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Abstract. We obtain a sufficient condition for starlikeness of orderα, |f ′(z)−λ(f(z)/z)+
λ−1|<M =Mn(λ,α), where λ∈ [0,1], α∈ [0,1) and the function f(z)= z+an+1zn+1+
··· is analytic in the unit disc U .
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1. Introduction and preliminaries. Denote by U the unit disc of the complex plane

U = {z ∈ C : |z|< 1
}
. (1.1)

Let �[U] be the space of holomorphic functions in U , and let

An =
{
f ∈�[U], f (z)= z+an+1zn+1+··· , z ∈U} (1.2)

with A1 =A.

Let �[a,n] denote the class of analytic functions in the unit disc of the form

f(z)= a+anzn+an+1zn+1+··· , z ∈U. (1.3)

Let

S∗(α)=
{
f ∈A, Re

zf ′(z)
f(z)

> α, z ∈U
}
, 0≤α< 1, (1.4)

be the class of starlike functions of order α in U .

If f and g are analytic in U , then we say that f is subordinate to g, written f ≺ g
or f(z) ≺ g(z), if there is a function w analytic in U , with w(0) = 0, |w(z)| < 1, for

any z ∈U , such that f(z)= g(w(z)), for z ∈U .

If g is univalent, then f ≺ g if and only if f(0)= g(0) and f(U)⊂ g(U).
We use the following subordination result due to Hallenbeck and Ruscheweyh [1,

page 71].

Lemma 1.1. Let h be a convex function with h(0)= a, and let γ ∈ C∗ be a complex

number with Reγ ≥ 0. If p ∈�[a,n] and

p(z)+ 1
γ
zp′(z)≺ h(z), (1.5)

then

p(z)≺ q(z), (1.6)
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where

q(z)= γ
nzγ/n

∫ z
0
h(t)tγ/n−1 dt, q ≺ h. (1.7)

2. Main results

Theorem 2.1. Let λ∈ [0,1], α∈ [0,1), and

M =Mn(λ,α)= (1−α)(n+1−λ)
|λ−α|+

√
(1−λ)2+(n+1−λ)2 . (2.1)

If f ∈An satisfies the inequality

∣∣∣∣f ′(z)−λf(z)z +λ−1
∣∣∣∣<Mn(λ,α), (2.2)

with Mn(λ,α) given by (2.1), then f ∈ S∗(α).

Proof. In the case λ= 1, the proof is given in [3]. We suppose that λ∈ [0,1). If we

consider P(z)= f(z)/z, then

f(z)= zP(z), f ′(z)= P(z)+zP ′(z), (2.3)

and (2.2) can be written in the following form:

∣∣∣∣P(z)+ zP
′(z)

1−λ −1
∣∣∣∣< M

1−λ (2.4)

which is equivalent to the differential subordination

P(z)+ zP
′(z)

1−λ ≺ 1+ M
1−λz ≡ h(z), (2.5)

and by using Lemma 1.1, we obtain

P(z)≺ q(z)= γ
nzγ/n

∫ z
0
h(t)tγ/n−1 dt = 1+ M

1−λ+nz. (2.6)

Subordination (2.6) is equivalent to

∣∣P(z)−1
∣∣< M

1−λ+n ≡ R. (2.7)

After a simple computation, from (2.7) it follows that

R <
1−α
|λ−α| . (2.8)

If we put
zf ′(z)
f(z)

= (1−α)p(z)+α, (2.9)

then

f ′(z)= P(z)[(1−α)p(z)+α] (2.10)
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and (2.2) can be written as

∣∣P(z)[(1−α)p(z)+α−λ]+λ−1
∣∣<M = (1−λ+n)R. (2.11)

We have to show that (2.11) implies Rep(z) > 0 in U . Suppose that this is false.

Since p(0)= 1, there exist z0 ∈U and a real ρ, such that p(z0)= iρ.

Therefore, in order to show that (2.11) implies Rep(z) > 0 in U , it is sufficient to

obtain the contradiction from the inequality

∣∣P(z0
)[
(1−α)p(z0

)+α−λ]+λ−1
∣∣≥ (1−λ+n)R. (2.12)

If we let P(z0)= P =u+iv , then

E =
∣∣P[(1−α)iρ+α−λ]+λ−1

∣∣2

= |P |2[(1−α)2ρ2+(α−λ)2]−2(1−λ)Re
{
P(1−α)iρ+α−λ}+(1−λ)2

= (u2+v2)(1−α)2ρ2+2(1−λ)(1−α)vρ+
∣∣P(α−λ)−(1−λ)∣∣2.

(2.13)

By using (2.7) and the well-known triangle inequality, one obtains
∣∣P(α−λ)−(1−λ)∣∣= ∣∣P(α−λ)+α−λ−α+λ−1+λ

∣∣
=
∣∣(α−λ)(P−1)−(1−α)

∣∣
≥ 1−α−|λ−α|R

(2.14)

and we deduce

E ≥ (u2+v2)(1−α)2ρ2+2(1−λ)(1−α)vρ+[(1−α)−(λ−α)R]2. (2.15)

If we let

F(ρ)= E−M2

≥ (u2+v2)(1−α)2ρ2+2(1−λ)(1−α)vρ
+[(1−α)−|λ−α|R]2−(1−λ+n)2R2,

(2.16)

then (2.12) holds if F(ρ)≥ 0, for any real number ρ.

Because (u2+v2)(1−α)2 > 0, the inequality F(ρ) ≥ 0 holds if the discriminant ∆
is negative, that is,

∆= (1−α)2{(1−λ)2v2−(u2+v2)[(1−α−|λ−α|R)2−(1−λ+n)2R2]}≤ 0. (2.17)

The last inequality is equivalent to

v2[(1−λ)2−(1−α−|λ−α|R)2+(1−λ+n)2R2]

≤u2[(1−α−|λ−α|R)2−(1−λ+n)2R2]. (2.18)

After an easy computation, by using (2.7) we obtain the inequality

v2

u2
≤ R2

1−R2
≤

(
1−α−|λ−α|R)2−(1−λ+n)2R2

(1−λ)2−(1−α−|λ−α|R)2+(1−λ+n)2R2
, (2.19)

which is equivalent to ∆ ≤ 0. Therefore F(ρ) 	 0, a contradiction of (2.11). It follows
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that Rep(z) > 0, and

Re
zf ′(z)
f(z)

= Re(1−α)p(z)+α= (1−α)Rep(z)+α≥α (2.20)

hence f ∈ S∗(α).

If λ= 0 then

Mn(0,α)= (1−α)(n+1)
α+

√
(n+1)2+1

(2.21)

and we obtain the following corollary.

Corollary 2.2. If f ∈An and

∣∣f ′(z)−1
∣∣< (1−α)(n+1)

α+
√
(n+1)2+1

, (2.22)

then f ∈ S∗(α).
For α= 0 this result was obtained in [2].

If λ= 1,

Mn(1,α)= n(1−α)
n+1−α, (2.23)

and we obtain the following corollary.

Corollary 2.3 (see [3]). If f ∈An and∣∣∣∣f ′(z)− f(z)z
∣∣∣∣< n(1−α)

n+1−α, (2.24)

then f ∈ S∗(α).
If λ=α,

Mn(α,α)= (1−α)(n+1−α)√
(1−α)2+(1−α+n)2 . (2.25)

Corollary 2.4. If f ∈An and∣∣∣∣f ′(z)−αf(z)z +α−1
∣∣∣∣< (1−α)(n+1−α)√

(1−α)2+(1−α+n)2 , (2.26)

then f ∈ S∗(α).
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