IJMMS 28:9 (2001) 517-534
PII. S0161171201010936
http://ijmms.hindawi.com
© Hindawi Publishing Corp.

BIORTHOGONAL MULTIRESOLUTION ANALYSES
AND DECOMPOSITIONS OF SOBOLEV SPACES

ABDELLATIF JOUINI and KHALIFA TRIMECHE

(Received 25 September 2000 and in revised form 1 February 2001)

ABSTRACT. The object of this paper is to construct extension operators in the Sobolev
spaces H¥ (]—c0,0]) and H*([0, +oo[) (k = 0). Then we use these extensions to get biorthog-
onal wavelet bases in H¥ (R). We also give a construction in L2([—1,1]) to see how to obtain
boundaries functions.
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1. Introduction. The decomposition method was used by Ciesielski and Figiel [1, 2]
to construct spline bases of general Sobolev spaces W;,‘(M )(keZand 1 <p < +m)
where M is a compact Riemannian manifold of dimension d. The extension operators
constructed by Ciesielski and Figiel are based on the extension theorem of Stein [13]
which do not permit to get multiresolution with compact support.

In 1993, we have constructed biorthogonal wavelet bases in Q which is an interval
and a bounded open set of R? (see [8, 9]). These bases are adapted to study Sobolev
spaces H'(Q) and H} (Q).

Recently, in 1997, the decomposition was used by Cohen, Dahmen, and Schneider
(see [3, 4, 5]) to construct biorthogonal wavelet bases (([J,\,(I}/\))\ev of L2(Q) where Q
is a bounded domain of R%. These bases were those of Sobolev spaces H*(Q) for s
only in the interval ]—3/2,3/2[.

There are related constructions given by Masson in [11]. All these constructions are
based on the decomposition method; there is a slight difficulty in their presentation,
due to notational burden. Moreover, it is unclear how to obtain regularity Sobolev
estimates for |s| > 3/2 and also to get associated fast algorithms.

In this paper, we use a direct method based on the result described in [9] to define
orthogonal and biorthogonal multiresolution analyses on the interval [0, 1] which are
generated by a finite number of basis functions. These analyses are regular and have
a compact support. Next we use a decomposition method to construct segmented
biorthogonal multiresolution analyses in R. In this case, we get decompositions of the
Sobolev space H¥(R) (k € Z) by using simple extension operators. These extensions
permit to get fast algorithms for associated biorthogonal multiresolution analyses
because all bases constructed in this paper satisfy the lifting scheme described in
[11, 14] in order to get wavelet bases with compact support and with the same reg-
ularity as for Daubechies bases [6]. This analysis is adapted to the study of regular
functions in H¥([0, +[), H*(] — 0,0]), and H*(R), by using extensions. We also give
a construction of segmented biorthogonal multiresolution analysis in L2([-1,1]) to
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see how to obtain boundary functions. Finally, recall that segmented multiresolution
analyses are useful in many applications as numerical simulation for elliptic problems
or image processing (see [11]).

The first object of this paper is studied in Section 2. In fact, we construct biorthogo-
nal multiresolution (V;, VJ*) (j € Z) on the interval [0,1]. By a derivation on V; and an
integration on VJ-*, we get biorthogonal multiscale analysis (V;”,V;_D) of the space
L?([0,1]). Let P; be the projector on V; parallel to (ij)L and P}l) be the projector in
V}l) parallel to (V}l))i, then we have the following commutation property:

%opjzp;“oﬁ. (1.1)

If the multiscale function @ is regular, we develop a similar strategy for constructing

biorthogonal multiresolution analysis (V;d),vj(’d)) (d € N) of the space L2([0,1]).

Moreover, we have the commutation property between scale projectors and derivation
d a1 _pa_ 4a

aoPJ. =P; °Ix’ (1.2)

The biorthogonal analysis (VJ@, V;fd)) are adapted to the study of Sobolev spaces
H*([0,1]) and H§([0,1]) for k € Z.

Section 3 is devoted to the construction of extension operators. We show that if
we consider an extension operator E from H*(] — »,0]) into H*(R) for k € 7, we
get decomposition of the Sobolev space H¥(R) by using an isomorphism between the
space H¥(R) and the space E(H¥(]—0,0])) + HX ([0, +o[). This isomorphism permits
to get biorthogonal multiresolution analysis of H*(R) based on those of L2(] - «,0])
and L2([0, + o[ ). These multiscale analyses satisfy the commutation property between
scale projectors and derivation. All wavelet bases constructed in this section have a
compact support and are adapted to higher regularity analysis.

In conclusion, we describe “new” biorthogonal multiresolution analysis in L2
([-1,1]) to show more clearly how to construct boundary functions. These analyses
are adapted to the study of the Sobolev spaces H!([-1,1]) and H}([-1,1]).

2. Multiresolution analyses on the interval and applications. Recall that multires-
olution analyses (denoted by MRA) on the interval are introduced by Meyer [12]. For
other related constructions see [7, 8, 9]. In the first part of this section, we construct
orthogonal multiresolution analyses V; on the interval [0,1] and we show that there
exists a new supplement X; of V; in V;. In the second part, we introduce biorthogo-
nal multiresolution analyses on the interval and we prove, by using a derivation, that
we get other biorthogonal multiresolution analyses which are adapted to the study of
Sobolev spaces H¥([0,1]) and H§([O, 1]) for k € Z. Moreover, we get the commutation
property between scale projectors and derivation. These analyses have compact sup-
port and are adapted to higher regularity analysis. They will be used in the next section
and, by using some natural extensions, we get segmented biorthogonal analyses.

2.1. Orthogonal multiresolution analyses on the interval. We recall that the or-
thogonal multiresolution analysis (denoted by OMRA) V;(R) of Daubechies [6] satisfies
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the following properties:

e Vy has an orthonormal base @ (x —k), k € Z, where @ the scaling function with
compact support.

e p(x/2)= z}ffa] ar@ (x —k), the sequence of real numbers (ay) satisfies ag+0 and
asn-1 #+ 0. Moreover, we have @ (2E) = My (e €)@ (E) where My (e~ i€) = SNt agekiE
and “A” is the classical Fourier transform on R.

e supp@ =[0,2N—1].

e The associated wavelet y is defined by

B(2E) = e (ON-DEM, (— e E) P (). @.1)

e Wo(R) (the orthogonal complement of V(R) in V;(R)) has an orthonormal base
Y(x-k), kel

« V;(R) has an orthonormal base @k (x) = 2/2@(2/x—k), j,k € Z, and W;(R) has
an orthonormal basis @ (x) = 272w (2ix - k), j,k € Z.

The multiresolution of Daubechies is orthogonal in L?(R), but if we take its re-
striction to [0,1], we do not get an orthogonal multiresolution analysis in L2([0,1]).
Moreover, if we consider the functions @ (x) /0,17, we have an independent system
but not orthogonal. However, if we consider the functions ; x (x) 0,1 we get a depen-
dent system (see [12]). Then, the construction of orthogonal multiresolution analyses
in [0, 1] (or biorthogonal) is technical specially near the boundaries 0 and 1.

In the following, we have to construct new orthogonal wavelet bases in [0,1]. For
this purpose, we consider the OMRA V;(R) of Daubechies and we denote

V;([0,1]) = Vect{®, /10,11, @jk € Vi(R)},

(2.2)
v;([0,1]) = Vect{®p;k, supp@;k C [0,11}.
DEFINITION 2.1. A sequence {V;} ., of closed subspaces of L?([0,1]) is called a
MRA on L2([0,1]) associated with V;(R) if we have
(i) for all j = jo, v;([0,1]) c V; C V;([0,1]);
(ii) for all J > j(), VJ' C Vj+1.

EXAMPLE 2.2 (periodic wavelets). For j > 0, we denote

PO =D Qik(x=P) =D @i (). 2.3)
pe’ pez

Then V; is defined as the space generated by the functions ) jk/l0,1]- We then get
periodic wavelet bases which are adapted to the study of periodic regular functions.

The following result of Meyer [12] gives another example of MRA of L2([0,1]) which
is important to establish the first goal of this paper.

LEMMA 2.3. For j = jo, the functions @ j k011, 2—2N < k < 29— 1, form a Riesz basis
of Vi([0,1]) and the functions Y011, —-N+1 <k < 2J — N, constitute a Riesz basis
of W;([0,1]).
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We describe a complement (not orthogonal) of V; in V;,;. More precisely, we have
the following important result from [9].

PROPOSITION 2.4. Let jo be the smallest integer satisfying 270 > 4N —4. For j > jo,
we denote

Xj=Vect{yjx, 0<k <2/ —2N+1; Qjs1ok+1, 0<k <N-2;

, (2.4)
Pj+1,2k» —2N+2<k<?2) —N}.

Then
(i) dimX; = 2/.
(i) There exists an integer J such that for all j = J, Vi1 = Ve Xj.

PROOF. Firstweremark thatsuppy;x C [0,1]forO<k=< 2/ —2N+1, supp Qjr1,2k+1
C[0,(4N—4)/2/* ] for 0 <k < N—2 and Supp @12k C [ (4N —4) /211 -1/27+1]
for —2N +2 < k <2/ —N.We denote by x;x, -N +1 < k < 2/ — N, the generated system
of X; defined by

o for —-N+1<k=<-1,Xjk=@Qji12(k+N-1)+1;
e forO0<k<2/-2N+1,xjx =Yk
e for2/ -2N+2<k=< 2j—N, Xjk = @j+1,2k-

The matrix (mp4), with —N +1 < p, q < 2/ —1 of coefficients of x;; relatively to
Wjks0,1] (We decompose xjx with respect to @k 0,17 and @ k0,17 and we take only
the coefficients corresponding to ¢; k(0,17 is defined by

A O
[0 B] (2.5)

where A = (my4), with —-N +1 < p, g <2/-1 -1, is a superior triangular matrix with
all its diagonal coefficients are different from zero and B = (m, 4), with 2/ - N+1 <
p, q < 2/ — N, is an inferior triangular matrix with all its diagonal coefficients are
different from zero. The diagonal terms of A and B are defined by

mp,p=%<(p(x—2N+1),w(§)>, if p<-1, (2.6)
Mmpp=1, ifO0<p<2/-2N+1, (2.7)
mp,p=%<cp(x),w<§)>, if p=2/—2N+2, 2.8)

where (-, -) is the scalar product of L2(R). The system (xjx), where -N+1<k=< 2J —
N, is independent. Then we have dim X; = 2J and X;jnV;([0,1]) = {0}. We remark that
XjCcv;+1([0,1]) and X;nV; = {0}. Then v;,1([0,1]) = v;([0,1]) ® X} (the two spaces
have the same dimension) and X; C V;,;. Since dimV; —dimv;([0,1]) is increasing and
bounded by dimV;([0,1]) —dimwv;([0,1]) = 4N —4, we conclude that there exists an
integer J such that for j > J, V;.1 = V; @ X;. Finally, by using Gram-Schmidt method,
we get orthonormal wavelet basis on the interval [0,1]. O

2.2. Biorthogonal multiresolution analyses on the interval. First we give some
definitions of biorthogonal multiresolution analysis (denoted by BMRA), then we de-
scribe constructions on the interval.
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DEFINITION 2.5. A sequence (VJ,VJ.*) of closed subspaces of L2([0,1]) associated
with biorthogonal multiresolution analysis (V;(R), Vf (R)) of L2(R) is called a biorthog-
onal multiresolution analysis of LZ([0,1]) if

@) v;([0,1]) cV; cV;([0,1]) and vJ*([O,l]) C Vj* C Vj‘([O,l]).
(i) V; CVjpy and Vi CVF .

(iil) L2([0,1]) = Vjee(Vj*)l.

EXAMPLE 2.6 (periodic BMRA). If (‘/j([R),V;'k(R)) is a BMRA of L2(R) such that
the multiscale functions g and g* have compact support, we can define a BMRA of
L2([0,1]) associated with (Vj(lR),V;k (R)) by

~ ~ %

Gik= 2. Gjprprin  Gjx= 2, 9 kspit
= pez

Vj=VeCt{&j,k/[0'1], 05k521_1}7 (2.9)

* .
ij =VeCt{Gj,k/[0’1], O0<k<?2/ 71}.

It is clear that f(} G;k(x)Gj,l(x)dx = &y, for k,l € {0,...,27 — 1} and Vi, Vj* are
in duality for the scalar product of L?([0,1]). This BMRA is adapted to the study of
periodic functions.

Let (V;(R), VJ?k (R)) be aBMRA of L2(R) with associated multiscale functions (g, g*).
We assume that suppg = [N1,N2] and we denote

PRx)= > kg(x—k),
k<-N1—-1

PPoay= > Kkigx—k).

k>=-N>-1

(2.10)

Our construction is based on the following result.

THEOREM 2.7. We consider a BMRA (VJ(R),V;‘([R)) of L%(R), (g,g9*) are the mul-
tiscale functions with compact support and (V;, Vf) an associated BMRA of L2([0,1]).
We assume that

(i) g is differentiable and g’ (x) = g(x) —g(x —1).
(ii) V; contains the functions

P3G (x) = P§(27x =27) 1011
8 B , (2.11)
PO,j(X) = PO (ZJX - 2‘])/[0‘1].

If we denote

Vi={fer2(0,1])13g eV, f=g,
» ’ (2.12)
V; ={fe€L*([0,1]) | f €V}, and f(0) = f(1) = 0}.

~ ~ %k ~
Then (Vj,Vj) is a BMRA of L%([0,1]). Moreover, if we denote by P; (resp., Pj) the
~ ~ %
projector from L?([0,1]) into V; (resp., V;) parallel to (VJ*)L (resp., (V )*), then we
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have the following commutation property

%opﬁﬁjo%. (2.13)

PROOF. Itis clear thatg}(x k) = (Zp 0g(x k p)) and (g (x—k)) = =g*(x—-k+
1)—g*(x—k). Then vJ C VJ([O 1]) and v - V ([0 1]) Moreover since V; contains
the functions Po l(x) we have VJ [0,1]) C VJ and V ([0,1]) c V Iri :[ﬁhe same way,
we have VJ CVjs and V C V7. To see the duality between VJ and V;, we consider
abase (xg=1,«1,.. (xn) of VJ with dimV; = n+1 and a dual base (Bo,B1,...,Bn) of
V* Then the derivation is an isomorphism from V onto Vect(Bq,...,B») and from
Vect(«y,..., %y, ) onto V If we define &; = (d/dx)x; and ,Bl = fo Bi(t)dt then by inte-
gration, we cgnclude E{hat the bases (&;) and ( Z% ;) are biorthogonal and we have a dual-
ity between V; and V ;. Finally the commutation property is satisfied. In fact, we have

dd ° (Pif) = <f /50>1+Z f,zm f<f,ﬁi>rxi,

()

n

Z <dxf B > i +(f,Bi)) & (2.14)

i=1

f B o

Il
I M= H

FUNDAMENTAL EXAMPLE. Let V;(R) be the OMRA of Daubechies where the scale
function @ is of class C%. We denote by VJ@ (R) and V}_d) (R) the MRA constructed by
derivation and integration. Then the theorem described above proves that VJ@ ([o,1))
and V(_”l> (10,11 mHg([O 1]) form a BMRA ofL2 ([0,1]). Moreover, if we denote by PJ@
the projector on V(d)([O 1]) parallel to [ d)([O 1]) mHO (10,1 1+, we have
%w}”” =P;d+1)o%. (2.15)

We define g and g* by

(1—e B)5(8) = (EVP(E),  (1E)9g*(E) = (e-E—1) P (E). (2.16)

The functions g /(0,11 form a basis of V;fd) ([0,11). To construct a basis of V;fd) ([0,1D
mHg ([0,1]) we take the functions g, x with supportin [0, 1] and the boundaries func-
tions as follows:

d-1
g;";‘; = Z O(i,j,pg;p/[ovl], 1<i<2N-2,
p=—2N+2
) 2.17)
8 2 +d-1
* .
gix = > Xijpdipony 1<i<2N-2.

p=2J —2N+2
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The real constants «; j,, satisfy

+ 00 -1
J ( > (xi,j,,,Zj/Zg*(ZJX—p))21/2g(21x+2N—1—d—q)dx=61-,(1, 1<i<2N-2.
0 p=—2N+2 (2.18)

In this case the following results are proved in [9].

THEOREM 2.8. We assume that @ is a C¥P*¢-function, p e N, p > d, and € > 0. We
denote byPJ(-d) the projector on V;d) ([0,11) parallel to [V;’d) ([0,1]) ﬂHg([O, 11+ and
P\ its adjoint. We define Q| = P{** —pi® Q'®* = pi8* - p(@* and j, an integer
satisfying 270 —1 > 4N — 4+ 2p. Then

@) for £ € L2([0,11), .fll2 = IPL flla+ (S sy 1QS FIDV2.
(i) for £ € L2([0,11), [.fll2 = IPJ* fllo+ (2 jsso 1QV* £13) 12,
(iii) for k € Z such that —-d < k < p—d, we have

feHN[0,1]) = P fel1?([0,1]), > 4 fIf} < +oo;
Jjzjo
(2.19)
fEHX([0,1]) = PIP* feL?([0,1]), > 4¥[Q\"* fIf3 < +.
J=jo

d+1
REMARK 2.9. The fundamental property d/dx oP}d) = P; )

the vector functions with divergence equal to zero (see [9]).

od/dx allows to study

3. Segmented biorthogonal multiresolution analyses and extension operators.
We study in this section two constructions of biorthogonal wavelet bases. The first
one is based on the OMRA of Daubechies and prove that we can analyze functions
in H*(R) (k € Z) with information in the past H*(] - »,0]) (k € Z), the relaxation of
the past in the future near zero and information in the future H(’)‘([O, +m)) (k € 7).
The second construction is based on a symmetric multiresolution analyses with com-
pact support and show how to obtain boundary functions in [—1,1]. We obtain, by
using extensions, biorthogonal multiresolution analyses of L2([—-1,1]) from those of
L2([-1,0]) and L%([0,1]).

3.1. General principles of extensions. We begin with some notions of extensions
which are important for decompositions of the Sobolev space H¥(R). Next we give
conditions on extensions to get simple algorithms of wavelet bases.

DEFINITION 3.1. We denote by ®(R) the space of continuous operators on L2(R).
An operator A of ®(R) is called an extension from the interval I into R if A is a
continuous operator from L2(I) into L2(R) such that

@) Afir=f.
(i) For f in H*(R), (k € Z), the usual Sobolev space, then Af € H*(R).
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EXAMPLE 3.2. We consider the interval I =] — ,0] and f € C*(I) (space of Ck-
functions in I). We define the operator A by

S(x), if x <0,
AfG0 = > apf(Bpx), if x>0, (3.1)
p=1

where f,, are real constants such that f; < fs-1 < -+ < 1 <0. The real constants «,
will be chosen such that Af € C¥(R). For this purpose, we must have Z;zl Xp Bﬁ =1,
m =0,1,...,k. The adjoint operator A* of A is defined by

CS wpitg( ), iy <0
g gltxpﬁp g(Bp), if y <0,

0, if v > 0.

A%g(x) = (3.2)

If g € CK(R) then A*g € CK(R), since >),_; &, B! =1, m = 0,1,...,k. We conclude
that for s > 2k + 2, the constants «, exist and then A and A* are known.

The biorthogonality of bases depends on the operators A and A*. We remark that
the operator defined above is not “good” because A or A* does not preserve the
property of compact support, if we consider multiresolution analyses with compact
support, and special properties near the boundaries [9].

PROPOSITION 3.3. Let k € Z and E be an extension from H*(] — c,0]) into H*(R).
Then the operator f — E(f/1-«,01) + (f —E(f/1-,01)) constitutes an isomorphism from
H¥*(R) onto E(H*(] - ,0])) ® H§ ([0, + o).

REMARK 3.4. The extension E relaxes the information of the past, and the function
(f —E(f/1-,01)) is supported by the future axis. We will show how Proposition 3.3
permits to get wavelet bases of L2(R) by using those of L2(] — c,0]) and L2([0, +o[).
The main problem is in the definition of extension operators which are adapted to
scale, and permit to get regular wavelet bases. This problem is the object of the next
section.

3.2. Segmented biorthogonal multiresolution analyses. We introduce now the
definition of segmented BMRA.

DEFINITION 3.5. We consider two intervals I; and I> of R such that I; NI, contains
one point. Let (V},(V})*) be a BMRA of L(I;) and (V7,(V7)*) be a BMRA of L2(I2).
We put I = I; Ul>. Then a MRA (V}, VJ?“) is called a segmented BMRA of L2(I) if we have
V= Al(le) @Ag(VJ?) and vV} = Bl(V})* @BZ(VJZ)* where A;, B; are two extensions
from L2(I;) into L?(I) and A», B, are two extensions from L2(I,) into L%(I).

In the following, we describe two constructions of segmented BMRA. In the first
one, we consider I =] — «,0] and I = [0 + o[ and we get a segmented BMRA of
L2(R). In the second construction, we consider I; = [—1,0] and I, = [0,1] and we get
a segmented BMRA of L2([-1,1]).

3.3. Construction of segmented BMRA of L?(R). The object of this section is
to construct a BMRA of L2(R). For this purpose, we consider the OMRA V;i(R) of
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Daubechies with associated scaling function ¢ and wavelet , and we construct a
BMRA of L2(] — ,0]) and L2([0 + o [). Next, we use some extension operators to get
a BMRA of L2(R).

Recall that the functions @k (x) = 2//2@(2/x — k), k € Z, form a Riesz basis of
Vi(R) and @k (x) = 2/2p(2ix — k), k € Z, form a Riesz basis of W;(R) (orthogonal
complement of V;(R) in V.1 (R)). We define the extension operators E; and EJ’- by

Ej:Vi(1-0,0]) — Vi(R),  @jk/l-0,0] — Pjks

(3.3)
E;:Vi([0,+0) — Vi(R),  @jk/i0+0] — Pjks
and the two extension operators E and (Eg)’
E§:L*(]-,0]) — L*(R), f—f, where f/j—wo) =f, fi10+0[ =0,
(3.4)

(EY) :L*([0,+o[) — L*(R),  f— f, where fijo e[ =f> fi1-e0r = 0.

We consider V; = Vect{@jx, k € Z} (OMRA of Daubechies). To define the dual space,
we need to construct the new functions qo;-*‘ 4 given by

-1
(pj-‘,q(x): Z Aj,alPjk/1-,01s (3.5)
k=2-2N

where a4, satisfy the following conditions: for 2 -2N < k < -1, we have

J > ;2P @2Ix 1)@ (2x —k)dx = Sqx. (3.6)
T®k=2-2N
The precedent system of (2N —2) equations and (2N — 2) unknowns has one solution
because the functions @ x/1-~,01, 2 —2N < k < —1, are independent (see [5]). As the
conditions on a; 4, do not depend on j, then we have

ij’q(x) = Zj/z(p; (ij)/]foo,o]' 3.7)
We define now the dual space
V= Vect{@ju k< 1-2N, @k, k= 0; 2297 (21x) g, 2-2N <q < -1}, (3.8)

We remark that Vj* = Vect{Q;k/]1-w,01} ®Vect{@ji, supp@; C [0,+c[} and then
V,* C Vj:l. It is clear that VJ?“ is constructed in order to get a BMRA (Vj,VJ?“) of L2(R).
We consider W; = V.1 n (Vj*){ To give a basis of W}, we need to construct the new

wavelets « x as follows: for 2-2N < k < —N, we put

-1
Tk =Wik— . Wik @PF ) Pia- (3.9)
q=2—-2N
We have (N — 1) functions which can be orthonormalized (for the scalar product of
L2(]—00,0])) to get the functions &k, 2—2N <k < —N, indicated above. Then a basis
of W; is given by the following functions:
"VLkakiS 1-2N.
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® &k, 2—2N <k <-N.

* Bir12k = @ji1,2k— 2 q20{Pj 11,2k Pj.a) Pja—2q20{Pj+12k: Wj.q)Wjgr 0 <k <N-2.

e Yk k=0.

We constructnow abasis of the space W/ = V¥, n(V;)*.Itis clear that the functions
®jk/1-,01 are in V7 ;. For 2—2N < k < —N, we have

-1
Wik = kw01 = D, (k10,0 P ) P (3.10)
q=2-2N
Obviously, we have (aj'k,(pj‘q)Lz(R) = Okq- We denote by 7, ;, 0 <k <N -2, the
dual system of Bj1,2k, 0 < k <N -2, for the scalar product of L2(R), and we define

-1

(V;‘F+1,2k:Bj+1,2k* z <Bj+1,2kv(pj,q>q9;fq
q=2-2N
(3.11)
-N

- Z B0 Wia)Wig— Z (BiiiowWia)Wia-
q=2-2N az0
We conclude that a basis of Wj* is given by the following functions:
* Wik, k <1-2N.
. L,U;-"k, 2—-2N <k <-N.
* Pl 0<k<N-2.
oYk k=0.
The functions @, k € Z, form a basis of the space V; and the functions (pj*.’k, ke,
form a basis of the space Vf such that

supp @ C[k k+2N—1] supp @* C[k—2N+2 k+2N—1]
J.k EYE i ’ i,k i ) i ]
2t Y ! 2J 2J (3.12)
(@jk (P;(‘(,q >L2(|R) =0kq-
The projector P; can be written as
Pif = > {fr @)@k (3.13)
kez
and we have the following property:
Pji1oPj=PjoPj1 = Pj. (3.14)

The following theorem proves that the MRA (V, Vj* ) described above is a segmented
BMRA of L2(R).

THEOREM 3.6. (i) There exist a BMRA (V;(] - ,0]), V(] - ,01)) of L*(] - ,0])
and a BMRA (V;([0+co[),VF([0+[)) of L*([0+ o) such that if we denote
Vi =E;j(Vj(]1-00,01)) ® E}(V; ([0 +co[)),
(3.15)
Vi =E§(Vi(1-,01)) ®@E5’ (V; ([0+oo[)),

then (V;,V}) is a segmented BMRA of L%(R).
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(ii) We consider the spaces

W;i(]—0,0]) = Vj;1(1-0,0]) n (V}(1-e0,01))",

(3.16)
Wi (1=00,01) =V, (1-00,01) 0 (V;(1-0,01))".
We define in the same way the spaces W;([0+co[) W ([0+ oo[). We denote
Wj=E;j(Wj(]-00,0])) @ E;(W;([0+[)),
(3.17)

W = Eg (W (1-00,01)) @ B (W7 ([0+ o).

Then W; and W* are in duality for the scalar product of L*(R) and we have V| =
J j J

VieW; andVF , =V ¥eWH. If we denote
J J j+1 J J

ViV (1-0,01) = {f € L2(1-,0])/ 3g € V;(1-,0]), f=4'},
(3.18)

ViV (1= 0,01) = {f € L*(1-0,01)/ f' € V] (1~ ,0]), and £(0) = 0},

then (V;”(] —00,0]), V;’”(] —,0])) is a BMRA of L?(] — ©,0]). There exists also a
BMRA of L?([0 + o[ ) denoted by (V{" ([0, +co[), V;~" ([0, +c0[)).

(iii) If we define V}l) and V}’l) in the same way as (3.15) by replacing V(] — «,0])
by V}”(] —00,0]) and VJ*(] —00,0]) by VJ(-’”(] —00,0]) (also for the spaces defined on
[0, +oo][), then (V}”,V}’”) is a BMRA of L?(R). Moreover, if P; is the projector from
L2(R) into V; parallel to (VJ*)L and PJ(-” is the projector from L2(R) into V}l) parallel
to (V}fl))L, then we have

d _ L, 4
Aop=po (3.19)

PROOF. We consider the BMRA (V}, Vj*) of L?(R) described above. In the following
we prove the properties (i) and (ii). By taking the restrictions, respectively, on ] — o, 0]
and [0, +oo[ of functions of V; and VJ*. We get the spaces

VJ(]—OO,O]) =VeCt{QDJ',k/],oo’0], k<-1},

Vj*(]—oo, 1) =Vect{@jk, k <1-2N, cp;.‘,k, 2-2N <k < -1}, (3.20)
Vi([0+ o) = Vect {@;, k =0}, '
V¥([0+0o[) = Vect{@jk, k= 0}.

In the same way, the spaces defined in (3.16) are completely described. In fact, we
have

W;i(1—,0]) = Vect{@;k, k <1-2N; &jk/l-0], 2—2N <k < —N},
wi(1- 0]) = Vect{yjx, k <1-2N, w}‘k,Z—ZNsks—N},
‘ (3.21)
W;([0,+co[) = Vect{Bj10k, 0 <k <N-2, @1, k= 0},
W ([0, +00[) = Vect{®7F, ) sx/0400p 0 <k <N-=2, @k, k =0}
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Then the properties (3.15) and (3.16) are proved. To prove (3.18), we denote

a .
TPk () =2 (@00~ @ (),
(3.22)

X
P () = Z*JJ (@f (O - @ (b)dt.
To show that (pj*.’fn has compact support, we prove that [* @l (x)dx = 22
(because the functions @7, have compact support). In fact, we have

1=212% @;,(x), (3.23)
qe’l

we then get
+ 00 +00
J Qi (x)dx = J @7 (x)ldx

= J_ @) (21/2 > q?j,q(x))dx

qez (3.24)

+ 00
- [ 2R

—00

= 27302,

We describe in the same way as (3.16) the spaces defined in (3.18) and (3.19). The
commutation property is proved in [9, Proposition 2.5]. Then, Theorem 3.6 is com-
pletely proved.

We remark that supp @7, C]-,0] for k < —1 and supp @7, C [0, +c[ for k > 0,
then we have two projectors

Pif= > {[L@5) Pk (3.25)
k<-1

the projector in the past which is relaxed in the future, and

Pif=2 i@ @ik (3.26)
k=0

the projector in the future.

We have similar properties as (3.25) and (3.26) for the projector Q; = Pj,1 — Pj,
because the associated wavelets satisfy the same properties as the scaling functions
QQik'

The space V;” is equal to V}l) (R) (the MRA constructed by one derivation on V;(R))

(1)

with a basis Pk k € Z, and the space V}’” has a basis cp;‘,;;l), k € Z, such that

(@l P a)i2w) = Okas
supp@ i " cl1-,0], fork=<0, (3.27)
supp(pj-‘,;;l) c[0,+%[, fork=>0.
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The projector P}D is given by

PUf =S (e e, (3.28)
kez
and we have the property
P 0PV =P opil) = PV (3.29)

The associated wavelets may be constructed in the same way. In fact we denote

d _ (X
WO = w0, w0 =27 wnde (3.30)
O

We can generalize the result described above. In fact, the same extensions give the
following result.

COROLLARY 3.7. There exista BMRA (V¥ (]-,01),V;™* (1~ ,01)) of L?(] - 0,0])
and a BMRA (Vi ([0+ w[), Vi~ ([0+ c0[)) of L?([0+ o[) such that if we denote

ViY = E;(Vi? (1-,01)) @ E; (VI ([0 + ),
(3.31)
Vi = Eg (Vi (1= e0,00) B3 (V; ¥ ([0+ ).
Then (V;d),V}’d)) is a segmented BMRA of L?(R).
If P}d) is the projector from L?(R) into V}d) parallel to (V}"’”)L and P}‘“D is the
projector from L%(R) into V}d”) parallel to (Vj’(d“))l, then we have

d+1) d

a L
70PJ— :PJ OE.

dx (3.32)

REMARK 3.8. The extensions E; and E} expressed in (3.3) permit to require the
same regularity and localization of basic functions. If we assume that @ is a CP*¢-
function then, the BMRA V;d) (]—0,01), V}’d) (1—00,0]) is adapted to the study of the
Sobolev spaces H¥(] - 0,0]) and HX (] —,0]) for 0 < k < p —d (or H¥(] - 0,0]) and
Hy*(]1-00,0]) for 0 < k < d). We have the same result for the BMRA V}d)([o,+oo[),
VI ([0+ ) of L2([0,+[).

As a consequence, the BMRA (V}d), V;"’”) of L?(R) is adapted to the study of the
Sobolev spaces H*(R) for 0 <k <p—d and H*(R) for 0 <k <d.

3.4. Construction of segmented BMRA of L2([-1,1]). We consider the functions
@ and @* defined by
- = ) 1+ cos
PE) = ]_[m(g), with m () = %
o (3.33)

P*(8)

ﬂm*(fj)' with m™* (&) = (HC2708§>(2—COSE),

where “A” is the classical Fourier transform on R.
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These multiscales define a BMRA of L?(R). We denote by U;(R) the closed linear
hull of @k, k € Z, where @ (x) = 2//>@(2/x — k), and in the same way UF(R) the
closed linear hull of @7, k € Z, where @}, (x) = 2/12@*(2/x — k). The important
properties of @ and @* are

@x) = (1-x)" (3.34)

(We remark that @ is a spline function and U;(R) is the space of continued functions
on R which are affine in every diadic interval [k/2/, (k+1)/2/].)

@ and @* are in L?(R), (3.35)
There exists € > 0 such that ¢ € H!*¢(R),

supp@ = [-1,1], @(x) = @(-x),

> px-k) =1, > ke(x-k) = x, (3.36)
kez kez
supp@* =[-2,2], @*(x)=@*(-x),
Serx-k) =1, > ke*(x-k) =x,
kez kez
D) = 5 @(2x +1)+P(25) + 5 P(2x - 1), (337
P*(x) = %cp*(2x+2)+%q)*(2x+1)+%<p*(2x)
+%<p*(2x—1)—%cp>k(2x—2).
(We see that U;(R) € Uj,1(R) and Uj‘([R) c U1 (R))
( @)k Pl a)i2w) = Oka- (3.38)

The last point allows that the functions @;, k € Z, form a Riesz base of V;(R) =
Uj(R)nL?(R) and @i k €7, form a Riesz base of V¥ (R) = U/ (R) NL%(R) such that
L2(R) = Vj(R)GB(V;k(R))L-

The projector P; from L2(R) into V; parallel to (VJ?")l can be written in the form

Pif = > (f,@5) @)k, (3.39)
kez

and satisfies Pj. o Pj = Pj o Pj;1 = Pj, such that Q; = Pj+1 — P; is a projector from
L2(R) into W;(R) =ImQ; = V11 (R) @ (V;(R))* parallel to (WJ?*(IR))L, where WJ?*(IR) =
(KerQ;)* = V7, (R) @ (V;(R))*. A base of W;(R) is given by the functions y;k(x) =
2112y (2ix — k), k € Z, where ((2E) = e Em(E+m)P(E). In the same way, a base of
W7 (R) is given by the functions @7, (x) = 2012y* (2ix — k), k € Z, where @* (28) =
e Em(E+ ) P* (&). Moreover, the two bases are in duality for the scalar product of
L2(R):

(W), w* (x=K) j2m) = 6k0,  Qif = 2 {fr Wl ) Wik (3.40)

kez
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The fundamental properties of ¢ and ¢* are
suppy =[-1,2], y@(x) =yl -x),

Jj: Y(x)dx = ijw(x)dx =0,

(W(x),@*(x—k)) 25 =0 forkez,

suppy* =[-1,2], ¢*(x)=y*(1-x), (3.41)

+ 00 +oo
I P*(x)dx = J xP*(x)dx =0,

<W*(x)’¢(x_k)>L2([R):0 fOI‘kGZ,
(Wi Wi a) 2w = 07,5 Ok -

We construct now a segmented BMRA of L2([—1,1]) by using those in L2([-1,0])
and L2([0,1]) and the extension operators E; and E}- described above.
We define the following spaces:

2
Vj([—l,O])—Vect{m?— > @jki-10 Piks 3-20<k<-3, ph=Y (pj,k/[l,o]}y
k<2-2J k=—2

VF([-1,0]) = Vect {@F,;, 2-2/ <k < -2},

vsllo.1n _VeCt{(pj'k’ 3=k=2/-3, @j= 2 @j,k/[O,l]},
k=2J-2
Vi ([0,1]) = Vect{@F,, 3 <k <2/-2}.
(3.42)

Itis clear that V;([-1,0]) and Vj* ([—1,0]) are in duality because supp q93'{k c[-1,0]
for 2 -2/ < k < —2. We have the same result for V;([0,1]) and Vj* ([0,1]). We apply
extensions as follows: N

e The function qof is extended by (pf = Zi:,z @jk

e The functions @7, 2 - 2/ <k <-2and 3 <k <2/ -2, are extended by zero.

We get a BMRA of L2([—1,1]), which is symmetric and with compact support where

VJ([_lyl]) :VeCt{(pf(v (pj,kl 3_ZJ <k=< _3! qofv (pj,kl J<k=< 21_31 ()—93\}7 (3 43)
Vi([-1,1]) = Vect{@};, 2-2/ <k < -2,@%,, 3 <k <2/ -2}.

In the same way, we get the associated wavelet spaces W;([-1,1]) and WJ?k ([-1,1]).

PROPOSITION 3.9. If f is a function of L>([-1,1]), then

1/2
feH ([-1,1]) = ||ij||2+< > 4J’||ij||§) < +00. (3.44)

J=Jjo
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PROOF. If fe H' ([-1,1]), Ilf Il is calculated by || £l2 + Il.f|l2. We have
1/2
Feraf+ S it k= lfl( X lifE) . e
J=Jjo J=jo

where Q f is given by

Qif = XA Wi Win= 2 27 {f i) Wik (3.46)

kez kez

and n*(x) = —ffl @*(t)dt. The functions 1 and x belong to V;([-1,1]) (see (3.36)),
then we get f,llx"‘n*(x)dx =0, for 0 < x <1 (see [8]). We have

]|Q,f1E = <z F oW S (f',n}‘,p>llfj,p>, (3.47)

kez pel

and for a sequence (A )k € 72, we have

D2 Ak = <f’y > 2. ?\Jzk”f,k>

JEL kez JjEZ kez
<|fF'll2|| 2 Z?\;kn,k (3.48)
JE€Z keZ
1/2
4 2
<cllr (3 3 Il ) ,
JjeZ kez

where C is a positive constant. Then we get 3. ; 4/11Q;f1I3 < C'[|f'll2, where C’ is a
positive constant. To prove the other inequalities, we write

f=Pif+ > Qif, (3.49)
Jjzjo
then we have

PJofH < C|IPjo f1l2, (3.50)

7f deJOf Z Qif, de

J=jo

where C is a positive constant. To see that f € H*([-1,1]), we must estimate|| Y ;.. ;, (d/
dx)Q;f . We have

da ; a a a
“Lo.f= J ST Y TP Yook L.
ax if k%ZZ <f,nj,k>(dij,k> gz<dxf,n1,k>(dx%,k), (3.51)
we then get
a 2 ; 2
e, = S (e | =l (352)
The properties (3.45) and (3.52) give the result. O

REMARK 3.10. We characterize in the same way the Sobolev space H} ([—1,1]) be-
cause it is sufficient to replace the projector operator P; (resp., Q;) by P}“ (resp., by
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Q7). We prove then that || fll;: and [P} fll2 + (3=, 4J'||Q;.‘f||§)1/2 are equivalent in
Hy([-1,1]).

CONCLUSION. We have constructed in this paper two multiresolution analyses
(OMRA and BMRA) of L?([0,1]) which are generated by a finite number of basis func-
tions. For the first one, we used a direct method based on the result described in [9]
to define an orthonormal multiresolution analysis on [0, 1] which is regular and has
compact support. For the second one, we used the idea of “derivation and integration”
to get new biorthogonal multiresolution analyses on the interval. In this case, we get
the commutation property (2.13) between scale projectors and differentiability. Next,
we use the decomposition method to construct two segmented biorthogonal multires-
olution analyses. For the first one, we show that if we consider an extension operator
E from H*(] — ,0]) into H¥(R), we get decomposition of the Sobolev space H*(R)
(k € 7) by using an isomorphism between the space H*(R) (k € Z) and the space
E(H*(] — ©,0])) + Hé‘([O, +0o[). This isomorphism permit to get biorthogonal mul-
tiresolution analyses of H¥(R) (k € Z) based on those of L2(]—0,0]) and L2 ([0, +o[).
These multiscale analyses satisfy the commutation property between scale projec-
tors and derivation. All segmented BMRA constructed in this case prove that we
can analyze functions in H¥(R) (k € Z) with information in the past H¥(] — o,0])
(k € Z), the relaxation of the past in the future near zero and information in the future
H(’)‘([O, +oo[) (k € Z). To prove the second one, we have constructed in the first time
orthogonal wavelet bases in the spaces L2([—-1,0]) and L2([0,1]). Using extensions,
we get multiresolution analysis on the interval [—1,1]. These bases are associated to
simple algorithms and are adapted to the study of the Sobolev spaces H!([-1,1]) and
H([-1,1]).

Recall that all bases constructed in this work satisfy the lifting scheme [10, 14];
thus, we get wavelet bases with compact support and with the same regularity as for
Daubechies bases.
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