

COEFFICIENT INEQUALITIES FOR CERTAIN ANALYTIC FUNCTIONS

JUNICHI NISHIWAKI and SHIGEYOSHI OWA

Received 1 March 2001

For real α ($\alpha > 1$), we introduce subclasses $M(\alpha)$ and $N(\alpha)$ of analytic functions $f(z)$ with $f(0) = 0$ and $f'(0) = 1$ in U . The object of the present paper is to consider the coefficient inequalities for functions $f(z)$ to be in the classes $M(\alpha)$ and $N(\alpha)$. Further, the bounds of α for functions $f(z)$ to be starlike in U are considered.

2000 Mathematics Subject Classification: 30C45.

1. Introduction. Let A denote the class of functions $f(z)$ of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n \quad (1.1)$$

which are analytic in the open unit disk $U = \{z \in \mathbb{C} : |z| < 1\}$. Let $M(\alpha)$ be the subclass of A consisting of functions $f(z)$ which satisfy

$$\operatorname{Re} \left\{ \frac{zf'(z)}{f(z)} \right\} < \alpha \quad (z \in U) \quad (1.2)$$

for some α ($\alpha > 1$). And let $N(\alpha)$ be the subclass of A consisting of functions $f(z)$ which satisfy

$$\operatorname{Re} \left\{ 1 + \frac{zf''(z)}{f'(z)} \right\} < \alpha \quad (z \in U) \quad (1.3)$$

for some α ($\alpha > 1$). Then, we see that $f(z) \in N(\alpha)$ if and only if $zf'(z) \in M(\alpha)$. We give examples of functions $f(z)$ in the classes $M(\alpha)$ and $N(\alpha)$.

REMARK 1.1. For $1 < \alpha \leq 4/3$, the classes $M(\alpha)$ and $N(\alpha)$ were introduced by Uralegaddi et al. [2].

EXAMPLE 1.2. (i) $f(z) = z(1-z)^{2(\alpha-1)} \in M(\alpha)$.

(ii) $g(z) = (1/(2\alpha-1))\{1-(1-z)^{2\alpha-1}\} \in N(\alpha)$.

PROOF. Since $f(z) \in M(\alpha)$ if and only if

$$\operatorname{Re} \left\{ \frac{zf'(z)}{f(z)} \right\} < \alpha, \quad (1.4)$$

we can write

$$\frac{\alpha - zf'(z)/f(z)}{\alpha - 1} = \frac{1+z}{1-z}, \quad (1.5)$$

which is equivalent to

$$\frac{f'(z)}{f(z)} - \frac{1}{z} = \frac{2(\alpha-1)}{1-z}. \quad (1.6)$$

Integrating both sides of the above equality, we have

$$f(z) = z(1-z)^{2(\alpha-1)} \in M(\alpha). \quad (1.7)$$

Next, since $g(z) \in N(\alpha)$ if and only if $zg'(z) \in M(\alpha)$,

$$zg'(z) = z(1-z)^{2(\alpha-1)}. \quad (1.8)$$

For function $g(z) \in N(\alpha)$, it follows that

$$g(z) = -\frac{1}{2\alpha-1}(1-z)^{2\alpha-1} + \frac{1}{2\alpha-1} = \frac{1}{2\alpha-1}\{1 - (1-z)^{2\alpha-1}\} \in N(\alpha). \quad (1.9)$$

□

2. Coefficient inequalities for the classes $M(\alpha)$ and $N(\alpha)$. We try to derive sufficient conditions for $f(z)$ which are given by using coefficient inequalities.

THEOREM 2.1. *If $f(z) \in A$ satisfies*

$$\sum_{n=2}^{\infty} \{(n-1) + |n-2\alpha+1|\} |a_n| \leq 2(\alpha-1) \quad (2.1)$$

for some α ($\alpha > 1$), then $f(z) \in M(\alpha)$.

PROOF. Suppose that

$$\sum_{n=2}^{\infty} \{(n-1) + |n-2\alpha+1|\} |a_n| \leq 2(\alpha-1) \quad (2.2)$$

for $f(z) \in A$.

It suffices to show that

$$\left| \frac{zf'(z)/f(z) - 1}{zf'(z)/f(z) - (2\alpha-1)} \right| < 1 \quad (z \in U). \quad (2.3)$$

We have

$$\begin{aligned} \left| \frac{zf'(z)/f(z) - 1}{zf'(z)/f(z) - (2\alpha-1)} \right| &\leq \frac{\sum_{n=2}^{\infty} (n-1) |a_n| |z|^{n-1}}{2(\alpha-1) - \sum_{n=2}^{\infty} |n-2\alpha+1| |a_n| |z|^{n-1}} \\ &< \frac{\sum_{n=2}^{\infty} (n-1) |a_n|}{2(\alpha-1) - \sum_{n=2}^{\infty} |n-2\alpha+1| |a_n|}. \end{aligned} \quad (2.4)$$

The last expression is bounded above by 1 if

$$\sum_{n=2}^{\infty} (n-1) |a_n| \leq 2(\alpha-1) - \sum_{n=2}^{\infty} |n-2\alpha+1| |a_n| \quad (2.5)$$

which is equivalent to condition (2.1). This completes the proof of the theorem. □

By using [Theorem 2.1](#), we have the following corollary.

COROLLARY 2.2. *If $f(z) \in A$ satisfies*

$$\sum_{n=2}^{\infty} n \{(n-1) + |n-2\alpha+1|\} |a_n| \leq 2(\alpha-1) \quad (2.6)$$

for some α ($\alpha > 1$), then $f(z) \in N(\alpha)$.

PROOF. From $f(z) \in N(\alpha)$ if and only if $zf'(z) \in M(\alpha)$, replacing a_n by na_n in [Theorem 2.1](#) we have the corollary. \square

In view of [Theorem 2.1](#) and [Corollary 2.2](#), if $1 < \alpha \leq 3/2$, then $n-2\alpha+1 \geq 0$ for all $n \geq 2$. Thus we have the following corollary.

COROLLARY 2.3. (i) *If $f(z) \in A$ satisfies*

$$\sum_{n=2}^{\infty} (n-\alpha) |a_n| \leq \alpha-1 \quad (2.7)$$

for some α ($1 < \alpha \leq 3/2$), then $f(z) \in M(\alpha)$.

(ii) *If $f(z) \in A$ satisfies*

$$\sum_{n=2}^{\infty} n(n-\alpha) |a_n| \leq \alpha-1 \quad (2.8)$$

for some α ($1 < \alpha \leq 3/2$), then $f(z) \in N(\alpha)$.

3. Starlikeness for functions in $M(\alpha)$ and $N(\alpha)$. By Silverman [1], we know that if $f(z) \in A$ satisfies

$$\sum_{n=2}^{\infty} n |a_n| \leq 1, \quad (3.1)$$

then $f(z) \in S^*$, where S^* denotes the subclass of A consisting of all univalent and starlike functions $f(z)$ in U . Thus we have the following theorem.

THEOREM 3.1. *If $f(z) \in A$ satisfies*

$$\sum_{n=2}^{\infty} (n-\alpha) |a_n| \leq \alpha-1 \quad (3.2)$$

for some α ($1 < \alpha \leq 4/3$), then $f(z) \in S^ \cap M(\alpha)$, therefore, $f(z)$ is starlike in U . Further, if $f(z) \in A$ satisfies*

$$\sum_{n=2}^{\infty} n(n-\alpha) |a_n| \leq \alpha-1 \quad (3.3)$$

for some α ($1 < \alpha \leq 3/2$), then $f(z) \in S^ \cap N(\alpha)$, therefore, $f(z)$ is starlike in U .*

PROOF. Consider α such that

$$\sum_{n=2}^{\infty} n|a_n| \leq \sum_{n=2}^{\infty} \frac{n-\alpha}{\alpha-1} |a_n| \leq 1. \quad (3.4)$$

Then we have $f(z) \in S^* \cap M(\alpha)$ by means of [Theorem 2.1](#). This inequality holds true if

$$n \leq \frac{n-\alpha}{\alpha-1} \quad (n = 2, 3, 4, \dots). \quad (3.5)$$

Therefore, we have

$$1 < \alpha \leq 2 - \frac{2}{n+1} \quad (n = 2, 3, 4, \dots), \quad (3.6)$$

which shows that $1 < \alpha \leq 4/3$. Next, considering α such that

$$\sum_{n=2}^{\infty} n|a_n| \leq \sum_{n=2}^{\infty} \frac{n(n-\alpha)}{\alpha-1} |a_n| \leq 1, \quad (3.7)$$

we have

$$n \leq \frac{n(n-\alpha)}{\alpha-1} \quad (n = 2, 3, 4, \dots), \quad (3.8)$$

which is equivalent to

$$1 < \alpha \leq \frac{n+1}{2} \quad (n = 2, 3, 4, \dots). \quad (3.9)$$

This implies that $1 < \alpha \leq 3/2$. \square

Finally, by virtue of the result for convex functions by Silverman [1], we have, if $f(z) \in A$ satisfies

$$\sum_{n=2}^{\infty} n^2 |a_n| \leq 1, \quad (3.10)$$

then $f(z) \in K$, where K denotes the subclass of A consisting of all univalent and convex functions $f(z)$ in U . Using the same method as in the proof of [Theorem 3.1](#), we derive the following theorem.

THEOREM 3.2. *If $f(z) \in A$ satisfies*

$$\sum_{n=2}^{\infty} n(n-\alpha) |a_n| \leq \alpha-1 \quad (3.11)$$

for some α ($1 < \alpha \leq 4/3$), then $f(z) \in K \cap N(\alpha)$, therefore, $f(z)$ is convex in U .

4. Bounds of α for starlikeness. Note that the sufficient condition for $f(z)$ to be in the class $M(\alpha)$ is given by

$$\sum_{n=2}^{\infty} \{(n-1) + |n-2\alpha+1|\} |a_n| \leq 2(\alpha-1). \quad (4.1)$$

Since, if $f(z) \in A$ satisfies

$$\sum_{n=2}^{\infty} n |a_n| \leq 1, \quad (4.2)$$

then $f(z) \in S^*$ (cf. [1]). It is interesting to find the bounds of α for starlikeness of $f(z) \in M(\alpha)$. To do this, we have to consider the following inequality:

$$\sum_{n=2}^{\infty} n |a_n| \leq \frac{1}{2(\alpha-1)} \sum_{n=2}^{\infty} \{(n-1) + |n-2\alpha+1|\} |a_n| \leq 1 \quad (4.3)$$

which is equivalent to

$$\sum_{n=2}^{\infty} \{|n-2\alpha+1| + (3-2\alpha)n\} |a_n| \geq 0. \quad (4.4)$$

We define

$$F(n) = |n-2\alpha+1| + (3-2\alpha)n \quad (n \geq 2). \quad (4.5)$$

Then, if $F(n)$ satisfies

$$\sum_{n=2}^{\infty} F(n) |a_n| \geq 0, \quad (4.6)$$

then $f(z)$ belongs to S^* .

THEOREM 4.1. *Let $f(z) \in A$ satisfy*

$$\sum_{n=2}^{\infty} \{(n-1) + |n-2\alpha+1|\} |a_n| \leq 2(\alpha-1) \quad (4.7)$$

for some $\alpha > 1$. Further, let δ_k be defined by

$$\delta_k = \sum_{n=k}^{\infty} F(n) |a_n|. \quad (4.8)$$

Then,

- (i) if $1 < \alpha \leq 3/2$, then $f(z) \in S^*$,
- (ii) if $3/2 \leq \alpha \leq \min(13/8, (3+\delta_3)/2)$, then $f(z) \in S^*$,
- (iii) if $8/3 \leq \alpha \leq \min(17/10, (12-\delta_4 + \sqrt{\delta_4^2 + 48\delta_4 + 48})/12)$, then $f(z) \in S^*$.

PROOF. For $1 < \alpha \leq 3/2$, we know that

$$n-2\alpha+1 \geq 3-2\alpha \geq 0 \quad (n \geq 2), \quad (4.9)$$

that is, $F(n) \geq 0$ ($n \geq 2$). Therefore, we have

$$\sum_{n=2}^{\infty} F(n) |a_n| \geq 0. \quad (4.10)$$

If $3/2 \leq \alpha \leq 13/8$, then $F(2) = 3-2\alpha \leq 0$ and

$$F(n) = 2n(2-\alpha) + 1 - 2\alpha \geq 13 - 8\alpha \geq 0 \quad (4.11)$$

for $n \geq 3$. Further, we know that

$$|a_n| \leq \frac{2(\alpha-1)}{(n-1) + |n-2\alpha+1|} \quad (n \geq 2), \quad (4.12)$$

then $|a_2| \leq 1$. Therefore, we obtain that

$$\sum_{n=2}^{\infty} F(n) |a_n| = F(2) |a_2| + \sum_{n=3}^{\infty} F(n) |a_n| \geq 3 - 2\alpha + \delta_3 \geq 0 \quad (4.13)$$

for

$$\frac{3}{2} \leq \alpha \leq \min\left(\frac{13}{8}, \frac{3+\delta_3}{2}\right). \quad (4.14)$$

Furthermore, if $13/8 \leq \alpha \leq 17/10$, then

$$\begin{aligned} F(2) &= 3 - 2\alpha \leq 0, \\ F(3) &= |4 - 2\alpha| + 3(3 - 2\alpha) = 13 - 8\alpha \leq 0, \\ F(n) &= |n - 2\alpha + 1| + (3 - 2\alpha)n = 4n + 1 - 2(n+1)\alpha \geq \frac{3(n-4)}{5} \geq 0 \end{aligned} \quad (4.15)$$

for $n \geq 4$. Noting that $|a_2| \leq 1$ and $|a_3| \leq (\alpha-1)/(3-\alpha)$, we conclude that

$$\begin{aligned} \sum_{n=2}^{\infty} F(n) |a_n| &= F(2) |a_2| + F(3) |a_3| + \sum_{n=4}^{\infty} F(n) |a_n| \\ &\geq (3 - 2\alpha) + (13 - 8\alpha) \frac{\alpha-1}{3-\alpha} + \delta_4 \geq 0, \end{aligned} \quad (4.16)$$

for α that satisfies

$$6\alpha^2 - (12 - \delta_4)\alpha + 4 - 3\delta_4 \leq 0. \quad (4.17)$$

This shows that

$$\frac{8}{3} \leq \alpha \leq \min\left(\frac{17}{10}, \frac{12 - \delta_4 + \sqrt{\delta_4^2 + 48\delta_4 + 48}}{12}\right). \quad (4.18)$$

This completes the proof of [Theorem 4.1](#). \square

Finally, by virtue of [Theorem 4.1](#), we may suppose that if $f(z) \in A$ satisfies

$$\sum_{n=2}^{\infty} \{(n-1) + |n-2\alpha+1|\} |a_n| \leq 2(\alpha-1) \quad (4.19)$$

for some $1 < \alpha < 2$, then $f(z) \in S^*$.

REFERENCES

- [1] H. Silverman, *Univalent functions with negative coefficients*, Proc. Amer. Math. Soc. **51** (1975), 109-116.
- [2] B. A. Uralegaddi, M. D. Ganigi, and S. M. Sarangi, *Univalent functions with positive coefficients*, Tamkang J. Math. **25** (1994), no. 3, 225-230.

Special Issue on Space Dynamics

Call for Papers

Space dynamics is a very general title that can accommodate a long list of activities. This kind of research started with the study of the motion of the stars and the planets back to the origin of astronomy, and nowadays it has a large list of topics. It is possible to make a division in two main categories: astronomy and astrodynamics. By astronomy, we can relate topics that deal with the motion of the planets, natural satellites, comets, and so forth. Many important topics of research nowadays are related to those subjects. By astrodynamics, we mean topics related to spaceflight dynamics.

It means topics where a satellite, a rocket, or any kind of man-made object is travelling in space governed by the gravitational forces of celestial bodies and/or forces generated by propulsion systems that are available in those objects. Many topics are related to orbit determination, propagation, and orbital maneuvers related to those spacecrafts. Several other topics that are related to this subject are numerical methods, nonlinear dynamics, chaos, and control.

The main objective of this Special Issue is to publish topics that are under study in one of those lines. The idea is to get the most recent researches and published them in a very short time, so we can give a step in order to help scientists and engineers that work in this field to be aware of actual research. All the published papers have to be peer reviewed, but in a fast and accurate way so that the topics are not outdated by the large speed that the information flows nowadays.

Before submission authors should carefully read over the journal's Author Guidelines, which are located at <http://www.hindawi.com/journals/mpe/guidelines.html>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/> according to the following timetable:

Manuscript Due	July 1, 2009
First Round of Reviews	October 1, 2009
Publication Date	January 1, 2010

Lead Guest Editor

Antonio F. Bertachini A. Prado, Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, 12227-010 São Paulo, Brazil; prado@dem.inpe.br

Guest Editors

Maria Cecilia Zanardi, São Paulo State University (UNESP), Guaratinguetá, 12516-410 São Paulo, Brazil; cecilia@feg.unesp.br

Tadashi Yokoyama, Universidade Estadual Paulista (UNESP), Rio Claro, 13506-900 São Paulo, Brazil; tadashi@rc.unesp.br

Silvia Maria Giuliatti Winter, São Paulo State University (UNESP), Guaratinguetá, 12516-410 São Paulo, Brazil; silvia@feg.unesp.br