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ABSTRACT. The aim of this paper is to characterize morphological convex geometries
(resp., antimatroids). We define these two structures by using closure operators, and kernel
operators. We show that these convex geometries are equivalent to poset geometries.
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1. Introduction. Convex geometries are particular closure operators. These objects
link the theory of convex sets to combinatorial theory. More precisely poset geometries
are basic structures, because any convex geometry can be generated from them [6].

Mathematical morphology, introduced by Serra [7] is a very important tool in im-
age processing and pattern recognition. The framework of mathematical morphology
consists in erosions and dilations (resp., Galois functions) which result in morpholog-
ical closures and kernels. These particular operators are well adapted to algorithmic
computation [5].

Theorem 4.2 proves that poset geometries and morphological geometries defined
below are equivalent. The convexity is very important in mathematical morphology
[5]. So this article tries to demonstrate the relation between combinatorial convexity,
mathematical morphology, and image processing.

2. Basic concepts. In this section, we introduce the definitions that will be needed.
We will use x for {x}, and P(S) will be the power set of S. Throughout (until Section 6)
we will suppose that all sets are finite.

2.1. Convex geometries. Let S be a set, consider the family ¢ of subsets of S with
the following properties:

D e, See, (2.1)
A,Be% implies ANBec%. (2.2)

This family gives rise to the closure operator
P(X)=n{Ae%, X c A} (2.3)

Conversely, every closure operator defines a family ¢’ with the properties (2.1)
and (2.2). Elements of 46, or elements defined by ¢ will be called convex.
The couple (S, ) is a convex geometry if ¢ verifies the anti-exchange axiom

Vx,yEd(X), x+y, xep(XUy) implies y ¢& p(XuUx). (2.4)
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In the same way [4]
fpX)=S, IpesS\PpX), dXup)=¢pX)up. (2.5)

2.1.1. Poset geometries. Let P be a partially ordered set and X be a subset of P,
we define
D,(X) ={y €P, y <x for some x € X}, (2.6)

(P,Dp) is a convex geometry called poset geometry. Convex geometries give rise to
poset geometries which are easily characterized by the following result.

THEOREM 2.1. The convex geometry (S, $) arises from the poset geometry on a poset
P if and only if
$(AUB) =p(A)u(B) VA,BcS. (2.7)

PROOF. See [4]. O

2.2. Antimatroid. On the set S we consider the family % of subsets of S.
The couple (S;%) is an antimatroid if & verifies the following axioms:

(i) @ €%, Fis closed under union.

(ii) For X € ¥, X = &, there exists an x € X such that X\ x € %.

2.3. Morphological operators

2.3.1. Erosion. An erosion is defined by an operator
g:P(S) — P(S) (2.8)
with the following properties:
&(S) =S, A,Be P(S), €(AnB)=¢(A)n&(B). (2.9)
2.3.2. Dilation. A dilation is defined by an operator
6:P(S) — P(S) (2.10)
with the following properties:
6(D) =0, A,Be P(S), 6(AUB)=06(A)Ud(B). (2.11)

Erosion and dilation are linked by the morphological duality.

THEOREM 2.2. Let S be a set, a monotone mapping 6 is a dilation if and only if there
exists another operator € such that

0(X)cY <= Xce(Y). (2.12)
The operator ¢ is unique and monotone and given by
&(X)=U{B,B€P(S), §(B) c X}, (2.13)

we have
5(X)=n{B,B€P(S), X c&(B)}. (2.14)
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PROOF. See [7]. O

REMARK 2.3. Morphological duality in [5] is called adjuction and Galois function
in [1].

The operator ¢ = €06 defines a closure called morphological closure and ¢* = o ¢
defines a kernel called morphological kernel.

2.4. Structuring function and dilation. Let S be a set, we define a structuring func-
tion under P(S) as any mapping 6 from S into P(S). Let 6 be a structuring function,
consider X € P(S) its image under 6, defined by

s(X)=J 6(x). (2.15)

xeX

Thus 6 defines a dilation from P(S) into P(S). Conversely, any dilation induces a
structuring function by (2.15) symbolized again by 6.

3. Convex geometries, antimatroid, and duality. In the literature antimatroids are
defined as (i) and (ii) above, and rarely with kernel operators.
On the set S we consider a family ¥ of subsets of S verifying

D EeF, Sc %, (3.1)
A,Be% implies AuBeg%. 3.2)

This family gives rise to the kernel operator
P*(X)=Uf{AeF, Ac X}. (3.3)

Conversely, every kernel operator results in the family % with the properties (3.1)
and (3.2).

LEMMA 3.1. The pair (S,¢™*) is an antimatroid if ¢p* verifies the following axiom:
For $*(X) # @, Ap € p*(X); P"(X\p)=Pp*(X)\p. (3.4)

PROOF. Itis sufficient to verify that (ii) is equivalent to (3.4). We suppose (ii) is true.

Since ¢p*(X\p) € X\p so p ¢ ¢*(X\ p). From monotonicity, X \ p C X implies
P*(X\p) Cd*(X). S0 p*(X\p) = d*(X)\p.

Conversely, ¢*(X) \p € X\ p implies ¢p* (¢p*(X)\p) € ¢p*(X\p). From (ii), p* (X) \
p < ¢*(X\p), consequently, $*(X)\p = ¢* (X \p).

The converse is obvious. O

We have defined convex geometries (resp., antimatroids) thanks to closure opera-
tors (resp., kernel operators). These concepts are dual. Indeed, in Boolean lattices, the
complementation X — X¢ induces a duality that produces a correspondence between
any closure ¢ from P(S) into P(S), and its dual ¢o*, as defined by

P*(X) = P (X°) (3.5)
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with ¢* as a kernel. So suppose that (S;¢) is a convex geometry; since ¢ is closed
under intersection, ¢* is closed under union, and ¢ verifies (2.5). We have

P*(X)\p = (X)\p = (X)) np® =[d(X)up]*
=[pXUup)] =[d[(Xnp)T]" = [d(X\p))]° (3.6)
= p*(X\p).

So we have a new proof of the well-known result due to Bjorner [8].

THEOREM 3.2. The couple (S,¢) is a convex geometry if and only if (S,¢p*) is an
antimatroid.

4. Poset geometries and mathematical morphology. The following theorem gives
a characterization of convex geometries in the particular case of morphological clo-
sure operators (these convex geometries will be called morphological geometries). We
show that these morphological geometries are equivalent to poset geometries.

We say that (S;0) is separated in a primary sense, if 6 verifies the following two
properties:

(a) For any family (x;)ic; of elements of S and for any element x € S verifying
6(x) € Ui 6(xi), there exists j € I such that d(x) € d(x;).

(b) 6(x) = 6(y) is equivalent to x = y for any x,y € S.

We will call morphological geometry (resp., morphological poset) any convex geom-
etry (resp., poset geometry) (S;¢) such that ¢ = €06.

For any dilation we can canonically associate a binary relation defined by xRy is
equivalent to x € 6(y) for x,y € S. Another interesting binary relation is given by
xR’y is equivalent to 6(x) < 6(y), for x,y € S. We are now going to clarify the
relations between R and R'.

LEMMA 4.1. Let 6 be a dilation on S, R its binary relation canonically associated with
it. The following two assertions are equivalent:

(1) R is reflexive and transitive.

(2) xRy is equivalent to 6 (x) < 6 ().

PROOF. The proof that (2) implies (1) is trivial.

Supposing R reflexive and transitive. Consequently, 6(x) < 6(y) and x € 6(x)
imply that x € §(y) which is equivalent to xRy. So 6(x) < 6(y) implies xRy. Sup-
posing xRy. For any z € 6(x), we have zRy by transitivity, that implies z € §(y),
consequently 6(x) € 6(y). O

THEOREM 4.2. Let S be a set and ¢ = € 0 6, a morphological closure. The following
three assertions are equivalent:
(i) O separatesS in a primary sense.
(ii) (S;¢) is a morphological poset.
(iii) (S;¢p) is a poset geometry.

PROOF. Suppose that 6 separates S a primary sense. The relation xRy is equivalent
to 6(x) < 6(y) is an order relation. Let ¢p(X) = €0 6(X), it is easy to verify that

P(X)={y €S, 5(y) c5(X)}. 4.1
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We have two cases.

e There exists x € X such that §(x) < 6(y), which is equivalent to xRy

e There exists a family (x;), i € {1,2,...,n} (n > 1) of elements of X such that
O(y)cd(x1)Ud(x2)U---Ud(xy), but from our hypothesis § separates S a primary
sense, consequently 6(yv) € 6(x;) or 6(y) € 6(x2) or --- or 6(y) € 6(xyn), sO YRx;
or YRx, or - -+ or YRx,, which leads to

PX)={yes, s(y)cdX)}={yeS, yRx for x € X}. (4.2)

This set is an ideal of S. So any closed set from ¢ gives rise to an ideal of S. Under
the hypothesis (i), R is an order relation, it is easy to show that any ideal of S gives
rise to a closed set. The couple (S; ¢) is a poset geometry.

Suppose that (S;¢) is a morphological poset. We have u,v ¢ ¢(X), v # u and
u e P(Xuv) involves v &€ p(Xuu), we have v & {y,5(y) c S(X)ud(u)} but u €
{y,0(y) c6(X)ud(v)}. So the condition 6(u) = 6(v) is equivalent to u = v, which
means that the axiom (b) is verified.

Moreover, we have ¢p(X) = {y €S, 6(¥) c6(X)} ={y €S, 6() S Uxex0(x)}
which implies that for any y € S, 6(y) < 6(X) there exists x € X such that 6(y) <
0(x). Consequently ¢ separates S in a primary sense.

If (S, ¢) is a morphological poset, a fortiori it is a poset geometry.

Suppose now that (S, ¢) is a poset geometry. We have ¢p(X) = {y € S, v < x for
x € X}. From Lemma 4.1, we can associate a dilation to this relation &, so ¢(X) =
{yvesS, y=sxforxeX}={yes, o(y)cdx)forxeX}={yeSs, 6(y)cdX)}
which is a morphological poset. O

5. Poset geometry, mathematical morphology, and topology. We are now going
to extend this result to the case where S is an infinite set. Before we will give some
definitions and remarks.

A topological space is an Alexandroff space if the intersection of any family of open
sets is open (resp., the union of any family of closed sets is closed) [3].

A topological space S is a Ty-space whenever, for x and y are distinct elements of
Sif x € p(y) then y ¢ ¢p(x).

Let S be an infinite set, we now rewrite the axioms of closure operators [2]. The
family of subsets %6 of S, with the following properties:

(i) @ €%, Sece,
(ii) 6 is preserved under intersection,

(iii) 6 is preserved by nested union,
is equivalent to give a closure operator ¢ with the following condition called algebraic
condition:

Vx € ¢p(X) there exists a finite set F include in X such that x € ¢(F). (5.1)

Families satisfying (iii) are the inductive systems. This axiom is equivalent to the al-
gebraic condition [2].

The morphological operator can be easily extended to the infinite case [5]. From
these remarks, we have the following extended result.
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THEOREM 5.1. Let S be an infinite set and ¢ = € o §, a morphological closure. The
following four assertions are equivalent:
(i) O separates S in a primary sense.
(i) (S;¢p) is a morphological poset.
(iii) (S;¢p) is a poset geometry.
(iv) (S;¢) is a Ty-Alexandroff space.

PROOF. It is easy to adapt the proof of Theorem 4.2 to prove the equivalences
between (ii), (iii), and (iv). So we will just prove the equivalence between (i) and (ii).

Suppose that (S;¢) is a Tp-Alexandroff space, x,y € S, x = y with x,y ¢ ¢p(X),
and x € (X U {y}), implies that x € ¢$(y), but (S;¢) is a Ty-space, so we have y ¢
¢ (X Ux). Consequently,

Vx, yEPp(X), x+y, xep(Xuy) implies y ¢ p(XuUx). (5.2)

The anti-exchange axiom is verified.

Suppose that x € ¢(X), (S;¢p) being an Alexandroff space there exists y € X such
that x € ¢p(y). Consequently, for all x € ¢(X), there exists F < X, F being a finite set
such that x € ¢(F). So (S; ¢) is a poset geometry.

Suppose now that (S;¢) is a poset geometry. For all x € ¢ (X), there exists F < X,
F, being a finite set such that x € ¢ (F). So for all x € ¢(X) implies that x € ¢p(y) for
some y € X. It is easy to deduce that (S;¢) is an Alexandroff space.

Moreover, ¢ verifies the anti-exchange axiom, from this axiom it is easy to deduce
that (S; ¢) is a Tp-space. O

COROLLARY 5.2. LetS be an infinite space and let ¢ be a closure operator.The couple
(S;¢) is a convex geometry if and only if for all X = S (S\ p(X); ) is a Ty-Alexandroff
space where Y (A) = Uyeca p(p(X)Uy) NS\ p(X).

PROOF. Suppose that (S;¢) is a convex geometry.

We will just prove that ¢ (¢ (A)) = ¢ (A). The other axioms can be easily shown.

YEA (26¢(¢(X)Uy)ﬂs\d>(X)
c | p(pX)U(p(p(X)uy) NS\ (X)) NS\ (X))

w(p®) =1 U CIJ(d)(X)uy)mS\qS(X))

rea (5.3)
= | ¢(p(p(X)uy) NS\ p(X))

YEA
= U ¢(¢(X)uy) NS\ d(X) = w(A).

yEeA

Sow(w(A)) =y (A).
Let x, v be two distinct elements of S\ ¢(X) by application of anti-exchange axiom,
we have: if x € () then x ¢ @ (x). Hence (S\ ¢ (X);y) is a Tyo-Alexandroff space.
Suppose that for all X = S (S\ ¢(X);yp) is a Ty-Alexandroff space. Thanks to
Theorem 3.2 it is a convex geometry and for all X < S the anti-exchange axiom is
preserved. So (S;¢) is a convex geometry. O
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From Theorem 3.2 and Corollary 5.2 we have the following known result [4].

COROLLARY 5.3. The couple (S;¢) is a convex geometry if and only if the relation
x € Pp(Pp(X)Uuy)nS\¢p(X) is a partial order on S\ ¢p(X), forall X =S .

6. Concluding remarks. We can define a partial order on the set of Ty-Alexandroff
spaces (denoted by Tp-Alex(CG(S)) on a convex geometry (S,¢) by

(S\p(X1), w1) < (S\P(X2), 2) <= S\ Pp(X1) =S\ p(X2), 6.1)
Vx eS\p(X1), yi(x)<ya(x). (6.2)

The set Ty-Alex(CG(S)) contains a maximal element. Indeed, let (S\ ¢ (X;),Y;)icr be a
chain, it is sufficient to prove that (U;c; S\ ¢ (X;); @) (with ¢ (A) = Ui [Uyea b (P (X))
Uy)n(S\¢(Xi))ierl) is a To-Alexandroff and to apply Zorn’s lemma. This remark leads
us to the following problem.

PROBLEM 6.1. Can we classify any convex geometry (S, ¢) from the maximal ele-
ments of Tp-Alex(CG(S))?
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