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1. Introduction. Let λ = (λn) be a nondecreasing sequence of positive numbers

tending to ∞, and λn+1 ≤ λn+1, λ1 = 1.

The generalized de la Vallée-Poussin mean is defined by

tn = 1
λn

∑
k∈In

xk, (1.1)

where In = [n−λn+1,n]. A sequence x = (xk) is said to be (V ,λ)-summable to a

number L (see [5]) if tn(x)→ L as n→∞. If λn =n, then (V ,λ)-summability is reduced

to (C,1)-summability. We write

[V ,λ]=
{
x = (xk) : for some L, lim

n

1
λn

∑
k∈In

∣∣xk−L∣∣= 0
}

(1.2)

for sets of sequences x = (xk) which are strongly (V ,λ)-summable to L, that is, xk→
L[V,λ].

We recall that a modulus f is a function from [0,∞) to [0,∞) such that

(i) f(x)= 0 if and only if x = 0;

(ii) f(x+y)≤ f(x)+f(y) for all x, y ≥ 0;

(iii) f is increasing;

(iv) f is continuous from the right at 0.

It follows that f must be continuous on [0,∞). A modulus may be bounded or

unbounded. Maddox [6] and Ruckle [9] used the modulus f to construct sequence

spaces. In this paper, we introduce the strongly (V ,λ)-convergent sequences and give

the relation between strongly (V ,λ)-convergence and strongly (V ,λ)-convergence with

respect to a modulus.

2. Some sequence spaces

Definition 2.1. Let f be a modulus. We define the spaces,

[V ,λ,f ]=
{
x = (xk) : lim

n

1
λn

∑
k∈ In

f
(∣∣xk−L∣∣)= 0, for some L

}
,

[V ,λ,f ]0 =
{
x = (xk) : lim

n

1
λn

∑
k∈In

f
(∣∣xk∣∣)= 0

}
.

(2.1)
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When λn = n then the sequence spaces defined above become w0(f ) and w(f),
respectively, where w0(f ) and w(f) are defined by Maddox [6].

Note that if we put f(x)= x, then we have [V ,λ,f ]= [V ,λ] and [V ,λ,f ]0 = [V ,λ]0,

where

[V ,λ]0 =
{
x = (xk) : lim

n

1
λn

∑
k∈In

∣∣xk∣∣= 0

}
. (2.2)

We have the following result.

Theorem 2.2. The spaces [V ,λ,f ] and [V ,λ,f ]0 are linear spaces.

Proof. We consider only [V ,λ,f ]. Suppose that xi → L and yj → L′ in [V ,λ,f ]
and that α, β are in C. Then there exists integers Tα and Mβ such that |α| ≤ Tα and

|β| ≤Mβ. We therefore have

1
λn

∑
k∈In

f
(∣∣αxk+βxk−(αL+βL′)∣∣)

≤ Tα 1
λn

∑
k∈In

f
(∣∣xk−L∣∣)+Mβ

1
λn

∑
k∈In

f
(∣∣xk−L′∣∣).

(2.3)

This implies that αx+βy →αL+βL′ in [V ,λ,f ]. This completes the proof.

Proposition 2.3 (see [7]). Let f be any modulus. Then limt→∞f(t)/t = β exists.

Proposition 2.4. Let f be a modulus and let 0 < δ < 1. Then for each x ≥ δ we

have f(x)≤ 2f(1)δ−1x.

This can be proved by using the techniques similar to those used in Maddox [6] and

hence we omit the proof.

Theorem 2.5. Let f be any modulus. If limt→∞f(t)/t=β>0, then [V ,λ,f ]=[V ,λ].
Proof. If x ∈ [V ,λ], then

sn = 1
λn

∑
k∈In

∣∣xk−L∣∣ �→ 0 as n �→∞, for some L. (2.4)

Let ε > 0 and choose δ with 0< δ < 1 such that f(t) < ε for every t with 0≤ t ≤ δ.

We can write

1
λn

∑
k∈In

f
(∣∣xk−L∣∣)= 1

λn

∑
k∈In,|xk−L|≤δ

f
(∣∣xk−L∣∣)+ 1

λn

∑
k∈In,|xk−L|>δ

f
(∣∣xk−L∣∣)

≤ 1
λn

(
λn ·ε

)+2f(1)δ−1sn,

(2.5)

by Proposition 2.4, as n→∞. Therefore x ∈ [V ,λ,f ]. It is trivial that [V ,λ,f ]⊂ [V ,λ]
and this completes the proof.
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3. λ-statistical convergence. In [3], Fast introduced the idea of statistical conver-

gence, which is closely related to the concept of natural density or asymptotic density

of subsets of the positive integers N. In recent years, statistical convergence has been

studied by several authors [1, 2, 4, 8, 10].

A sequence x = (xk) is said to be statistically convergent to the number L if for

every ε > 0,

lim
n

1
n
∣∣{k≤n :

∣∣xk−L∣∣≥ ε}∣∣= 0, (3.1)

where the vertical bars indicate the number of elements in the enclosed set. In this case

we write s− limx = L or xk→ L(s) and s denotes the set of all statistically convergent

sequences.

In this section, we introduce and study the concept of λ-statistical convergence and

find its relation with [V ,λ,f ] and sλ.

Definition 3.1. A sequence x = (xk) is said to be λ-statistically convergent or

sλ-convergent to L if for every ε > 0,

lim
n

1
λn

∣∣{k∈ In :
∣∣xk−L∣∣≥ ε}∣∣= 0. (3.2)

In this case, we write sλ − limx = L or xk → L(sλ) and sλ = {x : for some L, sλ −
limx = L}. Note that if λn =n, then sλ is same as s.

The following definition was introduced by Connor [2] as an extension of the original

definition of statistical convergence which appeared in [3].

Definition 3.2. LetA be a nonnegative regular summability method and let x be a

sequence. Then x is said to be A-statistically convergent to L if χS(x−Le:ε) is contained

in w0(A) for every ε > 0, where

w0(A)=
{
x : lim

n

∑
an,k

∣∣xk∣∣= 0
}
. (3.3)

In the above definition, if we define the matrix by

an,k =



1
λn
, if n∈ In,

0, if n �∈ In
(3.4)

we get λ-statistical convergence as a special case of A-statistical convergence.

Let ∇ denote the set of all nondecreasing sequences λ = (λn) of positive numbers

tending to ∞ such that λn+1 ≤ λn+1 and λ1 = 1.

We have the following result.

Theorem 3.3. Let λ∈∇ and f be any modulus. Then [V ,λ,f ]⊂ (sλ).
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Proof. Suppose that ε > 0 and x ∈ [V ,λ,f ]. Since,

1
λn

∑
k∈In

f
(∣∣xk−L∣∣)≥ 1

λn

∑
k∈In,|xk−L|≥ε

f
(∣∣xk−L∣∣)

≥ 1
λn
f(ε)·∣∣{k∈ In :

∣∣xk−L∣∣≥ ε}∣∣
(3.5)

from which it follows that x ∈ (sλ). This completes the proof.

Theorem 3.4. (sλ)= [V ,λ,f ] if and only if f is bounded.

Proof. Suppose that f is bounded and that x ∈ (sλ). Since f is bounded, there is

a constant M such that f(x)≤M for all x ≥ 0. Given ε > 0, we have

1
λn

∑
k∈In

f
(∣∣xk−L∣∣)≤ 1

λn

∑
k∈In,|xk−L|≥ε

f
(∣∣xk−L∣∣)+ 1

λn

∑
k∈In,|xk−L|<ε

f
(∣∣xk−L∣∣)

≤ M
λn

∣∣{k∈ In :
∣∣xk−L∣∣≥ ε}∣∣+f(ε).

(3.6)

Taking the limit as ε → 0, the result follows. Conversely, suppose that f is un-

bounded so that there is a positive sequence 0 < t1 < t2 < ··· < ti < ··· such that

f(ti) ≥ λi. Define the sequence x = (xi) by putting xki = ti for i = 1,2, . . . and xi = 0

otherwise. Then we have x ∈ (sλ), but x �∈ [V ,λ,f ].
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