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SLIGHTLY β-CONTINUOUS FUNCTIONS
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Abstract. We define a function f : X → Y to be slightly β-continuous if for every clopen
set V of Y , f−1(V)⊂ Cl(Int(Cl(f−1(V)))). We obtain several properties of such a function.
Especially, we define the notion of ultra-regularizations of a topology and obtain interest-
ing characterizations of slightly β-continuous functions by using it.
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1. Introduction. Semi-open sets, preopen sets, α-sets, and β-open sets play an im-

portant role in the researches of generalizations of continuity in topological spaces.

By using these sets many authors introduced and studied various types of general-

izations of continuity. In 1980 Jain [15] introduced the notion of slightly continuous

functions. Recently, Nour [24] defined slightly semi-continuous functions as a weak

form of slight continuity and investigated the functions. Quite recently, Noiri and

Chae [23] have further investigated slightly semi-continuous functions. On the other

hand, Pal and Bhattacharyya [7] defined a function to be faintly precontinuous if the

preimages of each clopen set of the codomain is preopen and obtained many proper-

ties of such functions. Slight continuity implies both slight semi-continuity and faint

precontinuity but not conversely.

In this paper, we introduce the notion of slight β-continuity which is implied by

both slight semi-continuity and faint precontinuity. We establish several properties of

such functions. Especially, we define the notion of ultra-regularization of a topology

and obtain interesting characterizations of slight β-continuity, slight semi-continuity,

faint precontinuity and slight continuity. Moreover, we investigate the relationships

between slight β-continuity, contra-β-continuity [13], and β-continuity [1].

2. Preliminaries. Let (X,τ) be a topological space and A a subset of X. The closure

of A and the interior of A are denoted by Cl(A) and Int(A), respectively. A subset A is

said to be β-open [1] or semi-preopen [5] (resp., semi-open [17], preopen [19], α-open

[21]) if A⊂ Cl(Int(Cl(A))) (resp., A⊂ Cl(Int(A)), A⊂ Int(Cl(A)), A⊂ Int(Cl(Int(A)))).
The family of all semi-open (resp., preopen, α-open, β-open) sets in (X,τ) is denoted

by SO(X) (resp., PO(X), α(X), β(X), or SPO(X)). The complement of a semi-open

(resp., preopen,α-open, β-open) set is said to be semi-closed (resp., preclosed,α-closed,

β-closed, or semi-preclosed). If A is both semi-open and semi-closed, then it is said

to be semi-regular [9]. If A is both β-open and β-closed, then it is said to be semi-

pre-regular or β-clopen. The family of all semi-regular (resp., semi-preopen, semi-pre-

regular, clopen) sets of X is denoted by SR(X) (resp., SPO(X), SPR(X), CO(X)). The

family of all clopen (resp., semi-preopen, semi-pre-regular) sets of X containing x ∈
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X is denoted by CO(X,x) (resp., SPO(X,x), SPR(X,x)). The intersection of all semi-

closed (resp., preclosed, β-closed) sets of X containing A is called the semi-closure

[8] (resp., preclosure [11], semi-preclosure [5] or β-closure [3]) of A and is denoted by

sCl(A) (resp., pCl(A), spCl(A), or βCl(A)).
The following basic properties of the semi-preclosure are useful in the sequel.

Lemma 2.1 (see Abd El-Monsef et al. [3] and Andrijevíc [5]). The following statements

hold for a subset A of a topological space (X,τ):
(a) spCl(A)=A∪ Int(Cl(Int(A))),
(b) x ∈ spCl(A) if and only if A∩U �= ∅ for every U ∈ SPO(X,x),
(c) A is β-closed if and only if A= spCl(A).

Lemma 2.2 (see Jafari and Noiri [14]). If A is a β-open set of a topological space

(X,τ), then spCl(A) is β-open in (X,τ).

Throughout the present paper, (X,τ) and (Y ,σ) (or simply X and Y ) denote topo-

logical spaces and f : (X,τ)→ (Y ,σ) (or simply f : X → Y ) presents a (single-valued)

function.

Definition 2.3. A function f : (X,τ)→ (Y ,σ) is said to be slightly continuous [15]

(resp., slightly semi-continuous [24], faintly precontinuous [7]) if for each point x ∈ X
and each clopen set V containing f(x) there exists an open set U (resp., U ∈ SO(X),
U ∈ PO(X)) containing x such that f(U)⊂ V .

Definition 2.4. A function f : (X,τ)→ (Y ,σ) is said to be β-continuous [1] (resp.,

semi-continuous [17], precontinuous [19]) if for each point x ∈X and each open set V
containing f(x) there exists U ∈ SPO(X) (resp., U ∈ SO(X), U ∈ PO(X)) containing x
such that f(U)⊂ V .

3. Characterizations

Definition 3.1. A function f : (X,τ) → (Y ,σ) is said to be slightly β-continuous

(briefly sl.β.c.) if for each point x ∈ X and each clopen set V containing f(x) there

exists a β-open set U of X containing x such that f(U)⊂ V .

Theorem 3.2. For a function f : (X,τ)→ (Y ,σ), the following statements are equiv-

alent:

(a) f is slightly β-continuous;

(b) f−1(V)∈ SPO(X) for each V ∈ CO(Y);
(c) f−1(V)∈ SPR(X) for each V ∈ CO(Y);
(d) for each x ∈X and each V ∈ CO(Y ,f (x)), there exists U ∈ SPR(X,x) such that

f(U)⊂ V ;

(e) for each x ∈X and each V ∈ CO(Y ,f (x)), there exists U ∈ SPO(X,x) such that

f(spCl(U))⊂ V .

Proof. The proof is easily obtained by using Lemma 2.2.

Let (X,τ) be a topological space. Since the intersection of two clopen sets of (X,τ)
is clopen, the clopen subsets of (X,τ)may be used as a base for a topology on X. The
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topology is called the ultra-regularization of τ and is denoted by τu. A topological

space (X,τ) is said to be ultra regular [12] if τ = τu. Each element of τu is said to be

δ∗-open [29]. Note that ultra-regular spaces are known as 0-dimensional spaces.

Definition 3.3. A function f : (X,τ)→ (Y ,σ) is said to be clopen-continuous [28]

if for each point x of X and each open set V containing f(x), there exists a clopen

set U containing x such that f(U)⊂ V .

Remark 3.4. A space (X,τ) is ultra-regular if and only if every continuous function

f : (X,τ)→ (Y ,σ) is clopen-continuous.

Theorem 3.5. For a function f : (X,τ)→ (Y ,σ), the following statements are equiv-

alent:

(a) f : (X,τ)→ (Y ,σ) is slightly continuous;

(b) f : (X,τ)→ (Y ,σu) is clopen-continuous;

(c) f : (X,τ)→ (Y ,σu) is continuous;

(d) f : (X,τu)→ (Y ,σu) is continuous.

Proof. (a)⇒(b). Let x ∈X and V be an open set of (Y ,σu) containing f(x). There

exists a clopen setW of (Y ,σ) such that f(x)⊂W ⊂ V . Since f is slightly continuous,

there exists a clopen set U containing x such that f(U) ⊂ W and hence f(U) ⊂ V .

This shows that f(X,τ)→ (Y ,σu) is clopen-continuous.

(b)⇒(c). This is obvious.

(c)⇒(a). Let x ∈ X and V be a clopen set of (Y ,σ) containing f(x). Then V is an

open set of (Y ,σu) and there exists U ∈ τ containing x such that f(U)⊂ V . Therefore,

f : (X,τ)→ (Y ,σ) is slightly continuous.

(b)⇒(d). Let x ∈X and V any open set of (Y ,σu) containing f(x). By (b) there exists

a clopen subsetU of (X,τ) containingx such that f(U)⊂ V . SinceU is open in (X,τu),
f(X,τu)→ (Y ,σu) is continuous.

(d)⇒(c). Since τu ⊂ τ , the proof is obvious.

Definition 3.6. A function f : (X,τ) → (Y ,σ) is said to be β-clopen-continuous

(resp., pre-clopen-continuous, semi-clopen-continuous) if for each pointx ofX and each

open set V containing f(x), there exists a β-clopen (resp., pre-clopen, semi-regular)

set U containing x such that f(U)⊂ V .

Theorem 3.7. For a function f : (X,τ)→ (Y ,σ), the following statements are equiv-

alent:

(a) f :(X,τ)→(Y ,σ) is sl.β.c. (resp., slightly semi-continuous, faintly precontinuous);

(b) f(X,τ) → (Y ,σu) is β-clopen continuous (resp., semi-clopen continuous, pre-

clopen continuous);

(c) f(X,τ)→ (Y ,σu) is β-continuous (resp., semi-continuous, precontinuous);

(d) f(X,τu)→ (Y ,σu) is β-continuous (resp., semi-continuous, precontinuous).

Proof. The proof is similar to that of Theorem 3.5 and is thus omitted.

Corollary 3.8 (see Pal and Bhattacharyya [7]). A function f : (X,τ) → (Y ,σ) is

faintly precontinuous if and only if f−1(V)∈ PO(X) for every δ∗-open set V of Y .
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4. Comparisons. In this section, we investigate the relationships between slightly

β-continuous functions and other related functions. For this purpose, we will recall

some definitions of functions.

Definition 4.1. A function f :X → Y is said to be weakly β-continuous [27] (resp.,

weakly semi-continuous [6], almost weakly continuous [16], or quasi precontinuous [25])

if for each point x ∈X and each open set V containing f(x) there exists U ∈ SPO(X)
(resp., U ∈ SO(X), U ∈ PO(X)) containing x such that f(U)⊂ Cl(V).

Definition 4.2. A function f :X → Y is said to be contra-β-continuous [13] (resp.,

contra-precontinuous) [13] if f−1(F)∈ SPO(X) (resp., f−1(F)∈ PO(X)) for each closed

set F of Y .

Definition 4.3. A function f :X → Y is said to be β-quasi-irresolute [14] if for each

point x ∈X and each V ∈ SO(Y) containing f(x) there exists U ∈ SPO(X,x) such that

f(U)⊂ Cl(V).

A function is said to be β-irresolute [18] if the preimages of β-open sets are β-open.

It is obvious that a function f : X → Y is β-irresolute if and only if for each point

x ∈ X and each V ∈ SPO(Y ,f (x)) there exists U ∈ SPO(X,x) such that f(U) ⊂ V .

We give an interesting characterization of β-quasi-irresolute functions and make

clear the fact that β-irresolute functions are β-quasi-irresolute. A function f : X → Y
is β-quasi-irresolute if and only if for each point x ∈ X and each V ∈ SPO(Y ,f (x))
there exists U ∈ SPO(X,x) such that f(U)⊂ Cl(V). This follows from the fact that for

each β-open set V of Y , Cl(V)= Cl(Int(Cl(V))) and Cl(V)∈ SO(Y).
From the above definitions we obtain the following diagram:

β-quasi-irresolute

β-continuous weakly β-continuous weakly semi-continuous

contra-β-continuous slightly β-continuous slightly semi-continuous

contra-precontinuous faintly precontinuous slightly continuous

almost weakly continuous

Remark 4.4. Slight semi-continuity and faint precontinuity are independent of each

other as Examples 4.5 and 4.6 show.

Example 4.5. Let X = {a,b,c}, τ the indiscrete topology, and σ = {∅,X,{a},
{b,c}}. The identity function f : (X,τ) → (X,σ) is precontinuous and faintly pre-

continuous. But it is not slightly semi-continuous since f−1({a}) is not semi-open in

(X,τ).
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Example 4.6. Let X = {a,b,c}, τ = {∅,{a},{b},{a,b},X}, and σ = {∅,{a},{b,c},
X}. Then the identity f : (X,τ) → (X,σ) is slightly semi-continuous by [23, Exam-

ple 2.1] but not faintly precontinuous as f−1({a}) is not preclosed in (X,τ).

Remark 4.7. Contra-β-continuity and β-continuity are independent of each other

as Examples 4.8 and 4.9 show.

Example 4.8. The identity function on the real line with the usual topology is con-

tinuous and hence β-continuous. But it is not contra-β-continuous since the preimage

of any singleton is not β-open.

Example 4.9. Let X = {a,b} be the Sierpinski space by setting τ = {∅,{a},X} and

σ = {∅,{b},X}. The identity function f : (X,τ)→ (Y ,σ) is contra-continuous by [10,

Example 2.5] and hence contra-β-continuous but not β-continuous.

Definition 4.10. A topological space X is said to be

(a) extremally disconnected (briefly E.D.) if the closure of each open set of X is

open in X,

(b) a PS-space [4] if every preopen set of X is semi-open in X,

(c) locally indiscrete [20] if every open set of X is closed in X.

Theorem 4.11. For a function f :X → Y , the following properties hold:

(a) If f is sl.β.c. and X is E.D., then f is faintly precontinuous.

(b) If f is sl.β.c. and X is a PS-space, then f is slightly semi-continuous.

(c) If f is sl.β.c. and X is an E.D. and PS-space, then f is slightly continuous.

Proof. (a) Let x ∈ X and V ∈ CO(Y ,f (x)). Now, put U = f−1(V). Since X is E.D.,

we have U ∈ PO(X,x) by [4, Theorem 5.1] and f(U) ⊂ V . Therefore, f is faintly pre-

continuous.

(b) Since X is a PS-space, every β-open set of X is semi-open by [4, Theorem 2.1]

and the result follows easily.

(c) Let V ∈ CO(Y). Then by (a) and (b), f−1(V) is semi-regular and pre-clopen in X.

Since f−1(V) is semi-closed and preopen, we have Int(Cl(f−1(V))) = f−1(V). Since

f−1(V) is semi-open and preclosed, we have Cl(Int(f−1(V))) = f−1(V). Therefore,

f−1(V)∈ CO(X) and f is slightly continuous.

Remark 4.12. We may define a function f : X → Y to be slightly α-continuous

if f−1(V) is α-open in X for every clopen set V of Y . However, it is known in [22,

Lemma 3.1] that a subset is α-open if and only if it is semi-open and preopen. There-

fore, by the proof for Theorem 4.11(c) each α-open and α-closed set is clopen. Hence,

slight α-continuity is equivalent to slight continuity.

Theorem 4.13. For a function f : (X,τ)→ (Y ,σ), the following properties hold:

(a) If f is sl.β.c. and (Y ,σ) is E.D., then f is β-quasi-irresolute.

(b) If f is sl.β.c. and (Y ,σ) is ultra regular, then f is β-continuous.

(c) If f is sl.β.c. and (X,τ) is a PS-space and (Y ,σ) is E.D., then f is weakly semi-

continuous.

(d) If f is sl.β.c. and (Y ,σ) is locally indiscrete, then f is β-continuous and contra

β-continuous.
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Proof. (a) Let x ∈ X and V ∈ SO(Y) containing f(x). Then we have Cl(V) =
Cl(Int(V)) and hence Cl(V) is clopen in (Y ,σ) since (Y ,σ) is E.D. Since f is sl.β.c.,

there exists U ∈ SPO(X,x) such that f(U)⊂ Cl(V). Therefore, f is β-quasi-irresolute.

(b) Since (Y ,σ) is ultra regular, σu = σ and by Theorem 3.7 the proof is obvious.

(c) Letx ∈X and V any open set containing f(x). Then we have Cl(V)∈ CO(Y) since

(Y ,σ) is E.D. Since f is sl.β.c., there existsU ∈ SPO(X,x) such that f(U)⊂ Cl(V). Since

(X,τ) is a PS-space,U ∈ SO(X) by [4, Theorem 2.1], hence f is weakly semi-continuous.

(d) Let V be any open set of (Y ,σ). Since (Y ,σ) is locally indiscrete, V is clopen

and hence f−1(V) is β-open and β-closed in (X,τ). Therefore, f is β-continuous and

contra β-continuous.

Theorem 4.14. For a function f :X → Y , the following properties hold:

(a) If f is sl.β.c., X is E.D. and Y is locally indiscrete, then f is contra-precontinuous.

(b) If f is sl.β.c. and X and Y are E.D., then f is almost weakly continuous.

Proof. (a) Let F be any closed set of Y . By Theorem 4.13(d), f is contra-β-contin-

uous and f−1(F) ∈ SPO(X). Since X is E.D., f−1(F) ∈ PO(X) and hence f is contra-

precontinuous.

(b) Letx ∈X andV any open set containing f(x). Then we have Cl(V)∈ CO(Y) since

Y is E.D. Since f is sl.β.c., there exists U∈SPO(X,x) such that f(U)⊂Cl(V). Since X
is E.D., U ∈ PO(X), hence f is almost weakly continuous by [26, Theorem 3.1].

5. Properties. The composition of two slightly β-continuous functions need not be

slightly β-continuous as shown by the following example due to Pal and Bhattacharyya

[7].

Example 5.1. Let X = {a,b,c}, τ = {∅,X,{a}}, σ = {∅,X}, and θ = {∅,X,{a},
{b,c}}. Let f : (X,τ)→ (X,σ) be the identity function and g : (X,σ)→ (X,θ) a func-

tion defined by g(a) = b, g(b) = c, and g(c) = a. Then f and g are faintly precon-

tinuous by [7, Example 4] and hence sl.β.c. However, the composition g ◦ f is not

sl.β.c.

If f : X → Y is an open continuous function, then f is β-irresolute and also the

image f(U) of each β-open set of X is β-open in Y .

Theorem 5.2. Let f :X → Y and g : Y → Z be functions. Then

(a) if f is sl.β.c. and g is slightly continuous, then g◦f is sl.β.c.,

(b) if f is β-irresolute and g is sl.β.c., then g◦f is sl.β.c.,

(c) let f be an open continuous surjection. Then g is sl.β.c. if and only if g ◦f is

sl.β.c.

Proof. (a) Let W ∈ CO(Z). By the slight continuity of g, g−1(W) ∈ CO(Y) and

hence f−1(g−1(W)) = (g ◦f)−1(W) ∈ SPO(X) since f is sl.β.c. This shows that g ◦f
is sl.β.c.

(b) Let W ∈ CO(Z). By the slight β-continuity of g, g−1(W) ∈ SPO(Y) and hence

f−1(g−1(W)) = (g ◦f)−1(W) ∈ SPO(X) since f is β-irresolute. This shows that g ◦f
is sl.β.c.
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(c) Let g be sl.β.c. Then, by (b) g ◦ f is sl.β.c. Conversely, let g ◦ f be sl.β.c. and

W ∈ CO(Z). Then (g ◦f)−1(W) ∈ SPO(X). Since f is an open continuous surjection,

f((g◦f)−1(W))= g−1(W)∈ SPO(Y). This shows that g is sl.β.c.

Lemma 5.3 (see Abd El-Monsef et al. [1]). Let X be a topological space and A,U
subsets of X. Then

(a) if U is α-open in X and A∈ SPO(X), then A∩U ∈ SPO(U),
(b) if A∈ SPO(U) and U ∈ SPO(X), then A∈ SPO(X).

Theorem 5.4. Let {Uγ : γ ∈ Γ} be any α-open cover of a topological space X. A func-

tion f :X → Y is sl.β.c. if and only if the restriction f |Uγ :Uγ→Y is sl.β.c. for each γ∈Γ .

Proof

Necessity. Let γ be an arbitrarily fixed index and Uγ an α-open set of X. Let

x ∈ Uγ and V ∈ CO(Y) containing (f | Uγ)(x) = f(x). Since f is sl.β.c., there exists

U ∈ SPO(X) containing x such that f(U)⊂ V . Since Uγ is α-open in X, by Lemma 5.3

x ∈ U∩Uγ ∈ SPO(Uγ) and (f | Uγ)(U∩Uγ)= f(U∩Uγ)⊂ f(U)⊂ V . This shows that

f |Uγ is sl.β.c.

Sufficiency. Let x ∈X and V ∈ CO(Y) containing f(x). There exists a γ ∈ Γ such

that x ∈ Uγ . Since f | Uγ : Uγ → Y is sl.β.c., there exists U ∈ SPO(Uγ) containing x
such that (f | Uγ)(U) ⊂ V . By Lemma 5.3, U ∈ SPO(X) and f(U) ⊂ V . Therefore, f
is sl.β.c.

Theorem 5.5. A function f : X → Y is sl.β.c. if the graph function g : X → X×Y ,

defined by g(x)= (x,f (x)) for each x ∈X, is sl.β.c.

Proof. Suppose that g is sl.β.c. Let F be a clopen set of Y . ThenX×F is a clopen set

of X×Y . Since g is sl.β.c., g−1(X×F)= f−1(F)∈ SPO(X). Therefore, f is sl.β.c.

Let {Xλ : λ ∈ Λ} and {Yλ : λ ∈ Λ} be two families of topological spaces with the

same index set Λ. The product space of {Xλ : λ ∈ Λ} is denoted by Π{Xλ : λ ∈ Λ}
(or simply ΠXλ). Let fλ : Xλ → Yλ be a function for each λ ∈ Λ. The product function

f :ΠXλ→ΠYλ is defined by f({xλ}) = {fλ(xλ)} for each {xλ} ∈ΠXλ.

Theorem 5.6. If a function f : X → ΠYλ is sl.β.c., then Pλ ◦f : X → Yλ is sl.β.c. for

each λ∈Λ, where Pλ is the projection of ΠYλ onto Yλ.

Proof. Let Vλ be any clopen set of Yλ. Then P−1
λ (Vλ) is clopen in ΠYλ and hence

(Pλ ◦f)−1(Vλ)= f−1(P−1
λ (Vλ)) is β-open in X. Therefore, Pλ ◦f is sl.β.c.

Theorem 5.7. If a function f : ΠXλ → ΠYλ is sl.β.c., then fλ : Xλ → Yλ is sl.β.c. for

each λ∈Λ.

Proof. Let Vλ be any clopen set of Yλ. Then, P−1
λ (Vλ) is clopen in ΠYλ and

f−1(P−1
λ (Vλ)) = f−1

λ (Vλ)×Π{Xα : α ∈ Λ−{λ}}. Since f is sl.β.c., f−1(P−1
λ (Vλ)) is β-

open in ΠXλ. Since the projection Pλ of ΠXλ onto Xλ is open continuous, f−1
λ (Vλ) is

β-open in Xλ and hence fλ is sl.β.c.

Definition 5.8. A topological space X is said to be

(a) β-Hausdorff [18] (resp., ultra Hausdorff [30]) if every two distinct points of X
can be separated by disjoint β-open (resp., clopen) sets,
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(b) β-regular [2] (resp., ultra regular [12]) if each pair of a point and a closed set not

containing the point can be separated by disjoint β-open (resp., clopen) sets,

(c) β-normal [18] (resp., ultra normal [30]) if every two disjoint closed sets of X
can be separated by β-open (resp., clopen) sets.

Theorem 5.9. Let f :X → Y be a sl.β.c. injection. Then

(a) if Y is ultra Hausdorff, then X is β-Hausdorff,

(b) if Y is ultra regular and f is open or closed, then X is β-regular,

(c) if Y is ultra normal and f is closed, then X is β-normal.

Proof. (a) Let x1, x2 be two distinct points of X. Then since f is injective and

Y is ultra Hausdorff, there exist V1,V2 ∈ CO(Y) such that f(x1) ∈ V1, f(x2) ∈ V2,

and V1∩V2 = ∅. By Theorem 3.2, xi ∈ f−1(Vi) ∈ SPO(X) for i = 1,2 and f−1(V1)∩
f−1(V2)=∅. Thus X is β-Hausdorff.

(b) (i) Suppose that f is open. Let x ∈ X and U be an open set containing x. Then

f(U) is an open set of Y containing f(x). Since Y is ultra regular, there exists a

clopen set V such that f(x)∈ V ⊂ f(U). Since f is a sl.β.c. injection, by Theorem 3.1

x ∈ f−1(V) ⊂ U and f−1(V) is β-clopen in X. Therefore, X is β-regular. (ii) Suppose

that f is closed. Let x ∈ X and F be any closed set of X not containing x. Since f is

injective and closed, f(x) ∉ f(F) and f(F) is closed in Y . By the ultra regularity of Y ,

there exists a clopen set V such that f(x)∈ V ⊂ Y −f(F). Therefore, x ∈ f−1(V) and

F ⊂X−f−1(V). By Theorem 3.2, f−1(V) is a β-clopen set in X. Thus, X is β-regular.

(c) Let F1, F2 be disjoint closed subsets of X. Since f is closed and injective, f(F1)
and f(F2) are disjoint closed subsets of Y . Since Y is ultra normal, f(F1) and f(F2) are

separated by disjoint clopen sets V1 and V2. Therefore, we obtain Fi ⊂ f−1(Vi) and

f−1(Vi) ∈ SPO(X) for i = 1,2 from Theorem 3.2. Moreover, f−1(V1)∩f−1(V2) = ∅.

Thus X is β-normal.

A subset A of a topological space X is said to be semi pre β-closed if for each

x ∈X−A there exists a β-clopen set U containing x such that U∩A=∅.

Theorem 5.10. If f :X → Y is sl.β.c. and Y is ultra Hausdorff, then

(a) the graph G(f) of f is semi pre β-closed in the product space X×Y ,

(b) the set {(x1,x2) : f(x1)= f(x2)} is semi pre β-closed in the product space X×X.

Proof. (a) Let (x,y)∈ (X×Y)−G(f). Then y ≠ f(x) and there exist clopen sets

V and W such that y ∈ V , f(x) ∈W , and V ∩W =∅. Since f is sl.β.c., there exists a

β-clopen set U containing x such that f(U)⊂W . Therefore, we obtain V ∩f(U)=∅
and hence (U×V)∩G(f) =∅ and U×V is a β-clopen set of X×Y . This shows that

G(f) is semi pre β-closed in X×Y .

(b) Set A= {(x1,x2) : f(x1)= f(x2)}. Let (x1,x2) ∉A, then f(x1)≠ f(x2). Since Y
is ultra Hausdorff, there exist V1,V2 ∈ CO(Y) containing f(x1), f(x2), respectively,

such that V1∩V2 =∅. Since f is sl.β.c., there exist β-clopen sets U1, U2 of X such that

xi ∈ Ui and f(Ui) ⊂ Vi for i = 1,2. Thus, (x1,x2) ∈ U1×U2 and (U1×U2)∩A = ∅.

Moreover, U1×U2 is β-clopen in X×X and A is semi pre β-closed in X×X.

A topological space X is said to be β-connected [27] if X cannot be expressed as the

union of two disjoint nonempty β-open sets.
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Theorem 5.11. If f : X → Y is a sl.β.c. surjection and X is β-connected, then Y is

connected.

Proof. Assume that Y is not connected. Then there exist nonempty open sets V1

and V2 such that V1∩V2 = ∅ and V1∪V2 = Y . Therefore, V1 and V2 are clopen sets

of Y . Since f is sl.β.c., f−1(V1) and f−1(V2) are β-open sets in X. Moreover, we have

f−1(V1)∩f−1(V2)=∅ and f−1(V1)∪f−1(V2)=X. Since f is surjective, f−1(V1) and

f−1(V2) are nonempty. Therefore, X is not β-connected. This is a contradiction and

hence Y is connected.

Corollary 5.12 (see Popa and Noiri [27]). If f : X → Y is a weakly β-continuous

surjection and X is β-connected, then Y is connected.

Corollary 5.13. If f : X → Y is a contra β-continuous surjection and X is β-

connected, then Y is connected.
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