

THE BOOLEAN ALGEBRA AND CENTRAL GALOIS ALGEBRAS

GEORGE SZETO and LIANYONG XUE

(Received 15 March 2001)

ABSTRACT. Let B be a Galois algebra with Galois group G , $J_g = \{b \in B \mid bx = g(x)b \text{ for all } x \in B\}$ for $g \in G$, and $BJ_g = Be_g$ for a central idempotent e_g . Then a relation is given between the set of elements in the Boolean algebra (B_a, \leq) generated by $\{0, e_g \mid g \in G\}$ and a set of subgroups of G , and a central Galois algebra Be with a Galois subgroup of G is characterized for an $e \in B_a$.

2000 Mathematics Subject Classification. 16S35, 16W20.

1. Introduction. Galois theory of rings have been intensively studied [1, 3, 4, 5, 6, 7]. Let B be a Galois algebra with Galois group G and $J_g = \{b \in B \mid bx = g(x)b \text{ for all } x \in B\}$ for each $g \in G$. In [4], it was shown that $BJ_g = Be_g$ for some central idempotent e_g of B . Let B_a be the Boolean algebra generated by $\{0, e_g \mid g \in G\}$. In [7], the following structure theorem for B was given: there exist $\{e_i \in B_a \mid i = 1, 2, \dots, m \text{ for some integer } m\}$ and some subgroups H_i of G such that $B = \bigoplus \sum_{i=1}^m Be_i \oplus B(1 - \sum_{i=1}^m e_i)$ where Be_i is a central Galois algebra with Galois group H_i for each $i = 1, 2, \dots, m$ and $B(1 - \sum_{i=1}^m e_i) = C(1 - \sum_{i=1}^m e_i)$ which is a commutative Galois algebra with Galois group induced by and isomorphic with G in case $1 \neq \sum_{i=1}^m e_i$, where C is the center of B . We observe that (1) $e_i = \prod_{h \in H_i} e_h$ which is a nonzero monomial in B_a for a maximal subset H_i of G , (2) H_i is a subgroup of G , and (3) Be_i is a central Galois algebra with Galois group H_i . In the present paper, we will discuss a general case: what kind of elements e in B_a and subgroups H_e give a central Galois algebra Be with Galois group H_e ? We will show that (1) for any nonzero monomial $e = \prod_{g \in S} e_g$ of B_a for some subset S of G , let $H_e = \{g \in G \mid e \leq e_g, \text{ that is, } ee_g = e\}$; then H_e is a subgroup of G , (2) when $H_e \neq \{1\}$, Be is a central Galois algebra with Galois group H_e if and only if e is a nonzero minimal element in B_a (i.e., Be is one of the components of B as given in [7, Theorem 3.8]), (3) for a nonzero monomial $e = \prod_{g \in S} e_g$ of B_a for some subset S of G , let $T_e = \{g \in G \mid e = e_g\}$; then T_e is a subgroup of G if and only if $e = 1$, and (4) let $H_1 = \{g \in G \mid e_g = 1\}$. Then $e_g = 0$ for each $g \notin H_1$ if and only if B is either a central Galois algebra with Galois group H_1 or a commutative Galois algebra with Galois group G . Thus, $\{Be \mid e \text{ is a nonzero minimal element in } B_a\}$ are the only central Galois algebras with Galois group H_e arising from nonzero monomials e in B_a , and when $B_a = \{0, 1\}$, B is a central Galois algebra with Galois group H_1 and the center C is a commutative Galois algebra with Galois group G/H_1 . This fact generalizes the DeMeyer theorem for a Galois algebra with an indecomposable center C (see [1, Theorem 1]).

2. Definitions and notations. Let B be a ring with 1 , C the center of B , G an automorphism group of B of order n for some integer n , and B^G the set of elements in B fixed under each element in G . B is called a Galois extension of B^G with Galois group G if there exist elements $\{a_i, b_i \in B, i = 1, 2, \dots, m\}$ for some integer m such that $\sum_{i=1}^m a_i g(b_i) = \delta_{1,g}$ for each $g \in G$. B is called a Galois algebra over R if B is a Galois extension of R which is contained in C , and B is called a central Galois extension if B is a Galois extension of C . Throughout this paper, we assume that B is a Galois algebra with Galois group G . Let $J_g = \{b \in B \mid bx = g(x)b \text{ for all } x \in B\}$ and $J_g^{(A)} = \{b \in A \mid bx = g(x)b \text{ for all } x \in A\}$ for each $g \in G$, where $A \subset B$. In [4], it was shown that $BJ_g = Be_g$ for some central idempotent e_g of B . We denote by B_a the Boolean algebra generated by $\{0, e_g \mid g \in G; \leq\}$, where $e \leq e'$ if $ee' = e$.

3. The monomials and subgroups. Let e be a nonzero monomial of B_a , $e = \prod_{g \in S} e_g$ for a subset S of G . We have two subsets of G , $H_e = \{g \in G \mid e \leq e_g\}$ and $T_e = \{g \in G \mid e = e_g\}$. We are going to show that H_e is a subgroup of G , and that T_e is a subgroup of G if and only if $e = 1$. Let K be a subgroup of G . Then K is called a nonzero subgroup of G if $\prod_{k \in K} e_k \neq 0$, and K is called a maximal nonzero subgroup of G if $K \subset K'$, where K' is a nonzero subgroup of G such that $\prod_{k \in K} e_k = \prod_{k \in K'} e_k$, then $K = K'$. We note that each nonzero subgroup is contained in a unique maximal nonzero subgroup of G . We will show that there exists a one-to-one correspondence between the following three sets: (1) the set of nonzero monomials in B_a , (2) the set of maximal nonzero subgroups of G , and (3) the set of Galois extensions in B generated by a nonzero monomial e with a maximal Galois subgroup of G .

LEMMA 3.1. *Let e be a nonzero monomial in B_a and $H_e = \{g \in G \mid e \leq e_g\}$. Then H_e is a subgroup of G .*

PROOF. For any $g, h \in H_e$, $e \leq e_g$, and $e \leq e_h$. Hence $e \leq e_g e_h$. But $J_g J_h \subset J_{gh}$, so $B J_g J_h \subset B J_{gh}$. Therefore $B e_g e_h \subset B e_{gh}$. Thus $e_g e_h \leq e_{gh}$; and so $e \leq e_g e_h \leq e_{gh}$. This implies that $gh \in H_e$. Noting that G is finite, we conclude that H_e is a subgroup of G . \square

THEOREM 3.2. *There exists a one-to-one correspondence between the set of nonzero monomials in B_a and the set of maximal nonzero subgroups of G .*

PROOF. Define $f : e \rightarrow H_e$ for a nonzero monomial e in B_a , where H_e is given in Lemma 3.1. By Lemma 3.1, H_e is a subgroup of G . Also, by the definition of H_e , it is easy to see that H_e is a maximal nonzero subgroup of G . Thus f is well defined. Next we show that f is one to one. Let e and e' be two nonzero monomials in B_a such that $f(e) = f(e')$, that is, $H_e = H_{e'}$. Then $e = \prod_{h \in H_e} e_h = \prod_{h \in H_{e'}} e_h = e'$. Thus f is one to one. Moreover, let K be a maximal nonzero subgroup of G . Then $e = \prod_{k \in K} e_k \neq 0$ and $K = \{g \in G \mid e \leq e_g\}$ by the definition of a maximal nonzero subgroup of G . Thus $f(e) = K$. Therefore f is a bijection. \square

Let $N(H_e)$ be the normalizer of H_e in G for a nonzero monomial e in B_a . We next show that Be is a Galois extension with a maximal Galois subgroup $G(e)$ where $G(e) = \{g \in G \mid g(e) = e\}$, and $G(e) = N(H_e)$. Consequently, we can establish a one-to-one correspondence between the set of maximal nonzero subgroups of G and the set of

Galois extensions in B generated by a nonzero monomial e with a maximal Galois subgroup of $N(H_e)$.

LEMMA 3.3. *For a nonzero monomial e in B_a , let $G(e) = \{g \in G \mid g(e) = e\}$. Then, (1) $G(e) = N(H_e)$, where $N(H_e)$ is the normalizer of H_e in G , and (2) Be is a Galois extension with a maximal Galois subgroup of $G(e)|_{Be} \cong G(e)$.*

PROOF. (1) For any $g \in N(H_e)$, since $Be = B\Pi_{h \in H_e} e_h = B\Pi_{h \in H_e} J_h$, $g(Be) = g(B\Pi_{h \in H_e} J_h) = B\Pi_{h \in H_e} J_{ghg^{-1}} = B\Pi_{h \in gH_e g^{-1}} J_h = B\Pi_{h \in H_e} J_h = Be$ (for $gHg^{-1} = H$). Hence $g(e) = e$; and so $g \in G(e)$. Conversely, for any $g \in G(e)$,

$$Be = g(Be) = g(B\Pi_{h \in H_e} e_h) = g(B\Pi_{h \in H_e} J_h) = B\Pi_{h \in H_e} J_{ghg^{-1}} = B\Pi_{h \in H_e} e_{ghg^{-1}}. \quad (3.1)$$

Thus $e = \Pi_{h \in H_e} e_{ghg^{-1}}$. Therefore $e \leq e_{ghg^{-1}}$; and so $ghg^{-1} \in H_e$ for each $h \in H_e$. This implies that $g \in N(H_e)$.

(2) Since B is a Galois algebra with Galois group G and $e \in C^{G(e)}$, Be is a Galois extension with a maximal Galois subgroup of $G(e)|_{Be} \cong G(e)$ (see [7, proof of Lemma 3.7]). Moreover, let $g \in G$ but $g \notin G(e)$. Then $g(e) \neq e$. Thus g is not an automorphism of Be ; and so $G(e)$ is the maximal Galois group contained in G for Be . \square

THEOREM 3.4. *There exists a one-to-one correspondence between the set of maximal nonzero subgroups of G and the set of Galois extensions in B generated by a nonzero monomial e with a maximal Galois subgroup $G(e)|_{Be} \cong G(e)$ such that $G(e) = N(H_e)$.*

PROOF. Let $\alpha : e \rightarrow Be$ for each nonzero monomial e in B_a . Then, by Lemma 3.3, Be is a Galois extension in B generated by e with a maximal Galois subgroup $G(e)|_{Be} \cong G(e)$ such that $G(e) = N(H_e)$. Clearly, α is a bijection from the set of nonzero monomials in B_a to the set of Galois extensions Be for a nonzero monomial e in B_a with a maximal Galois subgroup $G(e)|_{Be} \cong G(e)$ which is $N(H_e)$. Thus Theorem 3.4 is an immediate consequence of Theorem 3.2. \square

In the following, we show that the set $T_e = \{g \in G \mid e = e_g\}$ for a nonzero monomial e in B_a is not a subgroup of G unless $e = 1$.

THEOREM 3.5. *Let e be a nonzero monomial in B_a and $T_e = \{g \in G \mid e = e_g\}$. Then T_e is a subgroup of G if and only if $e = 1$.*

PROOF. Assume T_e is a subgroup of G . Then $1 \in T_e$; and so $e = e_1 = 1$. Conversely, assume $e = 1$. Then $T_e = T_1 = \{g \in G \mid 1 = e_g\}$. But the condition that $1 = e_g$ is equivalent to that $1 \leq e_g$, so $T_e = T_1 = H_1$ where H_1 is given in Lemma 3.1. Hence by Lemma 3.1, T_e is a subgroup of G . \square

4. Central Galois algebras. In Section 3, Lemma 3.1 proves that for a nonzero monomial $e \in B_a$, H_e ($= \{g \in G \mid e \leq e_g\}$) is a subgroup of G . In [7], it was shown that if H is a maximal subset of G such that $\Pi_{h \in H} J_h \neq \{0\}$, then H is a subgroup of G . We will show that the maximal subset H is exactly H_e for a minimal nonzero monomial $e \in B_a$. Thus Be is a central Galois algebra with Galois group H_e (see [7, Theorem 3.6]). Next is a characterization of the central Galois algebra Be with Galois group H_e for a nonzero monomial $e \in B_a$.

THEOREM 4.1. *Let e be a nonzero monomial in B_a such that $H_e \neq \{1\}$. The following statements are equivalent:*

- (1) *Be is a central Galois algebra with Galois group H_e .*
- (2) *$eJ_g = \{0\}$ for each $g \notin H_e$.*
- (3) *e is a minimal nonzero monomial in B_a .*

PROOF. (1) \Rightarrow (2). Since B is a Galois algebra over a commutative ring R with Galois group G , $B = \bigoplus \sum_{g \in G} J_g$ (see [4, Theorem 1]). Hence

$$Be = \bigoplus \sum_{g \in G} eJ_g = \left(\bigoplus \sum_{h \in H_e} eJ_h \right) \oplus \left(\bigoplus \sum_{g \notin H_e} eJ_g \right). \quad (4.1)$$

By hypothesis, Be is a central Galois algebra with Galois group H_e , so $Be = \bigoplus \sum_{h \in H_e} J_h^{(Be)}$. But by [7, Lemma 3.3], $J_h^{(Be)} = eJ_h$ for each $h \in H_e$; and so $Be = \bigoplus \sum_{h \in H_e} eJ_h$. Thus $\bigoplus \sum_{g \notin H_e} eJ_g = \{0\}$, that is, $eJ_g = \{0\}$ for each $g \notin H_e$.

(2) \Rightarrow (1). Since $Be = \bigoplus_{g \in G} eJ_g = (\bigoplus_{h \in H_e} eJ_h) \oplus (\bigoplus_{g \notin H_e} eJ_g)$ and $eJ_g = \{0\}$ for each $g \notin H_e$, $Be = \bigoplus_{h \in H_e} eJ_h$. By [7, Lemma 3.3] again, $J_h^{(Be)} = eJ_h$ for each $h \in H_e$. Hence $Be = \bigoplus_{h \in H_e} J_h^{(Be)}$, where $J_h^{(Be)} J_{h^{-1}}^{(Be)} = (eJ_h)(eJ_{h^{-1}}) = eJ_h J_{h^{-1}} = eC$ which is the center of Be . Moreover, B is a Galois R -algebra, so it is a separable R -algebra. Thus, Be is a separable algebra over Re (see [2, Proposition 1.11, page 46]). Therefore, Be is a central Galois algebra over Re (see [3, Theorem 1]).

(3) \Rightarrow (2). Since e is a minimal nonzero monomial in B_a , for each $g \in G$, either $e \leq e_g$ or $ee_g = 0$. Since $e \leq e_g$ for each $g \in H_e$, we have that $ee_g = 0$ for each $g \notin H_e$. Therefore, $BeJ_g = Bee_g = \{0\}$; and so $eJ_g = \{0\}$ for each $g \notin H_e$.

(2) \Rightarrow (3). Suppose e is not a minimal nonzero monomial in B_a . Then there exists a $g \in G$ such that $0 < ee_g < e$. By the definition of H_e , $e = \prod_{h \in H_e} e_h$; and so $ee_h = e$ for each $h \in H_e$. Hence $g \notin H_e$. Therefore, $BeJ_g = Bee_g \neq \{0\}$. This implies that $eJ_g \neq \{0\}$ for some $g \notin H_e$. This contradicts hypothesis (2). Thus statement (3) holds. \square

When e is a minimal nonzero monomial in B_a , Theorem 4.1 shows that Be is a central Galois algebra with Galois group H_e . Hence the order of H_e is a unit in Be (see [4, Corollary 3]). Moreover, by Lemma 3.3, Be is a Galois extension with Galois group $G(e)$ which is $N(H_e)$, so we have a structure of Be .

THEOREM 4.2. *For a minimal nonzero monomial e in B_a , Be is a central Galois algebra with Galois group H_e and Ce is a commutative Galois algebra with Galois group $G(e)/H_e$.*

PROOF. Since e is a minimal nonzero monomial in B_a , Be is a central Galois algebra with Galois group H_e by Theorem 4.1. Hence $|H_e|$, the order of H_e , is a unit in Ce . Moreover, by Lemma 3.3, Be is a Galois extension with Galois group $G(e)$ which is $N(H_e)$, so H_e is a normal subgroup of $G(e)$. Let $\{a_i, b_i \mid i = 1, 2, \dots, m\}$ be a $G(e)$ -Galois system for Be . Then, $\sum_{i=1}^m a_i g(b_i) = \delta_{1,g} e$ for each $g \in G(e)$. Let $x_i = (1/|H_e|) \sum_{h \in H_e} h(a_i)$ and $y_i = \sum_{h \in H_e} h(b_i)$. Then, x_i and y_i are invariant under each element in H_e . Hence, $x_i, y_i \in Ce$ since $(Be)^{H_e} = Ce$. It is straightforward to verify that $\{x_i, y_i\}$ is a $G(e)/H_e$ -Galois system for Ce . \square

Theorem 4.1 characterizes a central Galois algebra B_e for a minimal nonzero monomial $e \in B_a$. Next we want to characterize a central Galois algebra B_1 for the maximal monomial 1 in B_a .

THEOREM 4.3. *Let $H_1 = \{h \in G \mid e_h = 1\}$. Then $e_g = 0$ for each $g \notin H_1$ if and only if B is either a central Galois algebra with Galois group H_1 or a commutative Galois algebra with Galois group G .*

PROOF. (\Rightarrow) Case 1. $H_1 \neq \{1\}$. Since $e_g = 0$ for each $g \notin H_1$, $J_g = \{0\}$ for each $g \notin H_1$. Hence, by (2) \Rightarrow (1) in [Theorem 4.1](#), B ($= B_1$) is a central Galois algebra with Galois group H_1 . Case 2. $H_1 = \{1\}$. By hypothesis, $e_g = 0$ for each $g \neq 1$ in G , so $B = \bigoplus_{g \in G} J_g = J_1 = C$. Thus B is a commutative Galois algebra with Galois group G .

(\Leftarrow) Assume B is a central Galois algebra with Galois group H_1 . Then $H_1 \neq \{1\}$. Hence, by (1) \Rightarrow (2) in [Theorem 4.1](#), $J_g = 1J_g = \{0\}$ for each $g \notin H_1$. Thus $e_g = 0$ for each $g \notin H_1$. Next, assume B is a commutative Galois algebra with Galois group G . Then $J_g = \{0\}$ for each $g \neq 1$ in G (see [\[3, Proposition 2\]](#)). Hence $e_g = 0$ for each $g \neq 1$ in G . Therefore $H_1 = \{1\}$ and $e_g = 0$ for each $g \notin H_1$. \square

As a consequence of [Theorem 4.3](#), the DeMeyer theorem (see [\[1, Theorem 1\]](#)) for central Galois algebras with a connected center is generalized.

COROLLARY 4.4. *Let B be a Galois algebra with Galois group G . If $B_a = \{0, 1\}$, then B is a central Galois algebra with Galois group H_1 and C is a commutative Galois algebra with Galois group G/H_1 .*

PROOF. Since $B_a = \{0, 1\}$, $e_g = 0$ for each $g \notin H_1$; and so the corollary holds. \square

We conclude the present paper with an example of a Galois algebra B such that $B_a = \{0, 1\}$, but its center C is not indecomposable.

EXAMPLE 4.5. Let $R[i, j, k]$ be the quaternion algebra over the real field R , $B = R[i, j, k] \oplus R[i, j, k]$, and $G = \{1, g_i, g_j, g_k, g, gg_i, gg_j, gg_k\}$, where $g_i(a_1, a_2) = (ia_1 i^{-1}, ia_2 i^{-1})$, $g_j(a_1, a_2) = (ja_1 j^{-1}, ja_2 j^{-1})$, $g_k(a_1, a_2) = (ka_1 k^{-1}, ka_2 k^{-1})$, and $g(a_1, a_2) = (a_2, a_1)$ for all (a_1, a_2) in B . Then,

(1) B is a Galois extension with a G -Galois system: $\{a_1 = (1, 0), a_2 = (i, 0), a_3 = (j, 0), a_4 = (k, 0), a_5 = (0, 1), a_6 = (0, i), a_7 = (0, j), a_8 = (0, k); b_1 = (1/4)(1, 0), b_2 = -(1/4)(i, 0), b_3 = -(1/4)(j, 0), b_4 = -(1/4)(k, 0), b_5 = (1/4)(0, 1), b_6 = -(1/4)(0, i), b_7 = -(1/4)(0, j), b_8 = -(1/4)(0, k)\}$.

(2) $B^G = \{(r, r) \mid r \in R\} \cong R$.

(3) By (1) and (2), B is a Galois algebra over R with Galois group G .

(4) $J_1 = C = R \oplus R$, $J_{g_i} = (Ri) \oplus (Ri)$, $J_{g_j} = (Rj) \oplus (Rj)$, $J_{g_k} = (Rk) \oplus (Rk)$, and $J_g = J_{gg_i} = J_{gg_j} = J_{gg_k} = \{0\}$.

(5) $BJ_1 = BJ_{g_i} = BJ_{g_j} = BJ_{g_k} = B1$ and $BJ_g = BJ_{gg_i} = BJ_{gg_j} = BJ_{gg_k} = \{0\}$. Hence $e_1 = e_{g_i} = e_{g_j} = e_{g_k} = 1$ and $e_g = e_{gg_i} = e_{gg_j} = e_{gg_k} = 0$. Thus $B_a = \{0, 1\}$.

(6) $H_1 = \{1, g_i, g_j, g_k\}$ and B is a central Galois algebra with Galois group H_1 .

(7) $C = R \oplus R$ which is a commutative Galois algebra with Galois group $G/H_1 \cong \{1, g\}$.

ACKNOWLEDGEMENT. This paper was written under the support of a Caterpillar Fellowship at Bradley University. The authors would like to thank the Caterpillar Inc. for the support.

REFERENCES

- [1] F. R. DeMeyer, *Galois theory in separable algebras over commutative rings*, Illinois J. Math. **10** (1966), 287–295. [MR 33#149](#). [Zbl 216.34001](#).
- [2] F. R. DeMeyer and E. Ingraham, *Separable Algebras over Commutative Rings*, Lecture Notes in Mathematics, vol. 181, Springer-Verlag, Berlin, 1971. [MR 43#6199](#). [Zbl 215.36602](#).
- [3] M. Harada, *Supplementary results on Galois extension*, Osaka J. Math. **2** (1965), 343–350. [MR 33#151](#). [Zbl 178.36903](#).
- [4] T. Kanzaki, *On Galois algebra over a commutative ring*, Osaka J. Math. **2** (1965), 309–317. [MR 33#150](#). [Zbl 163.28802](#).
- [5] G. Szeto and L. Xue, *On three types of Galois extensions of rings*, Southeast Asian Bull. Math. **23** (1999), no. 4, 731–736. [CMP 1 810 837](#). [Zbl 945.16023](#).
- [6] ———, *On characterizations of a center Galois extension*, Int. J. Math. Math. Sci. **23** (2000), no. 11, 753–758. [MR 2001c:16061](#).
- [7] ———, *The structure of Galois algebras*, J. Algebra **237** (2001), no. 1, 238–246. [CMP 1 813 896](#).

GEORGE SZETO: DEPARTMENT OF MATHEMATICS, BRADLEY UNIVERSITY, PEORIA, IL 61625, USA
E-mail address: szeto@hilltop.bradley.edu

LIANYONG XUE: DEPARTMENT OF MATHEMATICS, BRADLEY UNIVERSITY, PEORIA, IL 61625, USA
E-mail address: lxue@hilltop.bradley.edu

Special Issue on Time-Dependent Billiards

Call for Papers

This subject has been extensively studied in the past years for one-, two-, and three-dimensional space. Additionally, such dynamical systems can exhibit a very important and still unexplained phenomenon, called as the Fermi acceleration phenomenon. Basically, the phenomenon of Fermi acceleration (FA) is a process in which a classical particle can acquire unbounded energy from collisions with a heavy moving wall. This phenomenon was originally proposed by Enrico Fermi in 1949 as a possible explanation of the origin of the large energies of the cosmic particles. His original model was then modified and considered under different approaches and using many versions. Moreover, applications of FA have been of a large broad interest in many different fields of science including plasma physics, astrophysics, atomic physics, optics, and time-dependent billiard problems and they are useful for controlling chaos in Engineering and dynamical systems exhibiting chaos (both conservative and dissipative chaos).

We intend to publish in this special issue papers reporting research on time-dependent billiards. The topic includes both conservative and dissipative dynamics. Papers discussing dynamical properties, statistical and mathematical results, stability investigation of the phase space structure, the phenomenon of Fermi acceleration, conditions for having suppression of Fermi acceleration, and computational and numerical methods for exploring these structures and applications are welcome.

To be acceptable for publication in the special issue of Mathematical Problems in Engineering, papers must make significant, original, and correct contributions to one or more of the topics above mentioned. Mathematical papers regarding the topics above are also welcome.

Authors should follow the Mathematical Problems in Engineering manuscript format described at <http://www.hindawi.com/journals/mpe/>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/> according to the following timetable:

Manuscript Due	March 1, 2009
First Round of Reviews	June 1, 2009
Publication Date	September 1, 2009

Guest Editors

Edson Denis Leonel, Department of Statistics, Applied Mathematics and Computing, Institute of Geosciences and Exact Sciences, State University of São Paulo at Rio Claro, Avenida 24A, 1515 Bela Vista, 13506-700 Rio Claro, SP, Brazil; edleonel@rc.unesp.br

Alexander Loskutov, Physics Faculty, Moscow State University, Vorob'evy Gory, Moscow 119992, Russia; loskutov@chaos.phys.msu.ru