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1. Introduction. The theory of neutral delay differential equations presents com-

plications and the results which are true for neutral differential equations may not be

true for nonneutral differential equations. Besides its theoretical interest, the study

of oscillatory behaviour of solutions of neutral delay differential equations has some

importance in applications. Neutral delay differential equations appear in networks

containing lossless transmission lines (as in high-speed computers where the lossless

transmission lines are used to interconnect switching circuits), in the study of vibrat-

ing masses attached to an elastic bar and also in population dynamics (see Gopalsamy

[5], Györi and Ladas [7], Driver [4], Hale [8], Brayton and Willoughby [3], Agwo [1], and

the references therein).

In fact, Zahariev and Băınov [11] seems to be the first paper dealing with oscilla-

tion of neutral equations. A systematic development of oscillation theory of neutral

equations was initiated by Ladas and Sficas [10].

Ladas and Schultz [9] obtained a necessary and sufficient condition for oscillation

of all solutions of the neutral delay differential equation

ẋ(t)+cẋ(t−τ)+qx(t−σ)= 0, (1.1)

where c, q, τ , and σ are real numbers. It was proved that all solutions of (1.1) are

oscillatory if and only if the characteristic equation

F(λ)≡ λ+cλe−λτ+qe−λσ = 0 (1.2)

has no real roots.

Also, it was proved for the scalar first-order neutral delay differential equation

ẋ(t)+cẋ(t−τ)+
n∑
i=1

pix
(
t−σi

)= 0, (1.3)

where c ∈R, τ,σi ≥ 0, and pi > 0 for all i= 1,2, . . . ,n, that all solutions are oscillatory
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if and only if the characteristic equation

F(λ)≡ λ+cλe−λτ+
n∑
i=1

pie−λσi = 0 (1.4)

has no real roots. This result was generalized by Arino and Györi in [2] for pi ∈R.

In [6], Gopalsamy and Zhang proved that, if

(1) 0< c < 1,

(2) τ ≥ 0, σ > 0, p ≥ 0,

(3) peσ > 1−c(1+τp/(1−c)),
then every solution of

ẋ(t)−cẋ(t−τ)+px(t−σ)= 0 (1.5)

is oscillatory.

In this paper, we extend the last result for a scalar first-order neutral delay differ-

ential equation in the form

ẋ(t)−cẋ(t−τ)+
n∑
i=1

pix
(
t−σi

)= 0 (1.6)

for all 0< c < 1, τ,σi ≥ 0, and pi ∈R, i= 1,2, . . . ,n.

Let γ = max{t,σ1,σ2, . . . ,σn} and let t1 ≥ t0. By a solution of (1.6) on [t1,∞) we

mean a function x(t) ∈ C([t1−γ,t1],R) such that x(t)− cx(t−τ) is continuously

differentiable and (1.6) is satisfied for t ≥ t1.

As it is customary, a solution is called oscillatory if it has arbitrarily large zeros and

otherwise, it is called nonoscillatory.

2. The main result. Consider (1.6) and assume that pki ≥ 0 for all i= 1,2, . . . ,� and

pmj < 0 for all j = 1,2, . . . ,r with �+r = n. Let qmj = −pmj , j = 1,2, . . . ,r , then (1.6)

takes the form

ẋ(t)−cẋ(t−τ)+
�∑
i=1

pkix
(
t−τki

)− r∑
j=1

qmjx
(
t−σmj

)= 0 (2.1)

or simply

ẋ(t)−cẋ(t−τ)+
�∑
i=1

pix
(
t−τi

)− r∑
j=1

qjx
(
t−σj

)= 0, (2.2)

where 0 < c < 1, τ,σi,pi ≥ 0, and τi,qj > 0 for all i = 1,2, . . . ,� and all j = 1,2, . . . ,r
with �+r =n.

Theorem 2.1. Consider the neutral delay differential equation (2.2). If

(i) �pi >
∑r
j=1qj for all i= 1,2, . . . ,�,

(ii)
∑�
i=1(1−c−

∑r
j=1qj(τi−σj))≥ 0,

(iii) (e+cτ/(1−c))∑�
i=1(�pi−

∑r
j=1qj)τi >

∑�
i=1((1−c)−

∑r
j=1qj(τi−σj)),

then all solutions of (2.2) are oscillatory.
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Proof. The characteristic equation of the neutral delay differential equation (2.2) is

F(λ)≡ λ−cλe−λτ+
�∑
i=1

pie−λτi−
r∑
j=1

qje−λσj = 0. (2.3)

Assume that (2.2) has a nonoscillatory solution, then the characteristic equation (2.3)

has a real root λ0, that is,

F
(
λ0
)≡ λ0−cλ0e−λ0τ+

�∑
i=1

pie−λ0τi−
r∑
i=1

qje−λ0σj = 0. (2.4)

But for all λ∈R, one can write

λ


1−ce−λτ−

r∑
j=1

qje−λσj
∫ τi−σj

0
e−λs ds




= λ−λce−λτ+
r∑
j=1

qj
(
e−λ(τi−σj)−1

)
e−λσj

= λ−λce−λτ−
r∑
j=1

qje−λσj +e−λτi
r∑
j=1

qj

(2.5)

for all i= 1,2, . . . ,� and then

�∑
i=1

λ


1−ce−λτ−

r∑
j=1

qje−λσj
∫ τi−σj

0
e−λs ds




= �

λ−λce−λτ− r∑

j=1

qje−λσj

+


 �∑
i=1

e−λτi




 r∑
j=1

qj


.

(2.6)

From (2.3) and (2.6), one can write

F(λ)= 1
�

�∑
i=1

λ


1−ce−λτ−

r∑
j=1

qje−λσj
∫ τi−σj

0
e−λs ds


+ �∑

i=1


pi−

r∑
j=1

qj


e−λτi (2.7)

for all λ≥ 0, we have

F(λ) >
1
�




�∑
i=1

λ


1−c−

r∑
j=1

qj
(
τi−σj

)+ �∑
i=1


�pi−

r∑
j=1

qj


e−λτi


. (2.8)

Since �pi >
∑r
j=1qj for all i= 1,2, . . . ,� and

∑�
i=1(1−c−

∑r
j=1qj(τi−σj))≥ 0, it follows

that F(λ) > 0 and consequently F(λ) has no positive or zero real roots.

From (2.7), we have

�F(λ)=λ



�∑
i=1


1−ce−λτ−

r∑
j=1

qje−λσj
∫ τi−σj

0
e−λs ds


+1

λ

�∑
i=1


�pi−

r∑
j=1

qj


e−λτi


. (2.9)
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In order that F(λ) has no roots for all λ < 0, we prove that F(λ) > 0 for all λ < 0 and

consequently it is enough to prove that

�∑
i=1


1−ce−λτ−

r∑
j=1

qje−λσj
∫ τi−σj

0
e−λs ds


<−1

λ

�∑
i=1


�pi−

r∑
j=1

qj


e−λτi . (2.10)

Assume that −λ= µ and put

f1(µ)=
�∑
i=1


1−ceµτ−

r∑
j=1

qjeµσj
∫ τi−σj

0
eµs ds


,

f2(µ)=
�∑
i=1


�pi−

r∑
j=1

qj


eµτi
µ
.

(2.11)

Since �pi >
∑r
j=1qj for all i = 1,2, . . . ,�, then f2(µ) > e

∑�
i=1(�pi −

∑r
j=1qj)τi. We

construct a function f in between f1 and f2 such that f2 − f > 0 and f − f1 > 0.

Assume that f(µ)= �(1−c−cµτ)−∑�
i=1

∑r
j=1qj(τi−σj).

Then,

f −f1 = �(1−c−cµτ)−
�∑
i=1

r∑
j=1

qj
(
τi−σj

)− �∑
i=1


1−ceµτ−

r∑
j=1

qjeµσj
∫ τi−σj

0
eµs ds




=
�∑
i=1


1−ceµτ−

r∑
j=1

qjeµσj
∫ τi−σj

0
eµs ds




=
�∑
i=1


c(eµτ−1−µτ)+ r∑

j=1

qj

[
eµσj

∫ τi−σj
0

eµs ds−(τi−σj)
]
> 0, ∀µ > 0,

f2−f =
�∑
i=1

gi(µ),

(2.12)

where

gi(µ)=

�pi−

r∑
j=1

qj


e

µτi

µ
−(1−c−cµτ)+

r∑
j=1

qj
(
τi−σj

)
, i= 1,2, . . . ,�. (2.13)

Since eµτi/µ has a minimum value at µ = 1/τi, then eµτi ≥ eτi, for all µ > 0, i =
1,2, . . . ,�. Hence,

gi(µ)|µ=1/ατi =

�pi−

r∑
j=1

qj


ατiei/α−

(
1−c−c τ

ατi

)
+

r∑
j=1

qj
(
τi−σj

)
, i= 1,2, . . . ,�

>


�pi−

r∑
j=1

qj


ατi−(1−c), α≥ 1.

(2.14)



ON THE OSCILLATION OF FIRST-ORDER NEUTRAL DELAY . . . 249

For

α>
1−c(

�pi−
∑r
j=1qj

)
τi
, i= 1,2, . . . ,�, (2.15)

we have, gi(µ) > 0 for µ ∈ (0,1/ατi). It follows that gi(µ) > 0, for all µ ∈ (0,(�pi−∑r
j=1qj)τi/(1−c)). We now consider µ ≥ (�pi−

∑r
j=1qj)τi/(1−c) and note that

[
f2−f

]
µ ≥

�∑
i=1


�pi−

r∑
j=1

qj


(e+ cτ

1−c
)
τi−

�∑
i=1


(1−c)− r∑

j=1

qj
(
τi−σj

)> 0, (2.16)

since,

(
e+ cτ

1−c
) �∑
i=1


�pi−

r∑
j=1

qj


τi >

�∑
i=1


(1−c)− r∑

j=1

qj
(
τi−σj

). (2.17)

Example 2.2. Consider the neutral delay differential equation in the form

d
dt
(
x(t)−cx(t−2π)

)+x(t−4π)−x(t−2π)+(1−c)x
(
t− 3π

2

)
= 0. (2.18)

This equation has an oscillatory solution x(t)= sint but not all solutions are oscilla-

tory since the sufficient conditions—in Theorem 2.1—are not satisfied. In fact, it has

a nonoscillatory solution x(t)= e−λt , 0.0608314< λ< 0.0608315.
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