Internat. J. Math. § Math. Sci. 91
Vo£ 2 (1979) 91-101

SIGN CHANGES IN LINEAR COMBINATIONS OF
DERIVATIVES AND CONVOLUTIONS OF POLYA FREQUENCY FUNCTIONS

STEVEN NAHMIAS

Department of Mathematics
University of Pittsburgh
Pittsburgh, Pennsylvania 15213 U.S.A.

FRANK PROSCHAN

Department of Statistics
Florida State University
Tallahassee, Florida 32306 U.S.A.

(Received September 5, 1978)

ABSTRACT. We obtain upper bounds on the number of sign changes of linear
combnations of derivatives and convolutions of F8lya frequency functions using

the variation diminishing properties of totally positive functions. These
constitute extensions of earlier results of Karlin and Proschan.

KEY WORDS AND PHRASES. Polya Frequency Functions, Sign Changes, Derivatives,
Convolutions, Tofal Positivity, Variation Diminishing Propenty, Linear Combinations,
Sign Regular Functions.

AMS (MOS) SUBJECT CLASSIFICATION (1970) CODES. 34-42.




92 S. NAHMIAS & F. PROSCHAN

1. INTRODUCTION AND SUMMARY. In Karlin and Proschan [1] and Proschan [2] results

are obtained concerning the number of sign changes of linear combinations of convolutions
of sign regular functions, while Karlin [3, 4, pp. 325-326] has obtained upper bounds

on the number of sign changes of linear combinations of first and second derivatives

of such functions. (For a function f defined on the real line we denote the number of
sign changes of f by S(f) = sup S[f(tl), f(tz), ey f(tm)], where the supremum is
extended over all sets t1 < tz < L. < tm on the real line, m is arbitrary but finite,
and S(xl, ceey xm) is the number of sign changes of the indicated sequence, zero terms
being discarded. For the definition of sign regularity, see Karlin [4, p. 12.] In

the present paper, sharper versions of these results are obtained in addition to con-
clusions regarding linear combinations of both derivatives and convolutions of P6lya

frequency functions.

1.1. DEFINITION. A function f defined on the real line is said to be a P6lya

frequency function order n (PFn) if Xp < e < X Yy < ... < Y imply

£lx; -y -ee £(xp - )
£(x -y -ee £05 - ¥

for k=1, 2, ..., n.

Note that PFn functions possess the sign regularity property.

2. LINEAR COMBINATIONS OF DERIVATIVES OF POLYA FREQUENCY FUNCTIONS. The following

result is well known (see Karlin, [4], p. 326); but is included since it is the basis
for deriving many of our results. A proof is included for completeness and to illustrate
our method of approach.

2.1. LEMMA. Assume that f is a PFn+ function for fixed n =1, 2, ... . Then the

1
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th . . . . .
n  derivative, f(n)(x), changes sign at most n times. When n sign changes do occur,

1+

they occur in the order + - + .

PROOF. Write

() 13
£V (0 = lim — Z(k)(l) Keex + ka)

llnl—L-llm z (k)( nt n-k f g (ko + w)f(x - u)du,

Ay A k=0
where
m for 0 <u < 1/m
gy(u) =
0 elsewhere
Thus

£ (x) = lin L+ 1in f [2 O D" g ko + uﬂf(x - wdu
AY0 AT moo

for fixed A > 0 and m sufficiently large, the bracketed sum will have sign pattern
+ - + ... * (the final sign being + or - as n is odd or even, respectively). No
additional sign changes are introduced as m -+ » and A + 0. By the variation diminishing
property (VDP) of the PFn+1 function f (see Karlin, [4], Chap. 6), the desired result
follows. ||

The following result may be established by essentially the same approach as that

above and by using the variation diminishing property of PF functions.

2.2. THEOREM. Assume that f is PF for fixed n =1, 2, ... . Then
g(x) = z b. f(J)(x) possesses at most n sign changes.
j= =0 J
It is interesting to note that Theorem 2.2 can also be obtained by applying known

results. From Theorem 2.1 on p. 50 of Karlin [4], we find that {f, f(ll, f(zx..., f(pl}

comprises a Weak Tchebychev (WT) system. That the generalized polynomial, g(x],
possesses no more than n changes of sign follows from Theorem4.1 onp, 22 of Karlin and

Studden [9].

However, the essential method of proof for Lemma 2.1 may be used to obtain addis
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tional results which are not a consequence of the theory of WT Systems. In particular
we have the following.
2.3. THEOREM. Suppose that PO’ Pl’ cees Pn are nonnegative integers, ags a5,

-+, a_ are non-zero real numbers, and to <t, <...<¢< tn are ordered real numbers.

1
Let f be PF , where
w+l
12':1 nil
w = P. + U(a,, a, ,, P.) and
5209 j=0 37 73+ ]
1if Pj is odd and S(aj, aj+1) = 0, or
U(aj, aj+1, Pj) = if Pj is even and S(aj, aj+1) =1
0 otherwise.
n (P.)
Then g(x) = Z ajf J (x - tj) possesses at most w sign changes.
j=0

PROOF. As in the proof of Lemma 2.1, we may write, after interchanging the

integral and the summation sign,
@ n p. | Pyp. Pk
g(x) = lim lim [ (a./a H| T (1D g (ka+u-t)] £f(x - udy,
k=0 X m ]

AY0 M -o j=0
where gm(-) has the same definition as in the proof of Lemma 2.1.
As u approaches tj - kA, the bracketed term will have sign pattern + - + ... %,
the final sign being + if Pj is even and - if Pj is odd. It follows that for u near

tj - kA, the term aj «[ ] will have sign pattern

+ -+ .., + if aj > 0 and Pj is even
+ -+ ... - if aj > 0 and Pj is odd
-+ - ... - if aj < 0 and Pj is even
-+ - ...+ if aj < 0 and Pj is odd.
Each term aj-[ ] will contribute up to Pj sign changes. In addition, there will

be one more sign change introduced between the final sign of the string of Pj plusses
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and minuses at tj+1 for 0 < j < n+l if and only if aj and aj+1 have opposite signs
for Pj even and like signs for Pj odd.

The number of sign changes is not increased as A + 0 and m - ». The result
follows by the VDP property of the PF 1 function f. ||

An interesting point to note here is that in general it is not possible to deter-

mine w from just the knowledge of S(ao, ey an). However if all Pj’ 0 <j<n, are
n
even numbers (zero included), then it is easy to see that w = z Pj + S(ao, ey an),
n j=0
while if the Pj are odd numbers, then w = Z Pj +n - S(ao, ey an).
j=0

3. LINEAR COMBINATIONS OF CONVOLUTIONS OF POLYA FREQUENCY FUNCTIONS.

*
Denote by £ (x) the n-fold convolution of a PF function f. We have the
following result:

3.1. THEOREM. Let f be a PFk
K n.*
g(x) = z aif 1 (x), where no<n, <o...<n, and the a, are real non-zero constants,
i=1

Then S(g) < S(a). Moreover, if S(g) = S(a), then the sign changes of (al, ey ak)

density with f(x) = 0 for x < 0. Let

and of g occur in the same order.
PROOF. The proof is by induction on k. Clearly the result holds for k = 1.

Suppose it holds for 1, 2, ..., k - 1. Then write

k n,* ® k (n;-n )* *
gx) = ] af 1 (x) = lim [lajg (w) + ] a £( 1 W11 (x - u)du,
i=1 m 0 i=2
where gm(u) is defined in the proof of Lemma 2.1.
k (n.-nl)*
By the inductive hypothesis S Z aif 1 (u)} j’S(az, cens ak). Since the
i=2

term algm(u) will introduce no additional sign changes in the bracketed term when
S(al, az) = 0 and m is sufficiently large, and introduces one additional sign
change in the bracketed term if S(al, aZ) = 1 for m sufficiently large, the result
now follows from the variation diminishing property possessed by f.

The proof that if g does possess the full n sign changes then they occur in
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the same order as in (al, ey an) is simple and so is omitted.
The following result may now be deduced from Theorem 3.1 and the variation

diminishing property of TPk functions.

in

*
and f(x) = 0 for x < 0. Then £ (x) is TP,

3.2. COROLLARY. Let f be PFk

n=1, 2, ... and x > 0.

Karlin and Proschan (1960, p. 724) and Proschan (1960, p. 14) obtain a slightly
more general version of Corollary 3.2 by using the original definition of totally
positive functions. Theorem 3.1 above can then be deduced from the fact that f(n)(x)
is TPk in n and x and the variation diminishing property of TP functions. We have
shown that the same results may be obtained far more simply by proving Theorem 3.1
directly and using the fact that the variation diminishing property characterizes
TPk functions.

When f(x) does not vanish on the negative half line, a proof similar to that of
Theorem 3.1 shows that g(x) possesses at most 2 S(a) changes of sign. This is a

sharper version of Theorem 8 on p. 730 of Karlin and Proschan [1] or Theorem 6.1 of

Proschan [2].

4. DERIVATIVES AND CONVOLUTIONS. 1In this section, we extend the results of

the previous sections to treat linear combinations of both derivatives and convolutions
of P6lya frequency functions.

Although {f, f(l), f(z), veey f(n)} constitutes a WT system, one can show that
{f, f(l), cees f(n), fz*, N fm*} will not constitute a WT system when n > 1 and

m >2. Hence the following is not a consequence of the theory of WT systems.

4.1. THEOREM. Let 1 SPy<Pp <... <P and 1< n <. <np be sequences
of nonnegative integers and 3, -ees @ and bO’ cees bk be sequences of non-zero

real numbers. Suppose that f is PFw+l and f(x) = 0 for x < 0, where w = Pk + S(a) +
m n. . k
Pk) and U is defined in Theorem 2.3. Then g(x) = Z aif o (x) + z
i=1 j=

U(bk, a, bjf (x)

changes sign at most w times.

0
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PROOF.
vo| K Ps L [P P.-%
g(x) = lim lim [ { J b.| ) —= RJ (-n? g, (2 + u)
AY0 tow —w|j=0 J| 2=0 A'j
m (ni-l)*
+ ) aif (Wt £f(x - u)du
i=1
o) Py mo (n-1)*
= lim lim [ { } W, (8)g, (28 + u) + ) a.f (u)pf(x - u)du,
AY0 too —w|2=0 i=1 *t
k Pj Pj Pj-l
where WQ(A) = j:E(g)(bj/A ) . (-1) and a(2) = i if Pi_1 <8< Pi for

0 <i<k (interpret P_, = -1).
For every fixed value of A > 0, the sequence WO(A), ey wP (A) has at
k

most P, changes of sign (excluding zeros) starting with sgn(bk). This sign

k
pattern will occur arbitrarily close to u = 0 by choosing A sufficiently small
m (n.-1)*
and will always dominate the sign of Z aif ' (u) at u = 0 by choosing t to
i=1
be sufficiently large.
m (ni—l)*
The term z aif (u) possesses at most S(a) sign changes as u traverses
i=1

R commencing with sgn(al). The final sign of the first group of terms will
differ from the first sign of the second group if Pk is even and S(al, bk) =1 or

if P, is odd and S(al, b,) = 0.

k k)

When f does not vanish on the negative half line, we have the following:

4.2. THEOREM. Assume f is PFw+ and f(x) # 0 for some x < 0. Suppose

1
that g(x) is as given in Theorem 4.1 and w = Pk + 2 S(a) + C» where ¢ = 1 if
Pk is odd and = 2 if Pk is even.

PROOF. As in the proof of Theorem 4.1, the derivative terms in the integrand
change sign at most Pk times in a neighborhood around 0. However, in this case the

convolution terms may change sign2 S(a) times. If P, is odd then one additional



98 S. NAHMIAS & F. PROSCHAN

m (n.-1)*
sign change is introduced independent of the sign pattern of Z aif . (u).
i=1
However if P, is even, two additional sign changes may be introduced if the

k

sign of the convolution terms at zero differs from sgn(bk). |
Using essentially the same technique we could determine the maximum number of

sign changes of an expression of the form

n (P.) m ki*
g) = Jaf Jx-t)+ JbfT (x-y)),
j=0 7 R 51
where ty < tl < ... < tn and Yy S Yy < oeen < Y The exact upper bound will

depend upon the relative magnitudes of the tj's and yi's and the sign patterns of

(ao, cees an) and (bl’ ceey bm).

*
Define h(x, n, p) = £ (x). Then we have the following result which is

&
axP
similar to Theorem 2.3.

4.3. THEOREM. Suppose that Pl’ e Pk are non-negative integers, a, ..., 8
are non-zero real numbers, and n, <ny < ...<mp is a sequence of increasing
positive integers. Let f be PFw+1 for

§ kil
w = P, + U(a., a.. ., P.),
j=1 J j=1 J ij*17 ]
where U(aj, aj+1, ai) is as defined in Theorem 2.3. Assume that f(x) = 0 for
k
X < 0. Then g(x) = X ajh(x, nj, pj) possesses at most w sign changes commencing
j=1

with sgn(al).

PROOF. The proof is by induction on k. For k = 1 the result follows from
Lemma 2.1 and the fact that the variation diminishing property is possessed by
the convolution of PF functionms.

Suppose now the result holds for 1, 2, ..., k - 1. Then
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P,
+o P1 i Pi Pl-l
g(x) = lim 1lim [ (a,/a %) = ] [7]GD g (id + u)

AY0 mrw - i=o\t n

k1 n_ *

+ Tajhlu, ny-n), P)r £ ! (x - wadu.

b
j=2 !

The term multiplied by a, will have P

1 sign changes starting with sgn(al) at
k
u=-PA, u=-(P, - 1)4, ..., u=0. The remaining terms will have ) P. +
k-1 1 ! j=2 )
z (a , a. aJ+1, P.) sign changes introduced if S(al, az) = 0 and P1 is odd or
f

(al, a ) = 1 and P1 is even.
4.4. THEOREM. Assume that the vectors P, a, and n are as given in Theorem

4.3 except that £(x) # 0 for some x < 0. Let f be PF_, for w= ] P+ ) <5
o J=1 j=
where c. is defined in Theorem 4.2 and ) ¢; = 0. Then
k j=1
gx) = J ajh(x, nss Pj) changes sign at most w times.
j=1

PROOF. The result evidently holds for k = 1.
Assume it holds for argument 1, 2, ..., k - 1. Then g(x) may be expressed

in the same manner as in the proof of Theorem 4.3 except that h(u, nj - ny, Pj)
does not vanish for u < 0. When P1 is odd, the first set of terms has sign pattern

+ - ... - for a; >0, and - + ... + for a, < 0 which occurs arbitrarily close to

u = 0. In either case the second group of terms introduce exactly one additional
k k-1

sign change. Since by induction the second term has -Ezpj + ZZCJ and P, + 1
additional changes are introduced, the result follows?- When %l is even the first
group of terms has sign pattern + - ... + or - + ... -. In either case the second
group of terms may introduce two additional sign changes if their sign at zero is -
or + respectively. ||

Note that when f(x) is a probability density that vanishes on the negative half

line, f(J)(x) will possess the full j changes of sign. (See Karlin, [4], p. 326.)
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Hence many of our results hold with equality, and thus we obtain the number of
roots of g(x).
In order to illustrate in a simple example how these results might be used. we
consider an approximate perishable inventory model developed by Nahmias [6] for
a product with a lifetime of m periods, he obtains
z
w(z) = (1 - a)cz + L(z) + (0 + ac)H(z) - a(0 + c) fH(z - t)f(d)dt
o
as the approximate expected cost of ordering to z in each period, where a = the

discount factor, c = ordering cost per unit, L(z) = expected holding and shortage

ot

*
cost when ordering to z, 6 = outdate cost, H(t) = f o (u)du, f(t) = one period
o

demand density. When all costs are linear, it follows that

Wi(z) = (h o+ 1)E(2) + €0 + ac)E™ (2) - a(o + )£ (g,

where h and r are the unit holding and shortage costs respectively. From

Theorem 3.1, we see that if f is PF,, then w'(z) changes sign no more than once

27
in the order + -. Along with the fact that w'(z) changes sign once from - to +
(as is demonstrated in Nahmias, [e¢], this guarantees that the z* minimizing w(z)
is the zero of w'(z) and that this zero can be found efficiently. As a further
description of the behavior of w, Theorem 4.3 shows that w''(z) changes sign at most

four times.
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