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EFFECTS OF DIFFRACTION AND RADIATION
ON A SUBMERGED SPHERE
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ABSTRACT. This paper deals with an investigation of the effects of diffraction and radiation
on a submerged sphere in water of finite depth d. We assume that the fluid is homoge-
neous, inviscid, and incompressible, and the fluid motion is irrotational. In real situations,
the submerged sphere will experience six degrees of freedom (i.e., motions); three transla-
tional and three rotational. In this paper, however, we consider a very idealized situation
because of the complex nature of the physical problem. Two important motions, namely,
the surge (horizontal oscillations) and the heave (vertical oscillations) motions are stud-
ied. Our attention is mainly focused on the hydrodynamic coefficients of these motions.
The crux of the problem lies entirely on the determination of these coefficients which are
inherently related to the determination of the motions of the submerged sphere in regular
waves. This type of problem is usually solved by using potential theory, and mathemat-
ically, we look for the solution of a velocity potential which satisfies Laplace’s equation
along with the free surface, body surface, and bottom boundary conditions in conjunction
with a radiation condition. This boundary value problem, in fact, consists of two separate
problems: (a) diffraction problem and (b) radiation problem.

2000 Mathematics Subject Classification. 76R10.

1. Introduction. The motions of a spherical body in a regular gravity wave are in-
vestigated in this paper. There are plenty of practical instances where this study can
be used. A simple and very useful example in the real world is the motion of a sub-
marine of spherical shape in water of finite or infinite depth if the submarine hull is
considered a neutrally buoyant sphere.

The study of waves and wave loading on submerged structures has been the subject
of active research since the days of Havelock [4], and in practice, he can be considered
as the pioneer in this area of research. A British electrical engineer turned applied
mathematician, Havelock contributed tremendously in the field of water waves. Have-
lock’s pioneering work investigating the vertical motion of a floating hemisphere in
infinite water depth was extended by Hulme [5] to investigate the added mass and
radiation damping. Gray [3] studied the scattering problem of a submerged sphere
by expanding Green'’s function and the associated velocity potential in spherical har-
monics.

An analysis of the hydrodynamic problem of linear forces acting on a submerged
sphere in an infinite water depth was investigated by Wang [9]. By employing a special
series solution, Wang solved the governing equation satisfied by the velocity poten-
tial. Wu and Taylor [10, 11] considered a submerged spheroid and obtained analytical
solutions for the linear forces. An analysis of wave induced drift forces acting on
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a submerged sphere in finite depth was presented by Wu et al. [12]. They used the
method of multipole expansions as demonstrated by Thorne [8] to determine the lin-
ear velocity potential for a finite water depth. In a recent study, Bora [1] and Bora
et al. [2] used the multipole expansion method of Thorne to obtain the velocity po-
tential for the problem of a submerged sphere in finite water depth. In that work the
mathematical problem was split into two boundary value problems: a diffraction and
a radiation problem.

This paper presents a systematic analysis for calculating the velocity potentials
arising in the diffraction and radiation problems due to a submerged sphere in
finite water depth. We have evaluated two very important hydrodynamic coefficients
inherent to the problem. By using the multipole expansion method, the added mass
and radiation damping coefficients are obtained. The mathematics is extremely com-
plex due to the presence of sophisticated mathematical functions namely, spherical
Bessel functions and associated Legendre functions which play paramount roles in
the solution process. The linear complex algebraic equation plays an important role
in the solution process, which determines the important unknown constants. Once
these constants are determined, the problem is completely solved. We believe that
the combined effects of diffraction and radiation by a submerged sphere in finite wa-
ter depth have not been investigated before, and to the best of our knowledge this
has been significantly absent from all the published literature so far. The determina-
tion of the motions using these two coefficients by the combined effects of diffraction
and radiation adds a novelty of advancement to our knowledge in this important area
of research. We have presented our analytical results in a lucid and very systematic
way.

2. Mathematical formulation for the diffraction problem. We assume that the
fluid is homogeneous, inviscid and incompressible and the fluid motion is irrotational.
The waves are also assumed to be of small amplitude. Here we consider the coefficients
related to the motion with two degrees of freedom, namely, the two translational mo-
tions in the x and z directions, that is, surge and heave motions, respectively. We
consider a surface wave of amplitude A incident on a sphere of radius a submerged
in water of finite depth d. The body is assumed to have motions with three degrees
of freedom in the presence of incident waves with angular frequency o. The wave is
parallel to the x-axis at the time of incidence on the sphere and is propagating along
the positive direction.

We consider two sets of coordinate systems. One is a right-handed Cartesian coor-
dinate system (x,y,z), in which the x-y plane coincides with the undisturbed free
surface and the z-axis is taken vertically downwards from the still water level. The
other coordinate system is the spherical coordinate system (v, 6, ) with the origin at
the geometric center (0,0,h) of the sphere. The relationship between the coordinate
systems is given by z—h = rcos 0, x = rsinfcosy, and y = rsinfsiny such that
R=x2+y2, v =+yR2+(z—h)?,tan0 =R/(z—h),for 0 < 0 < 1, and tany = y/x,
for —-m <y <.

For an incompressible and inviscid fluid, and for small amplitude wave theory with
irrotational motion, we can express the fluid motion by introducing a velocity potential
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®(7,0,y,t). This ® can be written as
®(r,0,y,1) =Re[p(r,0,y)e "], (2.1)

where Re stands for the real part.

The motion is also assumed to be harmonic. Also, from Bernoulli's equation, we get

pressure, P(v,0,y,t) as
0P
—p TR

Now, the problem can be considered as a combination of two fundamental prob-
lems: the diffraction problem of an incident wave interacting with a fixed body; and
the radiation problem of a body forced to oscillate in otherwise still water. Because of
the linearity of the situation, the time-independent velocity potential ¢ (v, 8, ) can be
decomposed into four velocity potentials ¢y, ¢pp, ¢1, and ¢3 where ¢ is the incident
potential, ¢bp is the velocity potential due to the diffraction of an incident wave acting
on the sphere; and ¢; and ¢3 are velocity potentials due to the radiation of surge and
heave, respectively.

Thus, ¢ can be written as ¢ = ¢; + ¢dp + X1¢1 + X3¢3, where X; and X3 are the
displacements for surge and heave motions, respectively. Here ¢;, ¢p, ¢, j = 1,3,
are all functions of 7, 6, and ¢ and Xj, j = 1,3, is the independent parameter.

To obtain the velocity potential ¢, the following boundary problem is to be solved.

Laplace’s equation in spherical coordinates:

P= (2.2)

Vi =0. (2.3)
Free surface boundary condition:
o
32 +K¢$p=0 onz=0. (2.4)
Bottom boundary condition:
9 =0, z=d. (2.5)
0z
Radiation condition:
. o
%%ﬁ(a?—lko)¢—0, (2.6)

where K = 0%/ g and kj is the finite depth wavenumber defined by
kosinhkod — K coshkgd = 0, (2.7)

and the incident and diffraction potentials satisfy the body surface condition

% — ——ad)D onr =a, (2.8)
on on

where n denotes the normal vector from body surface to fluid.
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The radiation potentials satisfy the body surface condition
(a) for surge motion:

aa—f =iosinfcosy onv=a, (2.9)

(b) for heave motion:

a—d) =iocosf onr=a. (2.10)
or

The boundary conditions (2.9) and (2.10) have arisen from the equation

%:(fia)nj, j=1,3. (2.11)
2.1. Incident potential. The incoming waves of amplitude A and frequency o prop-

agating in the positive x-direction can be described by the following incident velocity

potential:

Ag coshko(z—-d) pikoRcosy

o coshkod

¢r = (2.12)

Using McLachlan [6] and Thorne [8], the incident potential can be expressed in terms
of the associated Legendre functions as

[

Ag
br= 20 coshkd < Z €mi™ cosmy
_ PI(cosO) v in-d) w st(cose)]
ko (h—-d) 5 ko(h—d) _1\ym+s s
x[e Z (kor) (s+m)! e S:Zm( b (kor) (s+m)!
A (2.13)
g
ZUcoshkod Z emi™ cosmy
kor)®
X -1 S+mek0(d7h)+ek0(h7d ( 0 Pm cos O
S:Zmﬂ ) Vo smy P (cos0),
where €y = 1 and €, = 2 for m > 1, or we can write for our convenience,
b1(r,0,) = > pi(r,0) cosmy, (2.14)
m=0
where
;o Ag o, ysmgko(d=h) | oko(h-d) (kor)"
b1 = 55 coshked ™" Z{ e +e }7(s+m)!PS (cos0). (2.15)
Changing s to s +m and modifying, we have
n k T)S+m
bi1(r,0) = in Z —————pn. (cos@), (2.16)

(s+2m)'
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where
coshky(d—h)
(L1)sekold-h)  gkold-h) | coshked * = O2hOeo -
Xe= 2coshkod | _sinhked-n) | . (1)
coshkod = =~ 777U
Hence, the incident potential ¢b; can be written in the final form as
) A k r s+tm
br1(r,0,p) = > %emlmzxs (50+2) )|P}$m(c050)cosmqj. (2.18)

m=0

2.2. Diffraction potential. The diffraction velocity potential ¢ p satisfies (2.3), (2.4),
(2.5), (2.6), and (2.8). We can express this potential by making it ¢-independent as
follows: .

bo(r,0,9) = 3 $p(r,0)cosmy, (2.19)
m=0

where the y-independent potential is
dp(r,0) = > a2 A, G (2.20)
n=m

Here A, are the unknown complex coefficients and G}'* are the multipole poten-
tials. Multipole potentials are solutions of Laplace’s equation which satisfy the free
surface and bottom boundary conditions and behave like outgoing waves from the
singular point which in this case is the centre of the sphere.

The potential G]'' can be expressed as

P"(cos0) PJ'(cosx) 1
yn+l il (n-m)!
XJOO (K+k)[e—k(d+H) +(_1)n+me—kh]
0 ksinhkd — K coshkd

Gm =
(2.21)
k" coshk(z — d) Jn (kR)dk.

The quantities & and #; are defined as

R
=4/R2 _ )2 _
R2+(d+H-2)2, tan x AvH-2" (2.22)

The line integration in the expression for G passes under the singular point of the
integrand at k = k. The potentials G and ¢p satisfy Laplace’s equation, free surface
condition, bottom surface condition, and the radiation condition.

The second and third terms in (2.21) can be expanded in the region near the body
surface into a series of the associated Legendre functions by

PM(cosx) < r o\t
"TszsgoBZg(ﬁ) P, (cos0),

1 IOO (K+k)[e—k(d+H) +(_1)n+me—kh]
(m-m)!Jo ksinhkd — K coshkd

k™ coshk(z—-d)Jm(kR)dk  (2.23)

i v s+m
= Cs(n,m)(—) P (cos0),
fard 2H s+m
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where B and Cs(n,m) are given by

Bm _ 1 (s+n+m)!
ns T (2H)H (s+2m)l(n—m)!’
(2H)S+m ° (K+k) [e—k(d+H) + (_1)n+me—kh] (2.24)
G = o i+ 2m)! Jo ksinhkd — K coshkd us(kH)dk
with us(kH) as
coshkH, s5=0,2,4,...,
us(kH) = (2.25)
—sinhkH, s=1,3,5,....
Hence, the multipole potentials GI' can finally be written as
P (cosf) < ro\Sm
G = T(nﬂ ) Z [Bit +Cs(n, m)](ZH) P, (cos0). (2.26)
Using the body surface boundary condition (2.8), we may write
0 m N
> a" A 0Gn _ % (2.27)
n=m 0r lr=a oY ly=a

From the expressions for G!* and <]31 from (2.26) and (2.16), respectively, we can
evaluate (0G!"/0¥)|y—q and (0¢;/07)|+—a4, and using these two expressions in (2.27),
we get

> A [—(n+1)Pm(c039)+Z{B +Cs(n, m)}( H) (s+m)a””PS’$m(Cose)]
n=m s=0

A k a s+m
feml’"szi( 0a)

-1
(512 )(s+m)a P, (cos0).

(2.28)

Using the orthogonality property of the associated Legendre functions and modi-
fying the result, we arrive at

> ApnER =TM fors=m, m+1, m+2,..., (2.29)
n=m
where Ak
gKo . -1
Tsm:* Emlm(koa)s (S+m)!Xs—m,
EM = —(n+1)8ps + DI (s —m), (2.30)

D™ (s) = "*1(5+m)(2[;) [Cs(n,m) +B™].

The diffraction potential ¢p has the final form

00

© s+m
dp=> > a""Amn [P T(f:fe Z M +Cs(n, m)}(21;{> P (cos 9)] cosmuy.
(2.31)

m=0 n=m s=0
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3. Exciting forces. The forces associated with the incident and diffraction poten-
tials are the exciting forces which play a very important role in the wave field for a
structure in water. The exciting forces F J@ can be obtained from

F,(.e):ZipazoAJ J ¢1plr—an;jsin@dody, (3.1)
h o 0

where j = 0 corresponds to heave exciting force and j = 1 corresponds to surge ex-
citing force and we have written ¢;p = ¢+ ¢pp,

n;= —PIJ(COSG)COSj(II, j=0,1. (3.2)

From (2.18) and (2.31), we have

Wil N AT s (k@)™ oy
o lyea Z_ o emt ZXS(S+m)a(S+2m)!P5+m(COSG)COS’l’YLL/j,
m=0 s=0
- - s+m
L;’;D =2 > Amn[—(n+1)Pm(C059)+z BZ‘S+CS)( H) (33)

r=a  m=0n=m 5=0

X (s+m)a 1 PM  (cos 9)] cosmuy.

Applying the body surface condition d¢pp/0r = —0¢;/0r at ¥ = a and some sim-
plifications gives

o w— 2n+1
bmlrea=a > > Apn P (cos 0) cosmyp. (3.4)

m=0 n=m

Now the exciting forces are given by

T s .
FJ@ = —2ipa'a2AJ J b1 lr=aPi (cos0) cos jy cosysin@do dy

(3.5)
2
M J Z 2n+ 1AmPn(cos 0)sin0do,
where €;=1for j=0,€; =2 for j=1.
Using the orthogonality property of the associated Legendre functions,
Fi' = —2ipoma’ Ae;2 8 +J; Aji = —dipoma’AA;j. (3.6)
Hence, the horizontal force, that is, the surge exciting force Fx~' = fyq4 is given by
Sfxd = —4ipomAatAL. (3.7)
The vertical force, that is, the heave exciting force F. F¥ = f.q4 is given by
fzd = —4ip0'7TA6£3A01. 3.8)

Non-dimensionalizing the forces given by (3.7) and (3.8), we can write the nondi-
mensional forces as

fxd fzd

Ly P P — - '}y :
dipoAmad 1 4ipoAmal o1 (3.9)



506 MATIUR RAHMAN

4. Radiation problem. Having solved the diffraction problem for the submerged
sphere, we now turn our attention to the radiation problem. As mentioned earlier we
will consider surge and heave potentials only. All these potentials satisfy the same
set of equations except for the body boundary condition which is different for each
motion. Both being related with translational motions, surge and heave potentials
have resemblance in their expressions. Hence we proceed to find the expression for
surge and heave potentials at the same time and then evaluate them using the respec-
tive boundary conditions. One very important point to note is that due to the body
symmetry of a sphere, no moment acts upon the body.

The radiation velocity potential ¢, must satisfy

V2¢m =0 in the fluid,

a;bm+1<cl>m—0 onz=0,
o¢
aZm:() 01’12=d, 4.1)
0pm _ . L _
S =(-io)nj, j=1,3onr=a,
0

1/2 _ _

Jm R o~ ikfehn =0

The kinematic boundary condition on the body surface for the radiation problem
in the case of surge and heave motions can be written as

0pm
or

=ioP["(cos0)cosmy, 4.2)

where m = 0 corresponds to heave motion and m = 1 to surge motion.
The y-dependence of ¢, can be removed by assuming

Gm(r,0,@) = P (r,0) cosmy. 4.3)

The velocity potential (ISm (v, 0) will be expanded in multipole potentials which have
already been discussed while dealing with the diffraction potential. Now, from Thorne
[8, Section 5], removing the time dependence term,

P™(cos0) (—1)*m-l r* K+k

b (r,0) = =" ooy koK I kR)dk
(_1)m+n (4-4)
+i———— 2K e ke 1 (KR),
(m-m)!
qu can be finally expressed as
P (cos 0) (_1)m+s—1 rspm I K+k n+s ,—2kd
Pt )= rd s:zm (n—m)i(s+m)!" Fs"(cosO)PY k dk “5)
5

had (=1)m+s

HZ o (m=—m)l(s +m)! K e R (cos 0),
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where PV means the principal value of the integral is to be considered. Alternately,
we can write ¢, as

Pm(r,0) = Pm(cose)+ > [As+iBs]r Pl (cos 0), (4.6)

n+1
r s

where

_ (_1)m+571 *K+k n+s ,-2kd
As = (m—m)!(s+m)! Jo K—kk e "k,

4.7
(=)™ +1,-2Kd -
B = 2Kt 2K,
T m—-m)l(s+m)! T €
Hence the radiation potential ¢,, can be written as
pm 0) <
bdm(r,0,p) = [ ;YC:IS )4 > (As+iBs)r*P"(cos 9)] cosmuy. (4.8)
s=m
Applying the body boundary condition for m = 0,1,
- 1)pm 0) <
i P} (cos 0) = [ (n+ a)nfz(cos LS (As+iBo)sa* PP (cos 9)]. (4.9)
s=m

After simplifying, and using the orthogonality of the associated Legendre functions,
and making some re-arrangements,

i 2na" ! m+m)! . 2(n+l) (n+m)!
JSo2n+l (n-m)!T " 2n+Dant2 (n—-m)!’
(4.10)
i 2na™! (n+m)! 2 (+m)!
So2n+l m-m)! "t 37 (1-m)!

5. Determination of hydrodynamic coefficients and motion. The coefficients re-
lated with the radiation play a big role in allowing us to know the impact of motions
due to radiation. The evaluation of added-mass and damping coefficients is of utmost
importance in analyzing the contribution of radiation to the total boundary value
problem.

5.1. Surge hydrodynamic coefficients. From Sarpkaya and Isaacson [7], the com-
ponents of the radiated force can be written as
92X 0X
(R)
" _§<“‘J atZJ Aij atJ> 5-1)
where ;; and A;; are, respectively, called the added-mass and damping coefficients.
Those coefficients are taken to be real and are termed added-mass and damping co-

efficients, respectively, since they assume corresponding roles in the equations of
motion.
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The equation of motion can be written as (Newton's law of motion)

32X,
at?

X

BT

(Mij+[,lij) +Cinj:Fi(e), (5.2)
where M;; is the mass matrix, C;; the hydrodynamic stiffness matrix and Ff) are the
exciting forces associated with the diffraction potential.

The exciting force can be considered as the forcing function of the motion. It is em-
phasized that this equation relates to an unrestricted floating or submerged body. The
added-mass coefficients p;; are analogous to those for a body accelerating in an un-
bounded fluid, but they are not the same. The damping coefficients A;; are associated
with anet outward flux of energy in the radiated waves and thus represent only damp-
ing due to (radiating) fluid motion. The coefficients y;; and A;; are not dimensionless
but possess appropriate dimensions.

The radiated force F,; due to the surge motion can be written as the real part of
fr1e79t where f, is given by

fr1:2ipa2(TAJ J X1p1(a,0,p)n, sin0dody
o0 (5.3)
=—2ipa20AJ J Xip1(a,0,yp)sin® OcosywdOdy.
0 0

This radiated force can be conveniently decomposed into components in phase with
the velocity and the acceleration,

2
Fr = —(IJ11W4’)\11F>1 (5.4)

where X; = Re{X;e"it}. Hence, we can write
f"ll = —{(—O’Z)U11X1 +A11(—i0’))21} = {O’zuuf(l +i0’/\11)21}. (5.5)
Then equating relations (5.3) and (5.5), we get

™ s
o’un X, +icAn X, = —2ipa20AJ J Xi1¢1(a,0,y)sin® @cosydOdy (5.6)
o Jo

which will yield the following after cancelling X, throughout

2\11 _2ipa2A

™ s
Uil +i— = I J ¢1(a,0,y)sin® OcosywdOdy. (5.7)
o o o Jo

Hence, equating the real and imaginary parts, the added-mass and damping coeffi-
cients are, respectively, given by

2 T T
Uil = —ZIO%J' J Re[igpi(a,O,y)]sin?Ocosyddy, (5.8)
o Jo

ALl =—2pAa2J J Im[i¢,(a,8,y)]sin®OcosydOdy. (5.9)
0 0
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The surge potential ¢, (r,0,y) at ¥ = a can be written from (4.8) as

1 (o]
bi(a,0,y) = [%ﬁ?g) > (An+By)a"Pl(cos 9)] cos . (5.10)

n=1

Hence using (5.9) in (5.7) and (5.8) and simplifying by the use of the associated
Legendre functions, we obtain the added-mass and damping coefficients as

2pAa® (M (M| < npl 1 ;
Uil = — Z —BpaP,(cos0) | cosy x P (cosO)sinOcosydody
n=1
3
_4pa ‘ITAB
3
1
Al = —2pAa’® J J [P 6(51(1819) + Z Ana"P (cos@)]cosq/xP1 (cos0)sinfdody
4 3
= —§p1TA[1 +Aja’].
(5.11)
Or else we can represent p;; and A;; as
Hi _B, M a4 (5.12)
(3/4)(padmA/o) ’ (4/3)pmA

Using Newton’s law of motions, that is, mass times acceleration = the external
forces, we get
02X, 02X, 0X1
W = Mg at
where M, is the mass of the displaced fluid, the first two terms on the right-hand
side are due to the radiated force in the x-direction in which u;; is the surge added
mass, A;; the surge damping coefficient and F¥ the x- component of the exciting
force. Although elementary in form, (5.13) plays a fundamental role in the oscillating
system. Therefore we must always cite the form of the equation.
In complex form, the equation of motion can be summed up as

—An—— +F9, (5.13)

(M1 +p11) (—i0) 2 X1 + (=i0) X1A11 = fra (5.14)
which simplifies to
(M11 +[111)0'2X1+i0')212\11 = *fxd, (515)
where
™ s
Jxd = —2ipaa2AJ J b (a,0,yp)sin® @cosy dOdy. (5.16)
o Jo
That gives us
X =- Sxa (5.17)

O'Z(Ml] +[,l]1+i/\11/0').

The amplitude of the surge oscillation is thus determined by (5.17). This solution
to this expression is inherently connected to the added mass and radiation damping
coefficients.
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5.2. Heave hydrodynamic coefficients. The radiated force F,3 due to the heave
motion can be written as the real part of f,3e" 1! where f,3 is given by

fr3= —2ipa2Aoj J X3¢s(a,0,p)sinOcos0dody. (5.18)
0 JO

Considering X3 = Re{X;3e~i9t}, we have, proceeding as in Section 5.1,

; 2 ~TT T
u33+i%=7%J J $3(a,0,y)sin0cos0dOdy, (5.19)
0 0

where p33 and Asz are the heave added-mass and damping coefficient due to heave
motion, respectively. Hence,

2pAa?

igs = — J" J"Re[iqba(a,e,(,u)] sin0dody, (5.20)
0 0

™ ™
A3z = —2pAazI J Im[ig3(a,0,yp)]sin@cos0dOdy. (5.21)
o Jo

The heave potential ¢3(r,0,y) at ¥ = a can be written from (4.8) as

e (COSG) Z Dna"PY(cos0), Dp=Ay+iBn.  (5.22)

P3(a,0,y) =

Therefore, using (5.21) in (5.19) and (5.20) and simplifying with the associated
Legendre functions, we obtain the heave coefficients as

2 T T L
Uss = — 2pa AJ j ( > Bna”Pg(COSQ)) x PY(cos0)sinf@dOdy
i 070 \n=0 (5.23)
_ 4 pa TrABl,
3 o
2 ™ 0
Az = —MJ J [#ﬁsﬂ) + Z AnaPl(cos 9)]P1 (cos0)sin0dody
g Jodoloa (5.24)
4 pmA 3
=——"—(14+A .
3 o (1+A,a°)
Or else we can represent ps3 and Asz as
S N S W) (5.25)
(4/3)pa’Am ’ (4/3)(pAtr/0)

The equation of motion (Newton’s law of motion) in complex form can be written as
v33Xs + (Ms3 + p33) (—10)2 X3 + (—i0) X3A33 = fza, (5.26)

where v33 is the restoring coefficient which is a known quantity, Ms3 is the mass of
the displaced fluid and

™ s
Sea = —21’,00@214[O JO bip(a,0,p)sinfcos0dOdy. (5.27)
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Hence
Xv fzd

= - . 5.28
37 V33— 02(Msz + pz3 + i(As3/0)) (5:28)

It is to be noted here that the amplitude of the heave oscillation is assumed to have
arestoring force component in the vertical direction, and has been given by (5.28). The
evaluation of this amplitude is connected with the determination of the added mass
coefficient and the radiation damping which makes the problem interesting. Once the
surge amplitude and the heave amplitude have been completely determined, the total
forces on the submerged sphere due to diffraction and radiation can be determined.
The next section deals with this investigation.

6. Evaluation of forces. This section is concerned with the evaluation of wave
forces due to the combined effects of diffraction and radiation. To the best of our
knowledge, the following analysis has not been reported in the existing literature.
Therefore, we present the analysis in this section. We find the forces acting along the
x and z directions. The component of the horizontal force f, can be computed from

Jx = fxa+ fxr, (6.1)

where fy4 is the x-component of the diffraction force and fy; the force due to surge
motion. The mathematical expression for each case is given by

Sxa = —2ip0a2AJ J b (a,0,p)sin® Ocosywdody, 6.2)
o Jo

™ s
S = —2ip0'a2Af(II J ¢1(a,0,y)sin® OcosywdOdy. (6.3)
o Jo

It is to be emphasized here that the double integrals look very simple but the in-
tegrands are complicated expressions. Considerable efforts have been made in the
integration process as can be seen in the following.

The vertical force component f, can be written as

Sz = fza+ fz3, (6.4)

where f; is the z-component of diffraction force and f,3 the force due to the heave
motion. The mathematical expression for each case is given by

Sza = —ZipU(ZZAJ J ¢ip(a,0,p)sinfcosOdody, (6.5)
o Jo
R ™ T
Sz3 = —2ip0'a2AX3J J ¢3(a,0,y)sinOcosO0dOdy. (6.6)
o Jo

Similar efforts have also been made in the evaluation of these double integrals with
complicated expressions as integrands. The final solutions are summarized in the
following.
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Substituting the value of ¢, (a,0,y) from (5.10) into (6.3), we can evaluate fy; as

) . (M (T[Pi(cosf) <
fr1 = —2ipoa’mAX, JO Jo ["aT +n§1Dna"P}L(c059)]coqu
x P} (cos0) cosysinfdody (6.7)

= —%ipTrAO')?l(l +D,a’).
Substituting the value of ¢3(a,0,y) from (5.22) into (6.6), we can evaluate f3 as

—oinoazax. [ [T [PrlcosO) < npo 0 ;
fo3 = —2ipoa’AXs; ot > Dypa™PY(cos®) [P (cos0)sin0dody
0 Jo n=0

4 A .
= —§Aip0'er3[l +Dia®].

(6.8)
Hence, the total force along the x-axis is
fx = fea+fe1 = —4ipomalAy, - %iprr(rf(l (1+Dya®). (6.9)
Similarly, the total force along the z-axis is
fo = fra+ fo3 = —dipoma’AAg — %ip(rnAXg (1+Dia®), (6.10)

where X; and X3 are given by (5.17) and (5.28) and in the following we have rewritten
them for ready reference only.

fxd % fzd

- , X3 = -
o2 (M +pn+i(An /o)) P Vi3 —02(Maz + pzz +i(As3/0))

X;=- (6.11)
with p11, A1, p33, and A3s as already obtained. So, (6.9) and (6.10), respectively, give
us the total horizontal and vertical forces due to the combined effect of diffraction
and radiation. The evaluation of the forces along the x and z axes helps us in under-
standing the combined effect of diffraction and radiation.

7. Results and discussions. Exciting force coefficients obtained for the submerged
sphere give good comparison with the results obtained by Wang [9] for infinite water
depth. In long waves (Ka < 0.1), the shallow water heave exciting force at the fixed
submergence h/a = 1.25 reduces significantly from that in deep water. The converse
is true for surge exciting forces where the values in water of depth 2.5a are more than
double of those in depth 20a.

Tables 7.1, 7.2, 7.3, and 7.4 present the results for the added-mass and damping
coefficients for both surge and heave motions for different submergence values. The
results show good agreement with those obtained by Wang [9]. From Tables 7.1 and
7.3, we see that the added-mass pp; and ps33 steadily decrease after reaching the maxi-
mum values in the range 0.4 < Ka < 0.5. After Ka = 1.5, they vary very insignificantly.
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TABLE 7.1. Surge added-mass u11 for different submergence (h/a) values.

— h/a —

Ka 1.5 1.75 2.0 3.0

0 0.5287 0.5179 0.5118 0.5034
0.1 0.5403 0.5266 0.5187 0.5066
0.2 0.5545 0.5363 0.5255 0.5082
0.3 0.5656 0.5422 0.5283 0.5069
0.4 0.5693 0.5416 0.5255 0.5030
0.5 0.5646 0.5347 0.5187 0.4986
0.6 0.5527 0.5234 0.5092 0.4949
0.7 0.5359 0.5107 0.4989 0.4920
0.8 0.5160 0.4966 0.4895 0.4905
0.9 0.4962 0.4841 0.4815 0.4893
1.0 0.4776 0.4732 0.4752 0.4896
1.2 0.4475 0.4578 0.4675 0.4903
1.4 0.4286 0.4497 0.4648 0.4915
1.6 0.4189 0.4475 0.4652 0.4925
1.8 0.4158 0.4481 0.4676 0.4930
2.0 04171 0.4505 0.4698 0.4938
3.0 0.4381 0.4653 0.4787 0.4950
4.0 0.4523 0.4721 0.4825 0.4955
5.0 0.4582 0.4750 0.4839 0.4966

TABLE 7.2. Surge damping coefficients A1 for different submergence (h/a) values.

— h/a -

Ka 1.5 1.75 2.0 3.0
0 0. 0. 0. 0.

0.1 0.0018 0.0017 0.0016 0.0013
0.2 0.0113 0.0098 0.0088 0.0057
0.3 0.0285 0.0237 0.0200 0.0106
0.4 0.0506 0.0398 0.0317 0.0138
0.5 0.0734 0.0544 0.0412 0.0147
0.6 0.0934 0.0655 0.0472 0.0138
0.7 0.1082 0.0722 0.0496 0.0120
0.8 0.1172 0.0745 0.0489 0.0099
0.9 0.1205 0.0733 0.0460 0.0076
1.0 0.1190 0.0695 0.0418 0.0057
1.2 0.1063 0.0574 0.0317 0.0030
1.4 0.0873 0.0438 0.0223 0.0014
1.6 0.0678 0.0318 0.0148 0.0006
1.8 0.0504 0.0220 0.0094 0.0003
2.0 0.0363 0.0148 0.0058 0.0001
3.0 0.0053 0.0015 0.0004 0.0000
4.0 0.0005 0.0001 0.0000 0.0000
5.0 0.0000 0.0000 0.0000 0.0000
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TABLE 7.3. Heave added-mass p33 for different submergence (h/a) values.

— h/a —

Ka 1.5 1.75 2.0 3.0

0.0 0.5586 0.5362 0.5239 0.5070
0.1 0.5834 0.5539 0.5375 0.5131
0.2 0.6139 0.5742 0.5518 0.5166
0.3 0.6365 0.5859 0.5570 0.5133
0.4 0.6421 0.5831 0.5506 0.5055
0.5 0.6272 0.5667 0.5350 0.4969
0.6 0.5955 0.5414 0.5147 0.4895
0.7 0.5541 0.5127 0.4939 0.4845
0.8 0.5095 0.4846 0.4752 0.4890
0.9 0.4680 0.4598 0.4598 0.4794
1.0 0.4316 0.4394 0.4481 0.4793
1.2 0.3788 0.4123 0.4346 0.4805
1.4 0.3497 0.3998 0.4306 0.4827
1.6 0.3381 0.3971 0.4321 0.4847
1.8 0.3374 0.4000 0.4362 0.4863
2.0 0.3428 0.4055 0.4412 0.4874
3.0 0.3852 0.4331 0.4587 0.4901
4.0 0.4091 0.4457 0.4654 0.4910
5.0 0.4203 0.4513 0.4686 0.4918

TABLE 7.4. Heave damping coefficients A33 for different submergence (h/a) values.

— h/a -

Ka 1.5 1.75 2.0 3.0
0 0. 0. 0. 0.

0.1 0.0040 0.0036 0.0033 0.0026
0.2 0.0245 0.0208 0.0182 0.0116
0.3 0.0631 0.0505 0.0416 0.0215
0.4 0.1129 0.0847 0.0658 0.0276
0.5 0.1627 0.1149 0.0848 0.0293
0.6 0.2037 0.1361 0.0958 0.0275
0.7 0.2304 0.1473 0.0991 0.0237
0.8 0.2423 0.1490 0.0964 0.0193
0.9 0.2414 0.1439 0.0896 0.0150
1.0 0.2318 0.1340 0.0805 0.0115
1.2 0.1966 0.1078 0.0604 0.0059
1.4 0.1554 0.0809 0.0421 0.0028
1.6 0.1172 0.0579 0.0279 0.0013
1.8 0.0856 0.0399 0.0177 0.0005
2.0 0.0609 0.0267 0.0109 0.0002
3.0 0.0085 0.0026 0.0007 0.0000
4.0 0.0009 0.0002 0.0003 0.0000
5.0 0.0001 0.0000 0.0000 0.0000
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Tables 7.2 and 7.4 show that the damping coefficients A;; and A33 start from zero and
after a certain value of Ka, they decrease uniformly to reach zero again when Ka = 5.0.
Also, we notice that the damping coefficients are smaller compared to the added-mass
for all the submergence values.

Analytic expressions for the total forces have been determined in Section 6. The ef-
fects of diffraction and radiation have been accounted for. The research in this area is
continuing. Our next step will be to display the results in graphical form considering
the effects of diffraction, the effects of radiation, and the combined effects of diffrac-
tion and radiation on a submerged sphere in regular waves of finite water depth. These
results, if possible, will be compared with the available experimental or field data. We
are very enthusiastic in our goal to collect field data to confirm this mathematical
theory.
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