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Abstract. Let B be a Galois algebra with Galois group G, Jg = {b ∈ B | bx = g(x)b for all
x ∈ B} for g ∈ G, and BJg = Beg for a central idempotent eg . Then a relation is given
between the set of elements in the Boolean algebra (Ba,≤) generated by {0,eg | g ∈ G}
and a set of subgroups of G, and a central Galois algebra Be with a Galois subgroup of G
is characterized for an e∈ Ba.
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1. Introduction. Galois theory of rings have been intensively studied [1, 3, 4, 5, 6, 7].

Let B be a Galois algebra with Galois group G and Jg = {b ∈ B | bx = g(x)b for all x ∈
B} for eachg ∈G. In [4], it was shown that BJg = Beg for some central idempotent eg of

B. Let Ba be the Boolean algebra generated by {0,eg | g ∈G}. In [7], the following struc-

ture theorem for B was given: there exist {ei ∈ Ba | i= 1,2, . . . ,m for some integer m}
and some subgroups Hi of G such that B = ⊕∑m

i=1Bei⊕B(1−
∑m
i=1 ei) where Bei is a

central Galois algebra with Galois groupHi for each i= 1,2, . . . ,m and B(1−∑m
i=1 ei)=

C(1−∑m
i=1 ei) which is a commutative Galois algebra with Galois group induced by

and isomorphic with G in case 1 ≠
∑m
i=1 ei, where C is the center of B. We observe

that (1) ei = Πh∈Hieh which is a nonzero monomial in Ba for a maximal subset Hi
of G, (2) Hi is a subgroup of G, and (3) Bei is a central Galois algebra with Galois

group Hi. In the present paper, we will discuss a general case: what kind of elements

e in Ba and subgroups He give a central Galois algebra Be with Galois group He? We

will show that (1) for any nonzero monomial e = Πg∈Seg of Ba for some subset S of

G, let He = {g ∈ G | e ≤ eg, that is, eeg = e}; then He is a subgroup of G, (2) when

He �= {1}, Be is a central Galois algebra with Galois group He if and only if e is a

nonzero minimal element in Ba (i.e., Be is one of the components of B as given in

[7, Theorem 3.8]), (3) for a nonzero monomial e = Πg∈Seg of Ba for some subset S
of G, let Te = {g ∈ G | e = eg}; then Te is a subgroup of G if and only if e = 1, and

(4) let H1 = {g ∈ G | eg = 1}. Then eg = 0 for each g �∈ H1 if and only if B is either

a central Galois algebra with Galois group H1 or a commutative Galois algebra with

Galois group G. Thus, {Be | e is a nonzero minimal element in Ba} are the only cen-

tral Galois algebras with Galois group He arising from nonzero monomials e in Ba,

and when Ba = {0,1}, B is a central Galois algebra with Galois group H1 and the cen-

ter C is a commutative Galois algebra with Galois group G/H1. This fact generalizes

the DeMeyer theorem for a Galois algebra with an indecomposable center C (see [1,

Theorem 1]).
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2. Definitions and notations. Let B be a ring with 1, C the center of B, G an au-

tomorphism group of B of order n for some integer n, and BG the set of elements

in B fixed under each element in G. B is called a Galois extension of BG with Galois

group G if there exist elements {ai,bi in B, i = 1,2, . . . ,m} for some integer m such

that
∑m
i=1aig(bi) = δ1,g for each g ∈ G. B is called a Galois algebra over R if B is

a Galois extension of R which is contained in C , and B is called a central Galois ex-

tension if B is a Galois extension of C . Throughout this paper, we assume that B is

a Galois algebra with Galois group G. Let Jg = {b ∈ B | bx = g(x)b for all x ∈ B}
and J(A)g = {b ∈ A | bx = g(x)b for all x ∈ A} for each g ∈ G, where A ⊂ B. In [4], it

was shown that BJg = Beg for some central idempotent eg of B. We denote by Ba the

Boolean algebra generated by {0,eg | g ∈G;≤}, where e≤ e′ if ee′ = e.

3. The monomials and subgroups. Let e be a nonzero monomial of Ba, e=Πg∈Seg
for a subset S of G. We have two subsets of G, He = {g ∈G | e≤ eg} and Te = {g ∈G |
e= eg}. We are going to show that He is a subgroup of G, and that Te is a subgroup of

G if and only if e= 1. Let K be a subgroup of G. Then K is called a nonzero subgroup

of G if Πk∈Kek �= 0, and K is called a maximal nonzero subgroup of G if K ⊂K′, where

K′ is a nonzero subgroup of G such that Πk∈Kek =Πk∈K′ek, then K =K′. We note that

each nonzero subgroup is contained in a unique maximal nonzero subgroup of G. We

will show that there exists a one-to-one correspondence between the following three

sets: (1) the set of nonzero monomials in Ba, (2) the set of maximal nonzero subgroups

of G, and (3) the set of Galois extensions in B generated by a nonzero monomial e with

a maximal Galois subgroup of G.

Lemma 3.1. Let e be a nonzero monomial in Ba and He = {g ∈G | e ≤ eg}. Then He
is a subgroup of G.

Proof. For any g, h ∈ He, e ≤ eg , and e ≤ eh. Hence e ≤ egeh. But JgJh ⊂ Jgh,

so BJgJh ⊂ BJgh. Therefore Begeh ⊂ Begh. Thus egeh ≤ egh; and so e ≤ egeh ≤ egh.

This implies that gh∈He. Noting that G is finite, we conclude that He is a subgroup

of G.

Theorem 3.2. There exists a one-to-one correspondence between the set of nonzero

monomials in Ba and the set of maximal nonzero subgroups of G.

Proof. Define f : e → He for a nonzero monomial e in Ba, where He is given in

Lemma 3.1. By Lemma 3.1, He is a subgroup of G. Also, by the definition of He, it is

easy to see that He is a maximal nonzero subgroup of G. Thus f is well defined. Next

we show that f is one to one. Let e and e′ be two nonzero monomials in Ba such that

f(e) = f(e′), that is, He = He′ . Then e = Πh∈Heeh = Πh∈He′ eh = e′. Thus f is one to

one. Moreover, let K be a maximal nonzero subgroup of G. Then e = Πk∈Kek �= 0 and

K = {g ∈ G | e ≤ eg} by the definition of a maximal nonzero subgroup of G. Thus

f(e)=K. Therefore f is a bijection.

Let N(He) be the normalizer of He in G for a nonzero monomial e in Ba. We next

show that Be is a Galois extension with a maximal Galois subgroup G(e) where G(e)=
{g ∈ G | g(e) = e}, and G(e) = N(He). Consequently, we can establish a one-to-one

correspondence between the set of maximal nonzero subgroups of G and the set of
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Galois extensions in B generated by a nonzero monomial e with a maximal Galois

subgroup of N(He).

Lemma 3.3. For a nonzero monomial e in Ba, let G(e) = {g ∈ G | g(e) = e}. Then,

(1) G(e) = N(He), where N(He) is the normalizer of He in G, and (2) Be is a Galois

extension with a maximal Galois subgroup of G(e)|Be �G(e).

Proof. (1) For anyg∈N(He), since Be=BΠh∈Heeh=BΠh∈HeJh,g(Be)=g(BΠh∈HeJh)
= BΠh∈HeJghg−1 = BΠh∈gHeg−1Jh = BΠh∈HeJh = Be (for gHg−1 = H). Hence g(e) = e;
and so g ∈G(e). Conversely, for any g ∈G(e),

Be= g(Be)= g(BΠh∈Heeh
)= g(BΠh∈HeJh

)= BΠh∈HeJghg−1 = BΠh∈Heeghg−1 . (3.1)

Thus e=Πh∈Heeghg−1 . Therefore e≤ eghg−1 ; and so ghg−1 ∈He for each h∈He. This

implies that g ∈N(He).
(2) Since B is a Galois algebra with Galois group G and e ∈ CG(e), Be is a Galois

extension with a maximal Galois subgroup of G(e)|Be �G(e) (see [7, proof of Lemma

3.7]). Moreover, let g ∈G but g �∈G(e). Then g(e) �= e. Thus g is not an automorphism

of Be; and so G(e) is the maximal Galois group contained in G for Be.

Theorem 3.4. There exists a one-to-one correspondence between the set of maximal

nonzero subgroups of G and the set of Galois extensions in B generated by a nonzero

monomial e with a maximal Galois subgroup G(e)|Be �G(e) such that G(e)=N(He).

Proof. Letα : e→ Be for each nonzero monomial e in Ba. Then, by Lemma 3.3, Be is

a Galois extension in B generated by e with a maximal Galois subgroup G(e)|Be �G(e)
such that G(e) =N(He). Clearly, α is a bijection from the set of nonzero monomials

in Ba to the set of Galois extensions Be for a nonzero monomial e in Ba with a maximal

Galois subgroup G(e)|Be � G(e) which is N(He). Thus Theorem 3.4 is an immediate

consequence of Theorem 3.2.

In the following, we show that the set Te = {g ∈G | e= eg} for a nonzero monomial

e in Ba is not a subgroup of G unless e= 1.

Theorem 3.5. Let e be a nonzero monomial in Ba and Te = {g ∈ G | e = eg}. Then

Te is a subgroup of G if and only if e= 1.

Proof. Assume Te is a subgroup of G. Then 1∈ Te; and so e= e1 = 1. Conversely,

assume e = 1. Then Te = T1 = {g ∈ G | 1 = eg}. But the condition that 1 = eg is

equivalent to that 1 ≤ eg , so Te = T1 = H1 where H1 is given in Lemma 3.1. Hence by

Lemma 3.1, Te is a subgroup of G.

4. Central Galois algebras. In Section 3, Lemma 3.1 proves that for a nonzero mo-

nomial e ∈ Ba, He (= {g ∈ G | e ≤ eg}) is a subgroup of G. In [7], it was shown that if

H is a maximal subset of G such that Πh∈HJh �= {0}, then H is a subgroup of G. We

will show that the maximal subset H is exactly He for a minimal nonzero monomial

e∈ Ba. Thus Be is a central Galois algebra with Galois group He (see [7, Theorem 3.6]).

Next is a characterization of the central Galois algebra Be with Galois group He for a

nonzero monomial e∈ Ba.
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Theorem 4.1. Let e be a nonzero monomial in Ba such that He �= {1}. The following

statements are equivalent:

(1) Be is a central Galois algebra with Galois group He.
(2) eJg = {0} for each g �∈He.
(3) e is a minimal nonzero monomial in Ba.

Proof. (1)⇒(2). Since B is a Galois algebra over a commutative ring R with Galois

group G, B =⊕∑g∈G Jg (see [4, Theorem 1]). Hence

Be=⊕
∑

g∈G
eJg =


⊕

∑

h∈He
eJh


⊕


⊕

∑

g �∈He
eJg


. (4.1)

By hypothesis, Be is a central Galois algebra with Galois groupHe, so Be=⊕∑h∈He J
(Be)
h .

But by [7, Lemma 3.3], J(Be)h = eJh for each h ∈ He; and so Be = ⊕∑h∈He eJh. Thus

⊕∑g �∈He eJg = {0}, that is, eJg = {0} for each g �∈He.
(2)⇒(1). Since Be = ⊕∑g∈G eJg = (⊕

∑
h∈He eJh)⊕ (⊕

∑
g �∈He eJg) and eJg = {0} for

each g �∈ He, Be = ⊕
∑
h∈He eJh. By [7, Lemma 3.3] again, J(Be)h = eJh for each h ∈ He.

Hence Be=⊕∑h∈He J
(Be)
h , where J(Be)h J(Be)h−1 = (eJh)(eJh−1)= eJhJh−1 = eC which is the

center of Be. Moreover, B is a Galois R-algebra, so it is a separable R-algebra. Thus,

Be is a separable algebra over Re (see [2, Proposition 1.11, page 46]). Therefore, Be is

a central Galois algebra over Ce (see [3, Theorem 1]).

(3)⇒(2). Since e is a minimal nonzero monomial in Ba, for each g ∈G, either e≤ eg or

eeg = 0. Since e≤ eg for each g ∈He, we have that eeg = 0 for each g �∈He. Therefore,

BeJg = Beeg = {0}; and so eJg = {0} for each g �∈He.
(2)⇒(3). Suppose e is not a minimal nonzero monomial in Ba. Then there exists a

g ∈ G such that 0 < eeg < e. By the definition of He, e = Πh∈Heeh; and so eeh = e for

each h∈He. Hence g �∈He. Therefore, BeJg = Beeg �= {0}. This implies that eJg �= {0}
for some g �∈He. This contradicts hypothesis (2). Thus statement (3) holds.

When e is a minimal nonzero monomial in Ba, Theorem 4.1 shows that Be is a

central Galois algebra with Galois group He. Hence the order of He is a unit in Be (see

[4, Corollary 3]). Moreover, by Lemma 3.3, Be is a Galois extension with Galois group

G(e) which is N(He), so we have a structure of Be.

Theorem 4.2. For a minimal nonzero monomial e in Ba, Be is a central Galois

algebra with Galois group He and Ce is a commutative Galois algebra with Galois

group G(e)/He.

Proof. Since e is a minimal nonzero monomial in Ba, Be is a central Galois algebra

with Galois groupHe by Theorem 4.1. Hence |He|, the order ofHe, is a unit in Ce. More-

over, by Lemma 3.3, Be is a Galois extension with Galois groupG(e)which isN(He), so

He is a normal subgroup of G(e). Let {ai,bi | i = 1,2, . . . ,m} be a G(e)-Galois system

for Be. Then,
∑m
i=1aig(bi) = δ1,ge for each g ∈ G(e). Let xi = (1/|He|)

∑
h∈He h(ai)

and yi =
∑
h∈He h(bi). Then, xi and yi are invariant under each element in He. Hence,

xi,yi ∈ Ce since (Be)He = Ce. It is straightforward to verify that {xi,yi} is a G(e)/He-
Galois system for Ce.
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Theorem 4.1 characterizes a central Galois algebra Be for a minimal nonzero mono-

mial e∈ Ba. Next we want to characterize a central Galois algebra B1 for the maximal

monomial 1 in Ba.

Theorem 4.3. Let H1 = {h ∈ G | eh = 1}. Then eg = 0 for each g �∈ H1 if and only

if B is either a central Galois algebra with Galois group H1 or a commutative Galois

algebra with Galois group G.

Proof. (⇒) Case 1. H1 �= {1}. Since eg = 0 for each g �∈ H1, Jg = {0} for each

g �∈ H1. Hence, by (2)⇒(1) in Theorem 4.1, B (= B1) is a central Galois algebra with

Galois group H1. Case 2. H1 = {1}. By hypothesis, eg = 0 for each g �= 1 in G, so

B =⊕∑g∈G Jg = J1 = C . Thus B is a commutative Galois algebra with Galois group G.

(⇐) Assume B is a central Galois algebra with Galois group H1. Then H1 �= {1}.
Hence, by (1)⇒(2) in Theorem 4.1, Jg = 1Jg = {0} for each g �∈ H1. Thus eg = 0 for

each g �∈ H1. Next, assume B is a commutative Galois algebra with Galois group G.

Then Jg = {0} for each g �= 1 in G (see [3, Proposition 2]). Hence eg = 0 for each g �= 1

in G. Therefore H1 = {1} and eg = 0 for each g �∈H1.

As a consequence of Theorem 4.3, the DeMeyer theorem (see [1, Theorem 1]) for

central Galois algebras with a connected center is generalized.

Corollary 4.4. Let B be a Galois algebra with Galois group G. If Ba = {0,1}, then B
is a central Galois algebra with Galois groupH1 and C is a commutative Galois algebra

with Galois group G/H1.

Proof. Since Ba = {0,1}, eg = 0 for each g �∈H1; and so the corollary holds.

We conclude the present paper with an example of a Galois algebra B such that

Ba = {0,1}, but its center C is not indecomposable.

Example 4.5. Let R[i,j,k] be the quaternion algebra over the real field R, B =
R[i,j,k]⊕R[i,j,k], andG = {1,gi,gj,gk,g,ggi,ggj,ggk}, where gi(a1,a2)= (ia1i−1,
ia2i−1), gj(a1,a2)= (ja1j−1,ja2j−1), gk(a1,a2)= (ka1k−1,ka2k−1), and g(a1,a2)=
(a2,a1) for all (a1,a2) in B. Then,

(1) B is a Galois extension with a G-Galois system: {a1 = (1,0), a2 = (i,0), a3 =
(j,0), a4 = (k,0), a5 = (0,1), a6 = (0, i), a7 = (0,j), a8 = (0,k); b1 = (1/4)(1,0), b2 =
−(1/4)(i,0), b3 =−(1/4)(j,0), b4 =−(1/4)(k,0), b5 = (1/4)(0,1), b6 =−(1/4)(0, i),
b7 =−(1/4)(0,j), b8 =−(1/4)(0,k)}.

(2) BG = {(r ,r) | r ∈ R} � R.

(3) By (1) and (2), B is a Galois algebra over R with Galois group G.

(4) J1 = C = R⊕R, Jgi = (Ri)⊕(Ri), Jgj = (Rj)⊕(Rj), Jgk = (Rk)⊕(Rk), and Jg =
Jggi = Jggj = Jggk = {0}.

(5) BJ1 = BJgi = BJgj = BJgk = B1 and BJg = BJggi = BJggj = BJggk = {0}. Hence

e1 = egi = egj = egk = 1 and eg = eggi = eggj = eggk = 0. Thus Ba = {0,1}.
(6) H1 = {1,gi,gj,gk} and B is a central Galois algebra with Galois group H1.

(7)C = R⊕R which is a commutative Galois algebra with Galois groupG/H1 � {1,g}.
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