biplane of odd order of 9%2 points, such that no
three points are contained in a block. A block is tangent to an oval if it meets
the oval in precisely one point. An oval in a biplane of even order has no
tangents, whereas there passes precisely one tangent through each point of an oval

in an odd order biplane. In the odd order case, the set of all blocks tangent to

an oval forms an oval in the dual biplane [3].
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A linear (n,£) code C is an A{-dimensional subspace of Fn, F a finite field.

The dual of C, ct , is the subspace of o consisting of all vectors orthogonal to
each vector of C. The weight of a code vector is the number of non-zero coordin-
ates and the minimum weight of D is Min {weight (V) |v e c, v#0l}.

Pick a block of the biplane, index its point from 1 to k, and call it the
indexing block. Each remaining block can then be indexed by the 2-subset in which
it meets the indexing block, and each point not incident with the indexing block
can be denoted by a A-chain, which is simply a permutation on k letters written in
cycle notation, where two numbers are adjacent if the point is incident with the

block indexed by the resulting 2-subset. The chain structure of the biplane for a

given indexing block is then the number of chains of each type of cycle structure.

Further information on the notion of A-chains can be found in [7] and [9].

3. THE FOUR KNOWN BIPLANES OF ORDER 9.

A biplane of order 9 is a (56, 11, 2) projective design. Let I be the
incidence matrix of a projective design. Since Rkp(I) depends only on the para-
meters of the projective design unless p/m [6], only the mod 3 rank can aid in

distinguishing biplanes of order 9.

Let

(]
P
8

If I 4is the incidence matrix of a biplane, then det(I)

]
[N
Hh

m is even,

d,, 1 <i< v, be the elementary divisors of I. For k # 2, dv 2

i,
and km otherwise. Moreover, if m is a prime not equal to 2, then ka(I)

11 - 355. Thus for a biplane of

v+l
-?r—&ﬂ.

Form=9, d =4d., = 11 - 32, and det(I)

v 56
order 9, Rk3(I) < 28, since in the case of equality the elementary divisors are
128 s 31 , 926 , 9°11 (where x" means that x occurs as an elementary divisor n
times).

The 3-rank does distinguish the four known biplanes oforder 9. The Hall-

Lane-Wales biplane is of 3-rank 20, the one the authors discovered has a 3-rank of

22, and the two constructed by Denniston have 3-ranks of 24 and 26, respectively.
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Hence we shall denote the four by BZO’ BZZ’ B24, and B26 respectively.

The collection of chain structures for each of these four biplanes can be
found in Appendix A. Of course, the only possible A-chains are of type
(11), (8-3), (7-4), (6-5), (5,3,3), (4,4,3).

Notice that as the 3-rank increases, the cycle sizes become larger. B22 admits
only two chain structures consisting entirely of (4-4-3)-chains. For B24, all but
one type of structure contains (ll)-chains, and this remaining type consists of
(7-4), (5-3-3), and (4-4-3)-chains. In the case of B26’ the single structure type
devoid of (1l)-chains consists of (8-3) and (4-4-3)-chains.

Biplanes of order 4 afford the only other known example in which biplanes of
a given order are distinguished by rank. The three biplanes of order 4 have 2-ranks
of 6, 7, and 8, respectively. The chain structures for BG’ B7, and B8 contain
0, 4, and 6 (6)-chains, respectively. Again, there exists a relationship between
rank and chain cycle sizes. This relationship could conceivably hold for biplanes
in general, or at least for all biplanes of order 9.

The codes generated by the rows of the incidence matrices over GF(2) of the
three biplanes of order 4 are nested in the sense that span (B6) C span (B7)
€ span (38) {2]. Such a nesting does not occur over GF(3) for the known bi-
planes of order 9 since a computer calculation demonstrated that each of the codes

contains but 56 weight-11 vectors where all non-zero coordinates are one.

4. BIPLANES OF ORDER 9 AND THE PUTATIVE PLANE OF ORDER1O0.

Let G be the vx2v matrix obtained by preceding the incidence matrix, I, of
a biplane of odd order by a vxv identity matrix, and let G' be obtained by pre-
ceding the identity matrix by It. The mod 2 spans of G and G' are identical and
this subspace is a self-dual (2v,v) code over GF(2) with minimum weight k+1. By
selecting the minimal-weight vectors containing a 1 in a fixed coordinate, one

sometimes obtains a plane of orders 2, 4, and 8 [1]. However, none of the four
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known biplanes of order 9 yield the putative plane of order 10.

It is shown [3] that the minimal-weight vectors which are neither rows of G
nor rows of G' are in fact the chatacteristic functions on sets of the form
edue , where ¢ 1is an oval of the biplane.

Thus, for a biplane of order 9 to yield the plane of order 10 it is necessary
that a point be contained in 99 ovals, since 12 weight-12 vectors that "contain"
the point are rows of G or G' and the plane order 10 has 111 lines. The number of
ovals in each biplane and the number of ovals through each point of the four bi-
planes is tabulated in Appendix B. As the 3-rank increases, the number of ovals
in the biplane decreases. The same is seen to hold true with the three biplanes of

order 4, B and BS’ which admit 60, 28 and 12 ovals, respectively [3]. All

6> By’
four biplanes of order 7 necessarily have a 7-rank of 19 and all but one admit

63 ovals. This special biplane is the difference set biplane constructed via the
bi-quadratic residues mod 37 and contains no ovals.

The biplane of order 9 with the lowest 3-rank, B, ., admitted the most ovals

20
and all its chain structures consisted of (4-4-3)-chains. An exhaustive computer

search was performed which produced all biplanes with a chain structure consisting
entirely of (4-4-3)-chains. Only twe such biplanes exist, namely, B20 and B22. It

was also possible to exhaustively search for all biplanes with a ‘chain structure

consisting of (5-3-3) and (4-4-3)-chains. No additional biplanes were found.

5. AUTOMORPHISM GROUPS.

We now provide a description of the biplane we discovered, B22, and the two
discovered by Denniston, B24 and B26’ in terms of their automorphism groups. These
groups we obtained by a judicious mixture of computer and hand calculation.

In the following, let%»PiY and {Bi} denote base points and base blocks, res-

pectively. B22 contains four point and block orbits, the other two each contain

three. Also, let Gi = G and Hi = G

P where G is the automorphism group of the

’
i By
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biplane. Each of these three biplanes contains an orbit of points (and of blocks)

on which no subgroup of G acts regularly.

P22
G = Aut(Bzz) =TVY ®
N Y N O N R T
5 2 4
st = u%e3, or? = v, ou = B0, wv? = tte
Let A = {1,¢}.
s = {pP, < w3 >, P,<1" >V¥, P, < 12 > ¥ A}
1 ’ 2 > "3

D = {B1 < w3 >, B, < rz > ¥, B3 < 12 > ¥ A}
G1 =T < wZ > < ¢3¢ > Hl =T < ¢2 > ¢
G2 =< 13 > 9 HZ = < 73 > < w3¢ >

G3 = H3 =< 13 > < ¢3¢2>

The incidence structure is defined by:

B, = {P1 < ¢3 >, B, < 12 > < wz >}

B, = {Pl, P2 < ¢3 >, P3 Tzwz, P312w3, P314¢3, P3raw4, P312¢,
P314¢, P314w¢, P312w5¢}

By = {Pzrz, P2r4, Pzr4¢, Pzr2¢5, P, P314w, P3rz¢3, P314w3,

2.5 3
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G = Aut(324) = ALTY

tslodckyl 62 = o2 = 12 = 48 = 1, o6 = 60, 15 = stv”,

6w3,ro = o1, Yo = ow3, ¢T = rw7

P8
Let A = {1, v,4°, v},
s = {pIT, P

A, P_ AY, P, T ¥}

2 3 4
D= {BIET, B, A, 33 AY, B, I TV}
G =H = A<oty>
G, = H, = AT <01w2>
2 2
Gy = Hy = IT
G, =H, =28

The incidence structure is defined by:

= 3 5 7 2
B, = {Plc, Plr, Plo'r, Paw, P41p , P4¢ s P4¢ y P40T <y~ >}

B, = {Pzw, Pzwz, P2w3, P40 < w4 >, P4or < w4 >, PéTwz, P4Tw6}

By = {P3¢2, P3¢4, P3¢6, P, TV, P40¢2, P41w2, P401¢3, P40¢5, P4w6,
P4or¢6, P4w7}

B, = {P,,P),Py, P36¢2, P35¢3, P3¢6, P, P,0, P4w5, P41w6, P4w7}
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Q
I

= Aut(B26) = V¢

e deM 3 =y =68 =1, ur =B, el =, e = e =,

ow? =%}

Let A = {1, ¢°}.

S= P, <>, P,T¥, P,T ¥ A}

<¢3>, B, T¥, BT ¥ A}

o
[]
~
=]

2

G, =H =T<p> ¢

G. = H = <11,3(153>
The incidence structure is defined by:
B, = {P1 <¢3>, P,T <¢2>}
B, = {Pl, P2 <¢3>, P3npA, P3np2A, P312\p4A, P312w5A}
B, = {Pzrzwz, Pzw3, P212¢3, Pt xp“, P3'rw2, P3121p2, P3w3, P3w4, P3rzw4,
P3¢2, P3w3¢2}
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56 with 45
4 with 24
8
13
4 with 24
21
16 with 18
6
8
4
4
5
32 with 18
4
10
2
4
7
B2
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B0

(4~4-3)-chains

24

(7-4)-chains
(5-3-3)-chains
(4-4-3)-chains

(11)-chains
(4-4-3)-chains

(11)-chains
(8-3)-chains
(7-4)-chains
(6-5)-chains

(5-3-3)-~hain.
(4-4~3)-chains

(11)-chains
(8-3)-chains
(7-4)-chains
(6-5)-chains

(5-3-3)-chains
(4-4~3)-chains

has 336 ovals

56 in 36 ovals

Pau

has 64 ovals

4 in 12 ovals
16 in 8 ovals
32 in 6 ovals

4 in 4 ovals

Appendix A

Appendix B

2 with 45
18 with 24
13

36 with 16

2 with 9
36

18 with 16
17
8
4

36 with 12
12

8
5

22

(4-4-3)-chains

(7-4)-chains
(5-3-3)-chains
(4-4-3)-chains

(11)-chains
(8-3)-chains
(7-4)-chains

(4-4-3)-chains

26

(8-3)-chains
(4-4-3)~-chains

(11)-chains
(8-3)-chains
(7-4)-chains

(4-4-3)-chains

(11)-chains
(8-3)~chains
(7-4)-chains
(6-5)-chains

(4-4-3)-chains

B has 120 ovals

22

18 in 16 ovals
36 in 12 ovals
2 in 0 ovals

B__ has 48 ovals

26

2 in 18 ovals
36 in 6 ovals
18 in 2 ovals
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