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ABSTRACT. Additional results are obtained which center around expressions for
the Laplace transforms of functions of the form k(t)F[g(t)]. The finite Laplace
transformation is involved in a number of the formulas. Examples involving

several special cases of g and k are included.
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1. INTRODUCTION.

Expressions for the Laplace transforms of certain composite functions, such
as F(t-l), F(tz), F(et—l), and F(sinh t), have been known and listed in the
tables under ''general formulas" for many years. In [1] a formula for
L{k(t) Flg(t)]} was developed and in [2] several special cases, supplementary to

those in the literature, were adjoined to the list. The results contained in this
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paper involve both the Laplace transformation and the finite Laplace transforma-
tion (that is, the integral is over a finite interval). They do not seem to
have appeared in the literature and further, although they are not difficult to
obtain, do not seem to be otherwise well known.

Throughout this work we assume the form

£(s) = LIF(t)} = [7 e75F F(t) dt (1.1)
0

for the Laplace transformation and we use the notations

-st

v
£(s;(8,Y)) = L{F(t) [U(t-B) - U(e-V)1} = [ e™°" F(v) dt. (1.2)
B

for the finite Laplace transformation. (We also allow 7Y = ®.) We refer to the
tables of Roberts and Kaufman [3] throughout and we use the notation [II. 3.2
(4)], for example, to refer to Part II, Section 3.2, Formula 4. The Heaviside

(unit step) function is denoted by U.

2. GENERAL RESULTS.

Since our results are centered around modifications of it, we restate

Theorem 1 of [1].

THEOREM 1. If (i) k, g, and the inverse function h = g-l are analytic,
real on (0,%), and such that g(0) = 0 and g(»®) = (or g(0) = > and
g(®) = 0); (ii) L{F} = f with abscissa of convergence 0; (iii) there
exists a function ®&(s,u), L{®(s,u)} = ¢(s,p) with abscissa of convergence

0 and

0(s,p) = e PP ()] [ ()]s (2.1)

and (iv)
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[717 ™" ¢(s,u) F(p) du dp (2.2)
00

converges absolutely for Re(s) > a; then

L{k(t) Flg(t)1} = [7 &(s,u) £(u) du (2.3)
0

with abscissa of convergence a.

For our first result we relax the conditions on g from those stated in
Theorem 1. In connection with this we introduce the finite Laplace transformation
(1.2). Now if g is strictly monotone on some subinterval of (0,®) we have

the following result.

THEOREM 2. Under the hypotheses of Theorem 1, except that now let g be

monotone on (b,c) with g(b) = B <y = g(c) (or with 3 > Y), then

L{k(t) Flg(t)] [U(t-b) - U(t=c)1} = [~ @(s,u) £(u;(B,Y)) du. (2.4)
0

For our second result we modify Theorem 1 by the introduction of an

adjustment function as follows.

THEOREM 3. Under the hypotheses of Theorem 1, except that we assume the

relations
L{F(p)A(P)} = £(s34), L{®(s,u3A)} = ¢(s,p)/A(p), (2.5)

then

L{k(t) Flg(t)1} = [° ®(s,u;A) £(u3A) du. (2.6)
0
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The proofs of Theorems 2 and 3 follow directly the lines of proof given
for Theorem 1 in [1] and hence they are omitted. Two special cases of Theorem

2 are noted.

COROLLARY 2.1. 1If in Theorem 2 g(0) = B, g(®) =Y, then

L{k(t) Flg(t)1} = [ &(s,u) £(u;(8,Y)) du. (2.7)
0

COROLLARY 2.2. If in Theorem 2 g(b) = 0, g(c) =, then

L{k(t) F[g(t)] [U(t-b) - U(t-c)]1} = [~ ®(s,u) £(u) du. (2.8)
0

It should be noted that Theorems 2 and 3 could be combined, in which case

under the joint hypotheses

L{k(t) Flg(t)] [U(t-b) - U(t-c)]1} = [ ®(s,u;A) £(u3A;(8,Y)) du. (2.9)
0

where f(u;A;(B,Y)) denotes the finite transform of the product function FA

over the interval (B,Y).

3. SPECIAL RESULTS.

We next turn to some examples for the illustration of those results of
Section 2. Much of the computational detail is straightforward, but often
lengthy, and hence is omitted. A number of substitution relations are obtained

which have not appeared in tables.

EXAMPLE 1. Let g(t) = eat, a >0, k(t) =t. Thus from Corollary 2.1

and [II. 4.2 (2)] we have
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L{eF(e®)} = [asT(s/@) 17} [° u®/® [Y(s/a+1) - log ul £(u;(1,®)) du (3.1)
0
where f£(u;(1,*)) = L{F(t) U(t-1)}.

2,1/2 -1/2

EXAMPLE 2. Let g(t) = (t2-a , k(t) = (tz-az) . From Corollary

2.2 and [II. 3.2 (46)] it follows that
L (e?-a?y™ M2 522D vie-a)} = [ 3 (aw-sHY?) £w) au. (3.2)

-1/2

1/2, k(t) = (t2+82) . From Corollary

EXAMPLE 3. Let g(t) = (t2+32)

2.1 and [II. 3.1 (90)] the analog to Example 2 is

(2™ p(2aD D) = [ 1 (a-sHY?) s @) au. (3.3)

EXAMPLE 4. If g(t) = tziaz, k(t) = t2v+1, then [II. 3.2 (24)] along

with the exponential shift can be used to obtain

L{tzv+1 F(t2+a2)} =
2 2
V212 e atums®/Bu V-1 D2v+1(s(2u)-1/2) £(us (a2)) du, (3.4)
0
L{e2* re2-a?) u(e-a)} =
-v-3/2_-1/2 @ -a*u-s%/8u_-v-1 -1/2
=2 m [Fe u T Dy, (8wTT) £(w) du, (3.5)

0

where Dv denotes the parabolic cylinder function.

EXAMPLE 5. If g(t) = cosh t, k(t) = e-at, from [II. 2 (99)] we have
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L{e7®" F(eosh )} = [T 1_, (u) £(u3(1,=)) du. (3.6)
0 a

EXAMPLE 6. The choice A(p) = (ap+b)n in Theorem 3 introduces an

integration by parts formula; that is, where * denotes convolution, we have

L{x(t) Flg(t)1} =

= [ (0w * [@"T@ 17 ™ ) cap 40) ) au. (3.7)
0

4. RATIOS OF LINEAR AND QUADRATIC EXPRESSIONS.

If we examine the general bilinear (Mobius) substitution, because of the
known formula for L{F(ct)}, it is no restriction to consider only (t-a)/(t-b),
(a-t)/(t-b), and a/(t-b). A number of subcases result. In order to obtain
the following results we use Theorem 2 along with [II. 3.2 (9)] and [II. 3.2
(10)], with v > -1, throughout (4.1) - (4.7).

If b>a>0,

L{(e-5) "L B (t-a)/(t-b)] [1 - U(t-a)]} =

_ -bs
=e

{T e (u(b-a)/s) /2 Jv(Z(s(b-a)ul/z) £(u;(0,a/b)) du; (4.1)
if b>a, b>o0,
L{e=5)""L F(t-a)/(t-b)] U(e-b)} =
- ebs {j & (u(b-a)/s)"/? Jv(2(s(b-a)u)1/2) £(u; (1,%)) du; (4.2)

if 0>b > a,
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L{(t-2)"L Fl(t-a)/(t-b)1} =

v/2 1/2

= e e wb-a)/e) ) £(u;(2,a/p)) du. -3

A JV(Z(s(b—a)u)

For the three corresponding cases a >b >0; a>b, a>0; and 0 > a > b;

Jv must be replaced by Iv, a and b interchanged in the U-functions, (b-a)

replaced by (a-b), and the f's replaced by f(u;(a/b,»)), £(u;(0,1)), and
f(u;(a/b,1)) in (4.1), (4.2), and (4.3) respectively.

If a>b >0,
L{(t-p)""! FL(a-t)/(t-b)] [U(t-b) - U(t-a)]} =

=P P e a9V 5 (26w ) £ du 4.4
0

if a>0, b <O,
L{(e-0)" Pl(a-t)/(e-b) T (1 - U(t-a)]} =

= & 7 e b /oY ? 5 (26w ) £(;(0,-a/b)) du. (4.5
0

For the corresponding cases b >a >0 and b >0, a < 0 we again change Jv
to Iv’ interchange a and b in the U-function and whenever a-b appears,

and in (4.5) replace f(u;(0,-a/b)) by £(u;(-a/b,»)).

If a>0, b>0,
L{(t-p)""! Fla/(e-b)] U(t-b)} =

= e-bs fw (au/s)\)/2 Jv(Z(asu)llz) f(u) du; (4.6)
0
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if a>0, b<O
L{(t-b)>! Fra/(e-p)1} =

= ¢ 7 (au/s)V/? 3 (2(asw)M/?) £(u3(0,-a/b)) du. (4.7)
0

For a <0, b >0 modifications similar to those already discussed can be
applied to (4.7).

For the ratios of quadratic functions it is again no real restriction to
assume special values for some of the coefficients. In general these are messy

and the inverse to ¢(s,p) can not readily be obtained, hence we restrict our
discussion to only a few cases. The two special cases (a/2)t2/(t+c) and
(t/2) (t+2c)/(t+c) have already appeared in [2]; the generalization of these to
(t2+at+b)/(t+c) can be obtained.

We let az = cz-ac+b and for a2 > 4b we let 2T = -a+/(az-ab) in order

to simplify notations. Further, we assume c¢ > 0 throughout. If a2 < 0 and

T < 0, we have, after considerable computation,
-1-v 2 _
L{ (t+c) F[(t“+at+b)/(t+c)1} =

= & [T DY (g o) V2 1, (20(u?-sw)/?) £(u; (b/e,®)) du; (4.8)

if az >0 and T > O,
L{(t+c)'1"v F[(t2+at+b)/(t+c)] U(t-1)} =

- oSS L? e-(2c-a)u ((u_s)/QZu)v/Z Iv(Za(uz-su)l/zl f(u) du. (4.9)
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On the other hand, if az < 0 the only alteration of the results (4.8) and (4.9)

is the replacement of Iv by JV' If a2 < 4b, then for c2 > a2 > 0, formula

(4.8) 1is valid, but if a > ¢ we have
-1-v 2
L{(t+c) F[(t“+at+b)/(t+c)] U(t+c-0)} =

= 8 r e (g /a®w)? 1 (2acu®-s0)?) £(u; (1)) du, (4.10)
S

where Y = 2o0+a-2c.
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