IJMMS 29:11 (2002) 651-664
PII. S0161171202012267
http://ijmms.hindawi.com
© Hindawi Publishing Corp.

FAMILIES OF (1,2)-SYMPLECTIC METRICS
ON FULL FLAG MANIFOLDS

MARLIO PAREDES

Received 3 March 2001 and in revised form 9 July 2001

We obtain new families of (1,2)-symplectic invariant metrics on the full complex flag man-
ifolds F(n). For n > 5, we characterize n — 3 different n-dimensional families of (1,2)-
symplectic invariant metrics on F(n). Each of these families corresponds to a different
class of nonintegrable invariant almost complex structures on F(n).
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1. Introduction. Mo and Negreiros [13], by using moving frames and tournaments,
showed explicitly the existence of an n-dimensional family of invariant (1,2)-
symplectic metrics on F(n) = U(n)/(U(1) X ---xU(1)). This family corresponds to
the family of the parabolic almost complex structures on F (). In this paper, we study
the existence of other families of invariant (1,2)-symplectic metrics corresponding to
classes of nonintegrable invariant almost complex structures on F (n), different to the
parabolic one.

Eells and Sampson [10] proved that if ¢p: M — N is a holomorphic map between
Kéhler manifolds then ¢ is harmonic. This result was generalized by Lichnerowicz
(see [12] or [20]) as follows: let (M,g,J1) and (N,h,J>) be almost Hermitian man-
ifolds with M cosymplectic and N (1,2)-symplectic, then any =*-holomorphic map
¢: M,g,]1) — (N,h,J>) is harmonic.

If we want to obtain harmonic maps, ¢: M2 — F(n), from a closed Riemann sur-
face M? to a full flag manifold F(n) by the Lichnerowicz theorem, we must study
(1,2)-symplectic metrics on F(n) because a Riemann surface is a Kdhler manifold
and we know that a Kdahler manifold is a cosymplectic manifold (see [11] or [20]).

To study the invariant Hermitian geometry of F(n) it is natural to begin by studying
its invariant almost complex structures. Borel and Hirzebruch [5] proved that there
are 2(2) U (n)-invariant almost complex structures on F (7). This number is the same
number of tournaments with n players or nodes. A tournament is a digraph in which
any two nodes are joined by exactly one oriented edge (see [6] or [15]). There is a
natural identification between almost complex structures on F(n) and tournaments
with n players (see [6] or [14]).

Tournaments can be classified in isomorphism classes. In this classification, one of
these classes corresponds to the integrable structures and the other ones correspond
to nonintegrable structures. Burstall and Salamon [6] proved that an almost complex
structure J on F(n) is integrable if and only if the tournament associated to J is
isomorphic to the canonical tournament (the canonical tournament with n players,
{1,2,...,n}, is defined by i — j if and only if i < j).
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Borel proved the existence of an (n — 1)-dimensional family of invariant Kédhler
metrics on F(n) for each invariant complex structure on F (n) (see [2] or [4]). Eells and
Salamon [8] proved that any parabolic structure on F(n) admits a (1,2)-symplectic
metric. Mo and Negreiros [13] showed explicitly that there is an n-dimensional family
of invariant (1,2)-symplectic metrics for each parabolic structure on F(n).

In this paper, we characterize new n-parametric families of (1,2)-symplectic invari-
ant metrics on F(n), different to the Kadhler and parabolic ones. More precisely, we
obtain explicitly n — 3 different n-dimensional families of (1,2)-symplectic invariant
metrics, for each n > 5. Each of them corresponds to a different class of nonintegrable
invariant almost complex structure on F(n). These metrics are used to produce new
examples of harmonic maps ¢: M2 — F(n), using the previous result by Lichnerowicz.

2. Preliminaries. A full flag manifold is defined by
F(n) = {(L1,...,Ly) : L is a subspace of C",dim¢L; = 1,L; LL;}. (2.1)

The unitary group U(n) acts transitively on F(n). Using this action we obtain an
algebraic description for F(n)

_ Un)

F(n) T

(2.2)
where T =U (1) x---xU(1) is a maximal torus in U(n).
| S

n times
Let p be the tangent space to F(n) at the point (T). An invariant almost com-

plex structure on F(n) is an ad(u(1) @ - - - ®u(1))-invariant linear map J: p — p» such
that J? = —I.

A tournament (n-tournament) 9, consists of a finite set T = {p1,p2,...,pn} of n
players, together with a dominance relation, —, that assigns to every pair of players
a winner, that is, p; — pj or p; — p;. If p; — p;, then we say that p; beats p;. A
tournament J may be represented by a directed graph in which T is the set of vertices
and any two vertices are joined by an oriented edge.

Let 9 be a tournament with n players {1,...,n} and 9, another tournament with m
players {1,...,m}. A homomorphism between 9, and J; is amapping ¢ : {1,...,n} —
{1,...,m} such that

st = ls) =2 p(t)  or  Ps) = p(t). (2.3)

When ¢ is bijective we said that 9; and 7, are isomorphic.

An n-tournament determines a score vector (si,...,Sy), such that >, s; = (?)
whose components equal the number of games won by each player. Isomorphic tour-
naments have identical score vectors. Figure 2.1 shows the isomorphism classes of
n-tournaments for n = 2, 3,4, together with their score vectors. This figure was taken
from Moon’s book [15]. In Moon’s notation not all of the arcs are included in the draw-
ings. If an arc joining two nodes has not been drawn, then it is to be understood that
the arc is oriented from the higher node to the lower node.
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FIGURE 2.1 Isomorphism classes of n-tournaments for n = 2, 3,4.

The canonical n-tournament 7, is defined by setting i — j if and only if i < j. Up
to isomorphism, 7, is the unique n-tournament satisfying the following equivalent
conditions:

e the dominance relation is transitive, that is, if i — j and j — k then i — k,
e there are no 3-cycles, that is, closed paths i; — i — i3 — i1, see [15],
e the score vectoris (0,1,2,...,n—1).

For each invariant almost complex structure J on F(n), we can associate an n-

tournament J (J) in the following way: if J(a;;) = (agj), then I (J) is such that for i < j

(i—je=aj=V-laij) or (i—j=aj=--lay) (2.4)

(see [14]).

An almost complex structure J on F(n) is said to be integrable if F(n) is a com-
plex manifold, that is, F(n) admits complex coordinate systems with holomorphic
coordinate changes. Burstall and Salamon [6] proved the following result.

THEOREM 2.1. An almost complex structure J on F(n) is integrable if and only
if 7 (J) is isomorphic to the canonical tournament 7 ,,.

Thus, if J(J) contains a 3-cycle then J is not integrable. Classes (2) and (4) in
Figure 2.1 correspond to the integrable almost complex structures on F(3) and F(4),
respectively.

An invariant almost complex structure J on F(n) is called parabolic if there is
a permutation T of n elements such that the associated tournament J (J) is given,
for i < j, by

(T(j) — 1), if j—1iis even) or (t(i) — T(j), if j—1iis odd). (2.5)

Classes (3) and (7) in Figure 2.1 represent the parabolic structures on F(3) and F(4),
respectively.

An n-tournament J, for n > 3, is called irreducible or Hamiltonian if it contains an
n-cycle, that is, a path m(n) - (1) - w(2) - --- - w(n—-1) — w(n), where 1T is a
permutation of n elements.

An n-tournament 7 is transitive if, given three nodes i, j, k of 7, then i — j and
j — k = i — k. The canonical tournament is the only transitive tournament up to
isomorphisms.
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We consider C" equipped with the standard Hermitian inner product, that is, for
V = (vy,...,vn) and W = (wyq,...,wy) in C*, we have (V,W) = 2’;1 viw;. We use the
convention v; = v and fj; = fi;.

A frame consists of an ordered set of n vectors (Zi,...,Zy,), such that Z; A --- A
Zn # 0, and it is called unitary if (Z;,Z;) = 61.‘;. The set of unitary frames can be
identified with the unitary group U (n).

If we write dZ; = > w; 7Zj, the coefficients w; ;7 are the Maurer-Cartan forms of the
unitary group U(n). They are skew-Hermitian, that is, w;;+ wj; = 0. For more details
see [7].

We may define all left-invariant metrics on (F(n),J) by (see [3] or [17])

dsi = > Aijw;; @ wjj, (2.6)
i,j

where A = (A;;) is a symmetric real matrix such that
Aij >0, ifi=+j, Aij=0, ifi=j (2.7)
and the Maurer-Cartan forms w;; are such that

w;; € CM((1,0) type forms) < i 2D (2.8)

The metrics (2.6) are called of Borel type and they are almost Hermitian for every
invariant almost complex structure J, that is, dsi JX,JY) = ds/z\(X ,Y) for all tangent
vectors X, Y. When J is integrable, dsi is said to be Hermitian.

Let J be an invariant almost complex structure on F(n), 9 (J) the associated tour-
nament, and ds/Z\ an invariant metric. The Kahler form with respect to J and dsi is
defined by

Q(X,Y) =ds3(X,JY), (2.9)

for any tangent vectors X, Y. For each permutation T of n elements, the Kdhler form
can be written in the following way (see [13]):

Q=-2v-1 Zum)ru)wﬂi)ﬂ A WOx (i) (2.10)
i<j
where
1 ifi—j,
Hri)yt(j) = Ev@iT() At (i) () g&j=1-1 if j—1, (2.11)
0 ifi=j.

Let J be an invariant almost complex structure on F(n). Then F(n) is said to be
almost Kahler if and only if Q is closed, that is, dQ = 0. If J is integrable and Q is
closed, then F(n) is said to be a Kdahler manifold.

Mo and Negreiros proved in [13] that

AQ=4 > Criy(rioYemr(iirm, (2.12)

i<j<k
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where
Cijk = Hij—Hik +Hjk,  Fijr =Im(w;; Az Awji). (2.13)

We denote by CP+4 the space of complex forms with degree (p,q) on F(n). Then,
for any i, j, k, we have either ¥;jx € C% & C30 or ¥;x € C'? & C>'. An invariant
almost Hermitian metric ds,z\ is said to be (1,2)-symplectic if and only if (dQ)"2 = 0.
If d*Q = 0 then the metric is said to be cosymplectic.

The following result due to Mo and Negreiros [13] is very useful to study (1,2)-
symplectic metrics on F(n).

THEOREM 2.2. If J is a U(n)-invariant almost complex structure on F(n), n = 4,
such that 9 (J) contains one of the 4-tournaments (5) or (6) in Figure 2.1; then J does
not admit any invariant (1,2)-symplectic metric.

3. Main theorem. Itis known thaton F(3) there are a 2-parametric family of Kdhler
metrics and a 3-parametric family of (1,2)-symplectic metrics corresponding to the
nonintegrable almost complex structures class (the parabolic class). Then, each invari-
ant almost complex structure on F(3) admits a (1,2)-symplectic metric (see [4, 8]).
Barros and Urbano in [1] considered a family of almost Hermitian structures on F(3).

On F(4), there are four isomorphism classes of 4-tournaments or equivalently al-
most complex structures. Theorem 2.2 shows that two of them do not admit any
(1,2)-symplectic metric. The other two classes correspond to the Kdhler and parabolic
cases. F(4) has a 3-parametric family of Kdhler metrics and a 4-parametric family of
(1,2)-symplectic metrics which are not Kahler (see [13]).

On F(5), F(6), and F(7) we have the following families of (1,2)-symplectic invariant
metrics, different to the Kdhler and parabolic ones: on F(5), two 5-parametric families;
on F(6), four 6-parametric families, two of them generalizing the two families on F(5)
and, on F(7) there are eight 7-parametric families, four of them generalizing the four
ones on F(6) (see [19] or [18]).

In this paper we prove the following result.

THEOREM 3.1. Let J be an invariant almost complex structure on F (n) such that the
associated tournament I (J) is one of the tournaments in Figure 3.1. An invariant met-
ric dsik is (1,2)-symplectic with respect to J if and only if the matrix A¥ = (Aij) satisfies

Aij = Agis1) FAGr D 2) s FAGo, (3.1)

fori=1,....n—1and j=2,...,n, except for An,A2y,...,Axn, Which satisfy the follow-
ing relations:

Aop = A2+ Ay,

Azp = A2 +A23 + Ay,
(3.2)

Agn = A2 +A23+ - -+ A1)k + Ap.
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FIGURE 3.1 Tournaments in Theorem 3.1.

This theorem provides an n-family of (1,2)-symplectic metrics on F(n), for each
1 < k <n—3. These families are different to the family described by Mo and Negreiros
in [13] and correspond to nonintegrable almost complex structures. All of the studied
families are n-parametric.

None of these families contains the normal metric. This fact is in accordance with
the result in [21] proved by Wolf and Gray, that the normal metric on F(n) is (1,2)-
symplectic if and only if n < 3.

The score vector of these families can be written as

(1,2,....kk,.... n—-k-1,n-k-1,....n-3,n-2), (3.3)

for n > 2k +1.
In order to prove this theorem we prove, in the following section, some preliminary
results.

4. The families for k =1,2,3,4

PROPOSITION 4.1. Let J be an invariant almost complex structure on F(n), n > 4,
such that the associated tournament J(J) is the last tournament in Figure 4.1. An
invariant metric ds,z\ is (1,2)-symplectic with respect to J if and only if the matrix
A = (Aqj) satisfies

Aik = Ajgirn) F A Gr2) T FAR-DE (4.1)

fori=1,....n—1andk =2,...,n, except for A,.
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FIGURE 4.1 Tournaments of the family for k = 1.

PROOF. The proof will follow using induction over n. First, we prove the result
for n = 4. In this case, the tournament 7 (J) is isomorphic to the first tournament in
Figure 4.1. From (2.12) we obtain

dQ = Ci23¥123 + C124¥124 + C134 V134 + C232 V234
= (A12—=A13+A23) ¥123 + (A2 + A1a +A24) Vi24 4.2)
+ (A13 +A1a +A34) Vi34 + (A23 = A2q +A34) Y234
and dQ? = (A2 —A13+A23)¥i23 + (A23 — Azg +A34) ¥a34. Then ds? is (1,2)-symplectic
if and only if
Az =A13+A23 =0 = A13 = A12+Az3,

4.3)
A23—A24 +A34 =0 = Apg = Aoz + Asg.

Suppose that the result is true to n — 1. For n we must consider two cases:
(@)i< J < k, i+ 1, or k + n. Then Eij = &ik = Ejk = 1, and Cijk = Aij */\ik+/\jk + 0.
(b)l1<j<n.Thenej=¢jn=1,&pn=-1,and Cijn = A1j+Ain +Aju = 0.

(@) = (dQ)>' +(d)"? = > CiuVWijk, i+1, k+n.
i<j<k
n-1 (4.4)

(b) = (dQ)*°+(dQ)*3 = > C1jn¥ijn # 0.
j=2

Then ds,% is (1,2)-symplectic if and only if A = (A;j) satisfies the linear system

A2 —=A13+A23 =0,
A2 —=Aa+224 =0,

A12 = A1n-1) +A2(n-1) = 0,
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A13—A1a+A34 =0,

A13=A1n-1) +A3(n-1) =0,
Ala—As+A45 =0,

Ain-2) =At(n-1) *Am-2)(n-1) = 0,
A2z —Az4 +A34 =0,

A2z — Aoy + A3, =0,

An-3)(n-2) —Am-3)n +Am-2)yn = 0,
Am-2)n-1) —Am-2)n +Am-1)n = 0.
4.5)

This system contains all of the equations corresponding to the system for n — 1.
Then all the elements of A for n—1 are equal to the matrix for n, except Aj-1). Using
the system above we see how to write Aj(;-1),A2n, A3, -y Am—2)n:

A2 A1+ A2y = 0= A1(n-1) = Az + A2y
= Ay = A2 +A23+ -+ A2y (n-1)s
An-2)n-1) = Am-2n +Am-1mn = 0= Am-2)n = Am-2)(n-1) + An-1)n,

Am-3)n-2) ~An-3m +Am-2yn = 0= An-3n = Am-3)n-2) *An-2)n

(4.6)
= An-3m=An-3)n-2) FAn-2)(n-1) +FAn-1)n,
A2z —A2n +A3p = 0= A2 = Aoz + A3y
:>A2n=A23+2\34+---+A(n_1)n. |

In order to use induction to prove Theorem 3.1 we denote the symmetric matrix A
for this family by A'. Then,

0 Az A+ -0 Aptcc+HAn-2m-1) Aln
Az 0 A23 s Azt FAme2y - Aozt H Am-n
Al =
An-2)(n-1) An-2)n-1) +Am-1)n
0 2\(n—l)n
A(n—l)n 0

(4.7)



FAMILIES OF (1,2)-SYMPLECTIC METRICS ON FULL FLAG MANIFOLDS 659

For F(4), this family is the same as the family obtained by Mo and Negreiros [13],
because the corresponding 4-tournament is the parabolic one. Any tournament of this
family in F(n), n > 4, is irreducible and such that each of its 4-subtournaments are
transitive, class (4) in Figure 2.1, or irreducible, class (7) in Figure 2.1.

The following propositions are presented without proof. They are proved in a sim-
ilar way as Proposition 4.1.

PROPOSITION 4.2. Let J be an invariant almost complex structure on F(n), n =
5, such that the associated tournament J (J) is the tournament (1) in Figure 4.2. An
invariant metric ds is (1,2)-symplectic with respect to J if and only if the matrix
A = (Aj) satisfies

Aik = Ajgirn) F A Gr2) T FAR-DE (4.8)
fori=1,...,.n—-1andk = 2,...,n, except for A1,, and Aoy, which satisfy Aoy, = A2 + A1y

In this case, the corresponding symmetric matrix A? is

0 Az A+ -0 At +HAn-2m-1) Ain
Az 0 A2z e Azt Ame2) -1 A2 +A1n
A? =
Am-2)(n-1) Am-2)n-1) +Am-1)n
0 2\(n—l)n
An-1)n 0

(4.9)

PROPOSITION 4.3. Let J be an invariant almost complex structure on F(n), n >
6, such that the associated tournament J (J) is the tournament (2) in Figure 4.2. An
invariant metric ds,z\ is (1,2)-symplectic with respect to J if and only if the matrix
A = (Aqj) satisfies

Aik = Aigis1) A1) 42) + 7+ A=k (4.10)
fori=1,....n—1and k = 2,...,n, except for A1y, A2y, and A3y, which satisfy Aoy =
A2+ A1n and Az = Ao+ Ao + Ay,

PROPOSITION 4.4. Let J be an invariant almost complex structure on F(n), n >
7, such that the associated tournament J (J) is the tournament (3) in Figure 4.2. An
invariant metric ds,z\ is (1,2)-symplectic with respect to J if and only if the matrix
A = (Aqj) satisfies

Aik = Ajgi+n) + A n2) + - F A=)k (4.11)

fori=1,....n—1 and k = 2,...,n, except for A1y, Aoy, A3n and Asy, wWhich satisfy
Aon = A2+ A1, Azn = A2 +A23 + Ay, and Agy = A2 +A23 + A3g + Ay,

Any tournament of these families is irreducible and such that any 4-subtournament
of it is transitive, class (4) in Figure 2.1, or irreducible, class (7) in Figure 2.1.
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FIGURE 4.2 Tournaments in Propositions 4.2, 4.3, and 4.4.

5. Proof of the main theorem. We use induction over n, beginning with n = 4.
Proposition 4.1 shows that the result is true for n = 4. Suppose that the result is true
for n—1.

We need to calculate the coefficients Cjjx in (2.12). Then, we have three types of
3-subtournaments of J(J) to consider:

(a) for the 3-cycles we have that

Cijn = Aij +Ain + A # 0, (5.1)

fork <j<mandi=1,...,k. It implies that (dQ)3° = 0;
(b) for the 3-subtournaments, (ijn), such thati < j<kandi=1,2,...,.k—1, we
have that

Cijn = Aij+Ain—Ajn; (5.2)
(c) for the 3-subtournaments which neither satisfy (a) nor (b), we have that
Cijl:Aij—/\il+Aﬂ, i<j<l. (5.3)

(b) and (c) give us the information to calculate (dQ)2. Then, the metric ds/z\ is
(1,2)-symplectic if and only if the matrix A = (A;;) satisfies
(d)

Aij*')\in_Ajn:O; i<j$k,i:1,2,...,k—1, (5.4)
(e)
Aij—Aiq+A;;=0; i<j<lI, donot satisfy (a) and (b). (5.5)

(d) and (e) include all of the equations corresponding to the case for n — 1, except the
equations given by the following 3-subtournaments

(ijn—-1)), withi=1,....k—1, j=2,...k, i <j. (5.6)
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Therefore, by the hypothesis of induction, all the elements of the matrix A¥ corre-
sponding to n— 1 are equal to the matrix for n, except the elements Aj(;-1),A2(n-1),-- -,
Akn-1)- Then we must calculate Aj(n-1),.--s Ak(n-1)s A2ns--ey An-2)n-

(i) Wetakei=k, j=k+1,and l =n—1 in (e). Then

Ak(k+1) = Ak(n-1) + Ak+1)(n-1) = 0, (5.7)

hence

Akn-1) = Akkt1) +F Ake1)(n-1)

(5.8)
= Akk+1) FAR+ D) R42) + 0 F A2y () -
Using (e) again, withi=k—1, j =k, and [ = n—1, we obtain
Ak=1)k = Ak=1)(n-1) + Ak(n-1) = 0, (5.9)
hence
Ak-1)(n-1) = Ak-Dk T Ak(n-1)
(5.10)

=Ak-Dk+Akks) + e F AR (D) -

If we continue using (e) for the rest of values: i = k—2,...,2,1, j =k—1,...,2,1, and
l =n-1, we arrive at the following equations:

A2z = A2(n-1) + A3(n-1) = 0,

(5.11)
A2 =A1n-n +A2m-1) =0,
which imply
A2(n-1) = A23 +A3(n-1)
=A23+A34+ -+ A-2)(n-1),
(5.12)
Aln-1) = A2 +A2m-1)
=An+A3+ -+ Am-2)n-1)-
Hence (e) implies
Ain-1) = Ai(i+1) F A+ E+2) T FAn—2)(n-1)5 (5.13)

fori=1,2,...,k.

(i) fi=1and j=2in(d) then A;2 + A1, — A2y = 0,and Az = Aj2 + A1y Using again
(d) with i = 1 and j = 3 we obtain A3, = A2 + A2z + A1. We use (d) repeatedly up to
obtain

Aip = A2+ A3+ - - -+ A¢i-1)i + A1p, (5.14)

fori=2,3,...,k.
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(iii) In order to calculate A+1yn,---,Am-2)n, we use (e) withi = k+1,...,n—-2. We
obtain
An-2)(n-1) = Am-2n +*Am-1n = 0= Am-2)n = Am-2)(in-1) + Am-1)n
An-3)(n-2) = Am-3m +Am-2n = 0= An-3)n = An-3)(n-2) + Am-2)n

= Am-3m=An-3)n-2) FAm-2)in-1+An-1)n

Ak+1)(k+2) = Akt n +FAks2)n = 0= Agks1in = A1) (k+2) T Ak2)n

= Ak = Ak D) (k+2) T A K2 (k43) T+ -+ An-1)n-
(5.15)

6. Harmonic maps. In this section we construct new examples of harmonic maps
using the following result due to Lichnerowicz [12].

THEOREM 6.1. Let ¢: (M,g,]J1) — (N,h,]J2) be a + holomorphic map between al-
most Hermitian manifolds where M is cosymplectic and N is (1,2)-symplectic. Then ¢
is harmonic.

In order to construct harmonic maps ¢: M? — F(n) using the theorem above, we
need to know examples of holomorphic maps. Then, we use the following construction
due to Eells and Wood [9].

Let h: M2 - CP"™ ! be a full holomorphic map (h is full if A(M) is not contained in
any CP¥, for all k < n—1). We can lift h to C*, that is, for every p € M we can find a
neighborhood of p, U ¢ M, such that hy = (ug,...,Un_1) : M2 D U — C" — 0 satisfies
h(z) =[hy(2)] = [(uo(2),...,un-1(2))].

We define the kth associated curve of h by

Or:M? — G 1 (CY), z— hy(z) Adhy(2) A AO*hy(2), 6.1)
for 0 <k <n-1. And we consider
he:M? — CP™Y, z— 01 (2) N0k (2), (6.2)

forO<k<n-1.
The following theorem, by Eells and Wood [9], is very important because it gives the
classification of the harmonic maps from S2 ~ CP! into a projective space CP" !,

THEOREM 6.2. For each k € N, 0 < k < n—1, hy is harmonic. Furthermore, given
¢ : (CPY,g) — (CP" Y, Killing metric) a full harmonic map, then there are unique k
and h such that ¢ = hy.

This theorem provides in a natural way the following holomorphic maps:
Y:M?>—Fmn), z— (ho(2),....hn 1(2)), (6.3)

called Eells-Wood’s maps. (See [16].)
We can write the set of (1,2)-symplectic metrics on F(n), characterized in the sec-
tions above, in the following way:

M, ={gk=dsi, :1<k=<n-3}. (6.4)
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Using Theorem 6.1 we obtain the following results.

PROPOSITION 6.3. Let ¢p: M? — (F(n),g), g € M, be a holomorphic map. Then ¢
is harmonic.

A known fact, necessary to the following proposition, is that a (1,2)-symplectic
manifold is cosymplectic.

PROPOSITION 6.4. Let ¢p: (F(l),g) — (F(n),g) be a holomorphic map with g € V),
and g € N,. Then ¢ is harmonic.
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