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1. Introduction. Let A = (A,) be a nondecreasing sequence of positive numbers
tending to oo, and Ay < Ap+1, A; =1.
The generalized de la Vallée-Poussin mean is defined by

th = — Xk, (1.1)

where I,, = [n— A, + 1,n]. A sequence x = (xi) is said to be (V,A)-summable to a
number L (see [5])if t,,(x) — Lasn — c.If A, = n, then (V,A)-summability is reduced
to (C,1)-summability. We write

[V,A] = {x = (xy) : for some L, liyrlni z |xx—L| = 0} (1.2)
kely
for sets of sequences x = (xy) which are strongly (V,A)-summable to L, that is, x; —
L[V,A]L
We recall that a modulus f is a function from [0, o) to [0, o) such that
(i) f(x)=0if and only if x = 0;
(i) f(x+y)<f(x)+f(y)forall x,y > 0;

(iii) f is increasing;

(iv) f is continuous from the right at 0.

It follows that f must be continuous on [0,). A modulus may be bounded or
unbounded. Maddox [6] and Ruckle [9] used the modulus f to construct sequence
spaces. In this paper, we introduce the strongly (V,A)-convergent sequences and give
the relation between strongly (V,A)-convergence and strongly (V,A)-convergence with
respect to a modulus.

2. Some sequence spaces
DEFINITION 2.1. Let f be a modulus. We define the spaces,

[V,/\,f]:{x=(xk):liyrln1 > f(|xk-L|) =0, for some L¢,

An
ke In @2.1)

[V,A,flo = {x— (xx) :liyrln)\L > F(lxk]) —0}.

" kely
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When A, = n then the sequence spaces defined above become wq(f) and w(f),
respectively, where wy(f) and w(f) are defined by Maddox [6].

Note that if we put f(x) = x, then we have [V, A, f] = [V,A] and [V, A, f], = [V, A]o,
where

[V,)\]0={ = (xx): hmA— > xk| = } (2.2)

" kely

We have the following result.
THEOREM 2.2. The spaces [V, A, f] and [V, A, f1, are linear spaces.

PROOF. We consider only [V, A, f]. Suppose that x; — L and y; — L" in [V, A, f]
and that «, B are in C. Then there exists integers Ty and Mg such that || < Ty and
[B] < Mg. We therefore have

AL > f(|exr+Bxk— (oL +BL') )

N kely
(2.3)
<T¢xA > f(lxk—LJ) +Mﬁ)\ > fxk—L'|).
" kely " keln
This implies that cx +fy — «L+ BL’ in [V, A, f]. This completes the proof. O

PROPOSITION 2.3 (see [7]). Let f be any modulus. Then lim;_, f(t)/t = B exists.

PROPOSITION 2.4. Let f be a modulus and let 0 < 6 < 1. Then for each x > § we
have f(x) <2f(1)5 'x.

This can be proved by using the techniques similar to those used in Maddox [6] and
hence we omit the proof.

THEOREM 2.5. Let f be any modulus. If lim;_., f(t)/t=F>0, then[V,A, f1=[V,A].
PROOF. If x € [V,A], then

snz% > |xk—L| —0 asn— oo, for some L. (2.4)
" kel,

Let € > 0 and choose 6 with 0 < § < 1 such that f(t) < & for every t with 0 <t < 6.
We can write

1
*Zf (Ixk—L]) = A > fUx-LD+5- X fllx-L])
”ke] N kely,|x;—L|<8 N keln,|xg—L|>8
(2.5)
%(An ) +2f(1)6 Lsy,

by Proposition 2.4, as n — o. Therefore x € [V, A, f]. Itis trivial that [V, A, f] C [V,A]
and this completes the proof. O
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3. A-statistical convergence. In [3], Fast introduced the idea of statistical conver-
gence, which is closely related to the concept of natural density or asymptotic density
of subsets of the positive integers N. In recent years, statistical convergence has been
studied by several authors [1, 2, 4, 8, 10].

A sequence x = (xy) is said to be statistically convergent to the number L if for
every € > 0,

lim L | {k<n: |xx—L| = e}| =0, 3.1)
n n

where the vertical bars indicate the number of elements in the enclosed set. In this case
we write s —limx = L or x3 — L(s) and s denotes the set of all statistically convergent
sequences.

In this section, we introduce and study the concept of A-statistical convergence and
find its relation with [V, A, f] and s,.

DEFINITION 3.1. A sequence x = (xi) is said to be A-statistically convergent or
sa-convergent to L if for every € > 0,

lim-L | (ke lp: [xi—L| > e}| =0, (3.2)
n Ay

In this case, we write sy —limx = L or x; — L(s)) and sy = {x : for some L, sy —
limx = L}. Note that if A,, = n, then s, is same as s.

The following definition was introduced by Connor [2] as an extension of the original
definition of statistical convergence which appeared in [3].

DEFINITION 3.2. Let A be anonnegative regular summability method and let x be a
sequence. Then x is said to be A-statistically convergent to L if Xs(x—re:e) i$ contained
in wo(A) for every & > 0, where

wo(A) = {x:liyrlnzanﬂxk\ =of. (3.3)
In the above definition, if we define the matrix by

—, ifnel,,
Ak =1 An " (3.4)
0, ifné&l,

we get A-statistical convergence as a special case of A-statistical convergence.
Let V denote the set of all nondecreasing sequences A = (A,) of positive numbers
tending to oo such that A,11 <Ay +1and A; = 1.

We have the following result.

THEOREM 3.3. Let A € V and f be any modulus. Then [V, A, f]C (s)).
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PROOF. Suppose that € >0 and x € [V, A, f]. Since,

1

S fx-thzg S f(lxeL))
An keln M kely,|xp-Llz¢ 35)
1
Z]Tf(f)- [{kel,: |xx—L| =€}]
n
from which it follows that x € (s)). This completes the proof. O

THEOREM 3.4. (sp) =[V,A, f]if and only if f is bounded.

PROOF. Suppose that f is bounded and that x € (s,). Since f is bounded, there is
a constant M such that f(x) < M for all x > 0. Given ¢ > 0, we have

1
—Zf |xk—L[) 5/\— > (|Xk—L\)+/\— > f(lxx—LJ|)
’I’l > n _
keln kely,|xy—L|=¢ keln,|xg—L|<e (3.6)
M
A—erln |xx—L| = €}| +f(e).

Taking the limit as € — 0, the result follows. Conversely, suppose that f is un-
bounded so that there is a positive sequence 0 < t; <ty < --- < t; < --- such that
f(t;) = A;. Define the sequence x = (x;) by putting x, = ¢; for i =1,2,... and x; =0
otherwise. Then we have x € (s,), but x & [V, A, f1. |
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