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ABSTRACT. We study the ramifications of Schur’s theorem that, if G is a group such that
G/ZG is finite, then G’ is finite, if we restrict attention to nilpotent group. Here ZG is the
center of G, and G’ is the commutator subgroup. We use localization methods and obtain
relativized versions of the main theorems.
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1. Introduction. The theorem to which we refer is that which asserts that if G is a
group and ZG is its center, then

G/ZG finite = G’ finite, (1.1)

where G’ is the commutator subgroup of G. This theorem has a nice homological
proof, using the 5-term exact sequence

o3 o2 31

H,G6 —2~ H,(G/2G) 7G Gab (GIZG) 4 (1.2)

derived from the short exact sequence ZG — G -~ G/ZG. For if G/ZG is finite then
H,(G/ZG) is finite. Thus G' N ZG = ker &, = im &3 is finite. But G’ /G'NZG = G/ ZG is
also finite, so, finally, G’ is finite.

We remark that Schur’s theorem has a converse which is valid if G is finitely gener-
ated (fg). We include a proof for completeness.

THEOREM 1.1. Let G be an fg group such that G’ is finite. Then G/ ZG is finite.
PROOF. LetG = (x1,X2,...,Xk). Now, for any x € G, there can only be finitely many
distinct conjugates of x. For there is a one-one correspondence

yilxy <—=x"ly-lxy (1.3)

between the set of conjugates of x and a subset of G'; and G’ is finite. Thus [G : Csx]
is finite for all x € G, where CgS is the centralizer in G of the subset S of G. But if each
[G:Cgx;i], 1 <i<k,is finite, so is [G : N;Csxi]. On the other hand, N;Csx; = ZG, so
[G: ZG] is finite. Thus, as claimed, G/ZG is a finite group. O

Schur’s theorem, and its converse, take on a particular significance in the localiza-
tion theory of nilpotent groups [1]. For it is one of the main problems in that theory to
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calculate the Mislin genus 4(G) of an fg nilpotent group G and to identify its mem-
bers. Here 4(G) is the set of isomorphism classes of fg nilpotent groups H such that
G and H localize at every prime p to isomorphic groups, G, = H, for all primes p. It
is shown in [2, 3] that if G’ is finite then %4(G) may itself be given the structure of a
(finite) abelian group, a fact which very much facilitates the study of 4(G).

In the category of nilpotent groups (not necessarily fg) it makes sense to consider
P-torsion groups, where P is a family of primes, and to study such groups by the
techniques of localization. In this way we are able to prove a P-torsion variant of
Schur’s theorem, namely,

THEOREM 1.2. Let G be a nilpotent group such that G/ZG is a P-group. Then G’ is
a P-group.

We may also prove a converse of Theorem 1.2; as with Schur’s theorem itself, it is
necessary to impose a supplementary finiteness condition.

THEOREM 1.3. Let G be a nilpotent group such that G’ is a P-group of exponent m.
Then G/ ZG is a P-group of exponent dividing m°c~!, where nilG = c.

Actually we regard Theorems 1.2 and 1.3 as the absolute forms of our results and
emphasize the relative forms which appear to be quite new. In our relativization we
replace the group G by a pair (G,N) consisting of a nilpotent group G and a normal
subgroup N of G. Then the absolute case is given by N = G; moreover, in our rela-
tivization, ZG is replaced by Cs (N), which is easily seen to be a normal subgroup of
G; and G’ is replaced by the commutator group [G,N].

We remark that Theorem 1.2 also has a variant in which a finiteness condition is
imposed just as in Theorem 1.3. Precisely, we have the following theorem.

THEOREM 1.4. Let G be a nilpotent group such that G/ ZG is a P-group of exponent m.
Then G' is a P-group of exponent dividing m¢~!, where nilG = c.

We will prove the relativizations of Theorems 1.2, 1.3, and 1.4 in Section 2. Proofs
of the absolute forms, that is, of Theorems 1.3 and 1.4 are to be found in [4]. For
Warfield proves (the case n = 1 is the critical case).

(a) IfT;,+1 has exponent m, then G/ Z,, G has exponent dividing m°~" (see [4, Corol-
lary 2.6]); and

(b) if G/Z,,G has exponent m, then I}, has exponent dividing m°c~" (see [4, Corol-
lary 3.16)).

Here we adopt Warfield’s convention that I = G’ and Z; = ZG.

We do not have available to us a homological proof of a relative version of Schur’s
theorem. However we do show in the appendix how we may use homological argu-
ments to obtain Theorem 1.4 with a small loss of sharpness in our bound on the
exponent of G'.

A key tool in our proof of the relative version of Theorem 1.3 is a theorem on the
localization of nilpotent groups due to Karl Lorensen (Theorem 2.6). This theorem is
of considerable interest in its own right. It is a pleasure to acknowledge the crucial
help the author received from his friend (and erstwhile student) Karl Lorensen, not
only in the provision of Theorem 2.6.
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2. Localization methods. Let P be a family of primes and let Q be the complemen-
tary family. We first state and prove the relativization of Theorem 1.2.

THEOREM 2.1. Let G be a nilpotent group and N a normal subgroup such that
G/C¢(N) is a P-group. Then [G,N] is a P-group.

PROOF. Lete:G — Gq localize at the family Q. Now e maps C¢ (N) into CGQ (Ng);
moreover, CGQ (Nq) is Q-local. Thus, in fact, the Q-localization C¢ (N)q of C¢ (N) must
be a subgroup of Cg,, (Ng), that is,

CG(N)Q < C(;Q (NQ) < GQ. 2.1)

Now since G/C¢(N) is a P-group, (G/C¢(N))qg =1, so that Gg = C¢(N)q. Hence, by
(2.1) Gg = CGQ (Ng). Thus every element of G commutes with every element of Ny,
so that [Gg,Nq] = 1. But [Gg,Ng] =[G,Nlq, so [G,N] is a P-group. O

It is clear from this line of proof that, if we want a result in the opposite direction
to that of Theorem 2.1, we will have to establish conditions under which

Coo (Ng) = C6(N)q. (2.2)

Put another way, we ask when the restriction ey : C5(N) — CGQ (Ng) of the Q-
localization e : G — Gq itself Q-localizes. Now certainly e is Q-injective and Cg, (Ng)
is Q-local. Thus ey Q-localizes if and only if it is Q-surjective.

In seeking conditions under which ey is Q-surjective—and again in proving
Lorensen’s theorem (Theorem 2.6), we need to apply a basic result in [1], namely,
Theorem 6.1. We quote that result here as Lemma 2.2.

LEMMA 2.2 (see [1, Theorem 6.1]). Let G be a nilpotent group with nilG = ¢ and let
a,b € G with b™ = 1. Then (ab)™¢ = a™¢.

However, we can, in fact, refine this result and it will be valuable to do so. Thus we
may enunciate

LEMMA 2.3. If, in addition, b € T'G, then (ab)™ " = am"",

(Recall that we adopt Warfield’s convention for enumerating the terms of the lower
central series of G, so thatT'G = G, TG =G".)

PROOF OF LEMMA 2.3. We apply Lemma 2.2, but replace G by (a,b). However, if
b €TiG thennil{a,b) <c—i+1. O

We now apply Lemma 2.2 (we will need the more refined Lemma 2.3 later) to prove
the following theorem.

THEOREM 2.4. Let G,H be nilpotent groups with subgroups G < G, H < H. Let ¢
be a Q-bijective homomorphism from G to H sending G into H, and let ¢ : G — H be
obtained by restricting Q. Then @ is Q -surjective (and hence Q -bijective) if and only if,
for all x € G such that px € H, there exists a P-number m such that x™ € G.

PROOF. We for brevity, describe the property that, for all x € G such that
@x € H, there exists a P-number m such that x™ € G as property S. Suppose
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then that ¢ is Q-surjective, and let x € G satisfy px € H. Since ¢ is Q-surjective,
there exists a P-number n and an element X € G such that X = @x™. But then
x" = Xz, z € G with z¥ = 1 for some P-number k, since @ is Q-injective. Let
nilG = c. Then, by Lemma 2.2, x"% = %k € G and nk¢ is a P-number, establishing
property S.

Suppose, conversely, that property S holds and let v € H. Since @ is Q-surjective,
there exists a P-number n and x € G such that px = y™. Thus, by property S, there
exists a P-number m such that x™ € G. Then @ (x™) = y™" and mn is a P-number,
SO @ is Q-surjective. O

COROLLARY 2.5. The restriction ey : C¢(N) — Cg, (Nq) Q-localizes if and only if, for
all x € G such that ex € Ce, (Nq), there exists a P-number n such that x™ € Cg(N).

This result enables us to exploit the following theorem due to Karl Lorensen. With
G a nilpotent group, N a normal subgroup of G, and x € G, we write TPFEX)N for the
P-primary component of the torsion subgroup of I"(ZX>N , which is a subgroup of N
generated by commutators [x",a], a € N. We then prove the following theorem.

THEOREM 2.6 (Lorensen). Let eg: Cq(N) — Cg,(Ng) be obtained by restricting the
Q-localizatione : G — Gq. Then ey Q -localizes provided that, for all x € G, TPF<ZX>N has
finite exponent.

PROOF. (This is a small but significant modification of Lorensen’s proof, since it
exploits Lemma 2.3.) We will apply Corollary 2.5. Thus we must show that, forall x € G
such that ex € Cey (Ng), there exists a P-number n such that x" € C;(N). Now let
m= eXpT,gF2<X)N, and let y € N. Then m is a P-number and e[x,y] = [ex,ey] =1,
since ex € CGQ (Ng). Hence [x,y] € TpI? ()N, so [x,py]™ = 1.

Now x[x,y] =y~ 1xy.Hence, by Lemma 2.3, noting that [x, y] € I'?G, we conclude
that x™" = (y~1xy)m ! = 3-1xm¢1y, where nilG = c. Since y is an arbitrary
element of N, it follows that XM e Cc(N) and Theorem 2.6 is proved. O

REMARK 2.7. Notice that it would have sufficed to assume that TpI'? ()N has finite
exponent for all x € G such that ex € Cg, (Nq).

Lorensen’s theorem is the key to our relativization of Theorem 1.3, which we now
state.

THEOREM 2.8. Let G be a nilpotent group and N a normal subgroup of G. Then if
[G,N1] is a P-group of exponent m, G/Cg(N) is a P-group of exponent dividing m¢~1,
wherenilG = c.

PROOF. Since F<2X>N c [G,N], and [G,N] is a P-group of exponent m, it follows
that we have the conditions for applying Lorensen’s theorem, so that ¢g : Cs(N) —
Coq (Ng) Q-localizes. Now since [G,N] is a P-group, its Q-localization vanishes, that
is, [Gg,Nqg] = 1. This means that Gg = Ceq (Ng), so that every x € G has the prop-
erty that ex € C(;Q (Ng). Moreover, exp 1"<2X>N divides m. Thus, following the proof of
Theorem 2.6, we see that xm e Cs(N) for all x € G, so that exp(G/Cg(N)) | m¢~1.
This, of course, implies that G/Cg(N) is a P-group. O

REMARK 2.9. This lastimplication follows immediately from Go :CGQ(NQ) =Cg(N)q.



ON A THEOREM OF SCHUR 459

It remains to provide the relativization of Theorem 1.4. In fact, we may simply rel-
ativize each step in Warfield’s argument in [4, Corollary 3.16], thus obtaining the fol-
lowing theorem.

THEOREM 2.10. Let G be a nilpotent group and N a normal subgroup such that
G/Cg(N) is a P-group of exponent m. Then [G,N] is a P-group of exponent dividing
mc~L, wherenilG = c.

Appendix

Homological methods. We show in this appendix how homological arguments may
be used to obtain Theorem 1.2, although the numerical estimate is marginally inferior
to that given by Theorem 1.4. We emphasize that we have only succeeded in develop-
ing a homological method in the absolute case.

We begin with a crucial homological lemma.

LEMMA A.11. Let G be a nilpotent group withnilG = c and letn > 1. If G is a torsion
group with expG = m, then m™¢-V+1H, G = 0.

PROOF. We argue by induction on c.If ¢ = 1, then G is commutative. If K is an arbi-
trary fg subgroup of G, then K is a direct product of (finitely many) finite cyclic groups
whose orders divide m, hence mH,K = 0. Now H, G = limy H, K, so that mH,G = 0.

Now we assume ¢ > 2, and assume the lemma proved for nilpotent groups of class
< c. We consider the central extension

[>——G—>G/I, (A.3)

where I' = T'° G, and we exploit the Lyndon-Hochschild-Serre spectral sequence associ-
ated with (A.3). In this spectral sequence

E;,=Hy(G/T;HyT). (A4)

Since the universal coefficient formula in homology splits, and since nill' = 1, nilG/T =
c—1, and explI' | m, exp(G/I') | m, it follows from the inductive hypothesis that, if
p+q>0,

mE;, =0, q>0, mPCIHES, 0. (A.5)

(The form of writing in (A.5) and in what follows is acceptable since homology groups
and E}, are additive abelian groups.)
We may then pass to the limit of the spectral sequence, obtaining

mEy, =0, q>0, mPIHES =0, (A.6)
Now H, G admits a finite filtration
0=F'cFlc...cFPlcFPc...cF"1 cF"=H,G, (A7)

such that
FPIFP-L=EPd pig=n, 0<p<n. (A.8)
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From (A.6) and (A.8) an easy finite induction shows that
mPTIFP =0, O<p<n-1. (A.9)
Finally, we exploit the short exact sequence
Frn-l>— > H,G — E, (A.10)

to infer that m"*nc-2+1g G = 0, or m*¢~V+1H, G = 0, completing the inductive
step. O

Armed with this lemma, we may prove the following theorem.

THEOREM A.12. Let G a nilpotent group with nilG = c. Then if G/ZG is a torsion
group of exponent m, G’ is a torsion group of exponent dividing m2c-2,

PROOF. We exploit the exact sequence (1.2) and the argument used to prove Schur’s
theorem. Since nilG/ZG = ¢ — 1, we know from Lemma A.11 that

m2C 241, (G/ZG) = 0. (A.11)

Thus
m2=2+H(G" N ZG) = 0. (A.12)

Now G'/G'NZG < G/ ZG, so exp(G'/G' N ZG) | m. Putting this together with (A.12),
we deduce finally that G’ is a torsion group and expG’ | m2c-2, O

We remark (again) that our estimate of exp G’ is not best possible.
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