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ABSTRACT. In solving numerous problems in mathematics, mechanics, physics, and tech-
nology one is faced with necessity of calculating different singular integrals.

In analytical form calculation of singular integrals is possible only in unusual cases.
Therefore approximate methods of singular integrals calculation are an active develop-
ing direction of computing in mathematics. This review is devoted to the optimal with
respect to accuracy algorithms of the calculation of singular integrals with fixed singu-
larity, Cauchy and Hilbert kernels, polysingular and many-dimensional singular integrals.
The isolated section is devoted to the optimal with respect to accuracy algorithms of the
calculation of the hypersingular integrals.

2000 Mathematics Subject Classification. 65D32.

1. Introduction

1.1. Definitions of optimality. The developing of optimal methods for solving
problems of computational mathematics is of prime importance. Various definitions
of optimality of numerical methods, basic results on optimal algorithms and a detailed
bibliography can be found in [1, 3, 47]. Recall definitions of the algorithms, optimal
with respect to accuracy, for calculation of singular integrals. We use the definitions
from [3] of algorithms, optimal with respect to accuracy. The definitions of optimal
with respect to accuracy algorithms are different for singular integrals with fixed and
with moving singularities.

Consider a quadrature rule

L (1) &
,[ ——dT = Zpk¢(tk)+RN(¢ykatk)’ (1.1)
-1 T k=1

where coefficients py and nodes ty, k = 1,...,N, are arbitrary.
An error of the quadrature rule (1.1) on class ¥ is defined as

Ry (¥, pi,t) = iup |RN (b, P, tk) |- (1.2)
ey

Define a functional Cx[¥] = inf,, r, Rn (¥, pi, tk)-

The quadrature rule with coefficients p; and nodes t; is optimal, asymptotically
optimal, optimal with respect to order on the class ¥ among all quadrature rules of
type (1.1) provided that Ry (¥, p;, t) /Cn[¥]1=1, ~ 1, < 1.
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Define optimality with respect to accuracy for singular integrals with moving sin-
gularity. Consider a quadrature rule

1 2t

N
o | g T2 do = 3 pi()db () + Ru (s, b, i ) (1.3)
mJo 2 k=1

An error of the quadrature rule (1.3) is defined as

Ry (¢, pi,ti) = sup |Rn(s,d,pi ti)|. (1.4)

0<s<2m

The error of the quadrature rule on class ¥ is defined as

Ry (¥, pr,tk) = sup Ry (o, pi,tk). (1.5)
0<s<2m
Define a functional Cn[¥] = inf,, ¢, Ry (¥, p, tk).
The quadrature rule with coefficients p; and nodes t; is optimal, asymptotically
optimal, optimal with respect to order on class of functions ¥ among all quadrature
rules of the type (1.3) provided that Ry (¥, p{, ) /Cn[¥]1=1,~1,0r < 1.

1.2. Classes of functions. In this section, we will list several classes of functions
which will be constantly used later. Some definitions we will take from [31].

A function f defined on A = [a,b] or A = K, where K is a unit circle, satisfies
a Holder conditions with constant M and exponent «, or belongs to class Hy(M),
M=>0,0<ax<1lif|f(x)-f(x") <M|x'—x"|% x', x" € A.

More general is the class Hy,» (M). This consists of all functions f(t) which can be
represented as f(t) = g(t)/p(t), where g(t) € Hy(M), p(t) is a weight function.

Class H, (M), where w(h) is a modulus of continuity, consists of all functions
f € C(A) with the property | f(x")— f(x"")| < Mw(|x'—x"]), x', x"" € A.

Class W"(M) consists of functions f(x) € C(A) which have continuous deriva-
tives f',f”,...,f""V on A, a piecewise continuous derivative f") on A satisfying
maXyeqa,p | f7(x)] < M.

Let W/ (1) be the class of functions f(t) which can be represented as f(t) =
@(t)/p(t), where @p(t) e W' (1), llpllc =1, p(t) is a weight function.

The class of functions Wy(M), r =1,2,..., 1 < p < o0, consists of functions f(x),
defined on a segment A = [a,b] or one A = K, that have continuous derivatives
L f7, ..., f7D integrable derivative f) satisfying

“A | £ (x) |”dx]1/p <M. (1.6)

Let ® be the class of functions f(x) that are defined on the segment [0,a] and
satisfy the conditions:
(1) limy_o f(x) = 0;
(2) f(x) is almost increasing;
(3) SUPyso1/f(x) g f(s)/sds = Ay < oo;
(4) SupyoX/f(x)Jy f(s)/sds = By < 0.
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A function f(x1,x2,...,x1),1=2,3,...,definedon A=[ai,b1;a2,b>;...;a;,b;]or A =
K1 XKy x - - - x K, where K;, i =1,2,...,1, are unit circles satisfying Holder conditions
with constant M and exponents «;, i = 1,2,...,1, or belongs to the class Hy,
M=>0,0<0;<1,i=1,2,...,1,if

| f(x1yeeesx) = fF e, ) | <M (| x1 =1 |+ 4+ [ xi = | ). (1.7)

Let w(h), wi(h), wherei=1,2,...,1,1=2,3,..., be a modulus of continuity.
The class Hy,,..,; (M), consists of all functions f € C(A), A = [a1,b1;a2,bz;...;
ap, bl or A=K; XKy X---xKj, with a property

Lf(x1,00x0) = f(V1aeen ) | <M(wi([x1 =21 ]) +- - +wi([x-2]).  (1.8)

LetH;-”(A), j=1,2,3,A=[a1,by;...;a;,b;],or A=Ky XKy x---xK;,1=2,3,...,be
the class of functions f(xi,...,x;) defined on A and satisfying

I f(x)-f()| =w(pj(x,y)), j=1,2,3, (1.9)

where x = (x1,...,Xx1), ¥ = (V1,-.-,20), p1(X,¥) = maXi<i<i(I1xi — yil), p2(x,y) =
Sioylxi—yil, p3 (e, ) =[Sy Ixi— yil21V2,

Let Zj"(A), j=1,2,3, be the class of functions f(xi,...,x;), defined on A and sat-
isfying | f(x) +f () =2f((x+¥)/2)| < w(p;(x,¥)/2), j=1,2,3.

Let W11 (M), 1=2,3,..., be the class of functions f(xi,...,x;), defined on a do-
main A, which have continuous partial derivatives a‘“‘f(xl,...,xl)/axf1 .- -ax;’l, 0<
vl <r-1, vl =v1+---+v, vi 20,1 =1,2,...,l, ¥ =1 +---+ 1, and
all piece-continuous partial derivatives of order v satisfying [0 f(x1,...,Xx1)/
oxi - 9x, e < M.

Let A = [ai,bi;az,by;...;a1,b1] or A=Ky xKpx---xK, 1 =2,3,.... Let C[ (M) be
the class of functions f(x1,...,x;) which are defined in A and which have continuous
partial derivatives up to » — 1 and a piecewise continuous partial derivatives of order .
The partial derivatives of order r satisfy the conditions

0" f(x1,...,x1)
—e =2l < M (1.10)
’ oxi" - -oxi" |lc
for any v = (vy,...,v;), where v;, i = 1,2,...,1 are integer and Zﬁ:l Vi =7.

1.3. Preliminaries. In this paper, we will use an affirmation by S. Smolyak quoted
from Bakhvalov’s article [4].

LEMMA BY S. SMOLYAK. Set L(f),L1(f),...,Ln(f) for linear functional and Q for a
convex centric symmetrical set with center of symmetry 0 in the linear metric space.
Then the numbers Dq,...,Dy exist and they are such that

N
sup |L(f) = > DiLi(f) | = R(T), (1.11)
feQ k=1

that is, among the best methods there is the linear method.

In Smolyak lemma the following notations were used:

T(f) = (L1(f),...,Ln(f)), R(S,T):s;uplL(f)—S(T(f»I- (1.12)
feQ
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Here the functional L(f) is calculated by the method S in which the information T(f)
is used. An error of calculating L(f) is given by R(T) =infsR(S,T).

Now we will describe some designations which will be used in this paper.

Let f(t) be a function which is defined on the segment [a, b] and belongs to the class
of functions W” (M). Let ¢ € [a,b]. An expression T, 1 (f,[a,b],c) is a designation of
a segment of Taylor series

Tr-1(fila,blie) = fo) + 5 f“)(c)(t c)+- FrUe)(t-c) . (1.13)

G 1)'

Let f(x1,...,x1) € W (M), v =1,2,..., x € D = [ay,b1;...;a1,b1]. Let ¢ € D. Let
T, (f,D,c) be a segment of the Taylor series

Ty(f,D,c)=f(c)+%df(c)+---+%dff(c). (1.14)

Let f(x1,x2) e W (M), x = (x1,Xx2) €D =[a,b;c,d]. Let a € [a,b], ¢ € [c,d]. Let
T,s(f,D,(a,b)) be a segment of Taylor series

Tys(f,D,(a,b)) = T (Ts (f (x1,x2),[c,d],¢),[a,b],a). (1.15)

Let D, (t) be a function

1 <1 r
D, (t) = 7T ﬁcos (21Tkt——). (1.16)

Favar constant K, is defined as

é S k(r+1) 1 _
ng -1) Gkrnr 0L (1.17)

Let Ryq(x) = x" + S e akxk be a polynomial of degree v of the least derivation
from zero in the space L,[-1,1].
Let Ry4(a;h;x) be a polynomial x" + Zz;é arx* such that

a+h a+h r-1 a
J |Ryq(a;h;x) |1dx = mln J X"+ arx®| dx. (1.18)
a-h A0y ar-1 -h k=0

Let f(t) be a function which is defined on the segment [a, b] and belongs to the class
of functions Wy (M). Now we construct the special polynomial for approximation of
the function f(t) on the segment [a, b]. This polynomial will be used for constructing
optimal quadrature rules for singular and Hadamard integrals.

We introduce a polynomial f [a,b]) corresponding to the formula

- (k)
Flr Z (f @) - a>k+Bk6<k>(b))

(1.19)

D (1 _a).

5(t) = f(1)- Z
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Coefficients By are determined from the equality

r-1
r_ Bj?’!(b—ll) _o\r—j-1 _ 1\
b= 3 G B = D Rl (1.20)

where Ry4(c,h,t) = t" + ZZ;(I) aitk is the polynomial of degree r of least deviation
from zero in the space Ly[a,b] (1/p+1/q=1),c=(a+b)/2,h=(b-a)/2.

Let f € W) (M,[a,b]),r =1,2,...,1 < p < c0. Divide the segment [a, b] into smaller
segments Ay = [ty tk+1], k=0,1,...,.n—1;ty =a+(b-a)k/n,k=0,1,...,n. Approxi-
mate the function f(t) on the segment Ay by the polynomial f(t, Ar),k=0,1,...,.n—1,
which was described above. A local spline is defined on the segment [a, b] and consists
of the polynomials f(t,Ak), k=0,1,...,n—1, and is denoted by f(t).

Let f(t) be a function defined on the segment [a,b] and belongs to class of func-
tions W) (M,[a,b]), ¥ = 1,2,..., 1 < p < co. Let Dyyp (fP(t;),0<l<r—-1bea
difference operator with approximate value f (¢;) to within An=2"-Y_This operator
is constructed by values f(vy), k = 1,2,...,7+ 1, and one is exact for the polynomials
of order v — 1.

Let f(ty,t) €eW"S(M,D),v,s =1,2,...,D =[ay,by;az,b>]. Let Dy (f %D (11, T2)),
1<k<7r-1,1<1<s-1,beadifference operator with approximate value f*! (1, T>)
to within Am—2-Dy-26-U_The operator Dy’ must be exact for the polynomials
of t{t¥, v = 0,1,...,¥ =1, w = 0,1,...,5 — 1 and one must use values f(Z;,&;),
i=12...,r+1,j=1,2,...,s+1.

We describe one way of constructing an operator Dy, .

Assume we should like to construct the operator D, for approximation of the
value f(0), 0 <l <7 —1.Let h = n2 be a small number. We approximate the
function f(t) on the segment [0, ] with the Lagrange interpolation polynomials on
¥+ 1 nodes vy € [0,h], k = 1,2,...,v + 1. This interpolation polynomial is one kind
of the operator Dy, . Using theory of approximation [34, 35] we can conclude that
operator Dy, has all needed properties.

An operator D%, can be constructed by similar ways.

Let f(t) Wy (M,[a,b]),r =1,2,..., 1 < p < 0. Let

Quyrp(fila,bl) = > puf(t) 1.21)
k=1

be the asymptotically optimal quadrature rule for calculation of the integral |, f fadt.
Let f(t1,t2) e WS(M,D),v,s =1,2,...,D =[a1,by;a,,b,]. Let
niy np
v (filan,bisaz,ba]) = > > Proko S (triky) (1.22)

k1=1 k=1

be the asymptotically optimal quadrature rule for calculation of the integral

by by
J Sf(t,t2)dt, dt. (1.23)
ay Jap
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We describe one of methods of construction of a functional Q. (f;[a,b]). It is
well known [36], that Euler-Maclaurin quadrature rule

j FOOdx =aof(@+ S prf (xi) +bof(b>+zav (FO (B) =) (B)) + R (f) (1.24)

k=0

is optimal on class W}, (1). Approximating derivatives £ (b) and ) (a) by the dif-
ference operators Dy, (f?) (b)) and Dy, (f©)(a)) we receive the asymptotlcally
optimal quadrature rule

Quyrp(fila,b]) = aof(a)+ > prf(xk) +bof(b)
k=t (1.25)

r—1

+ Z ay (Dn,r,p (f(v)(b)) —Dnyp (f(v)(a)))-

v=1

The asymptotically optimal quadrature rules Q,ﬁ’f,nz (f,la1,b1;a2,b2]) are constructed
by similar ways.

A polynomial P, (f,[a,b]) that interpolated the function f(t) on the segment [a, b]
is constructed as follows. Denote by Ci, k = 1,2,...,7, the roots of the Legendre poly-
nomial of degree v. We map a segment [C1,C, ] € [—1,1] onto [a, b] so that the points
C, and ¢, map to a and b, respectively. Images of the points C; under this mapping
are denoted by ;, i = 1,2,...,7. Using the points of ¢}, i = 1,2,...,¥, we construct the
interpolation polynomial P, (f,[a,b]) of degree r —1.

The abbreviation q.r. means quadrature rule. The symbol [a] means the greatest
integer in a.

1.4. Short reviews on approximate methods for calculating singular and hyper-
singular integrals. Singular and hypersingular integrals of the forms

1
_[ f@
If = L] n dt, (1.26)
1 (2" o-—s5
Hf = EJO f(O')CthdO', (1.27)
1
Kf- [ @@Of@, . (1.28)
-1 Tt
2 21 _ _
Jf = j f(oy,02)ctg 012 51 ctg 022 52 doido, (1.29)
w1 (T1) w2(T2) f(T1,T2)
Lf j J T1—t1 (Tz—tz) dTl de, (1.30)
P(G)f(u)
Mf=| an o) 0 (1.31)
(M fw f(t) B
Af=| Fdt Bf= J eerdt, V=123, 0<A <1, (1.32)
1
cp= | L4t o (1.33)

1 (t=s)v’



NUMERICAL METHODS OF COMPUTATION OF SINGULAR ... 133

Df = J J t1,t2 dtldtzvz! v, V2 =2,3,..., (1.34)
tl t - 2)
Ef = J J tl,tz)dtldtz o V=2,3,...,v, (1.35)
+(t2—52)%)

where 0 = (u—v)/r(u,v), u = (U, U2), V = (V1,V2), ¥ (u,v) = [(U; —v1)2 + (U —
v2)2]1Y2 D =[~-1,1;-1,1], play important role in fields like aerodynamics, electrody-
namics, the theory of elasticity and other areas of physics and engineering sciences.

One of the first publications devoted to approximate evaluation of singular integrals
with fixed singularity of type (1.26) was [29] in which the classical Gauss quadrature
rule was applied to the integral

1 _
If:L SO =fO0) ;0 (1.36)

Optimal, asymptotically optimal, and optimal with respect to order quadrature rules
for calculating singular integrals of type (1.26) was investigated in the series of the
papers by Boikov. These results and references can be found in [5, 6, 8, 9].

Asymptotically optimal and optimal with respect to order quadrature rules for cal-
culating singular integrals of type (1.26) were diffused in [11] to the hypersingular
integrals as (1.32).

A great number of publications is devoted to numerical methods of the calculation
of singular integrals as (1.27) and (1.28).

For numerical evaluation of singular integrals as (1.27) there are often constructed
the following quadrature rules. They approximate the integrand function f(t) by the
interpolated polynomial P, [ f] with nodes s = 2km/(2n+1), k=0,1,...,2n+1, (or
other nodes) and introduce a quadrature rule

21

oL PZn[f](a)?d0+Rn. 1.37)

1
Hf =52 21 Jo

21 Jo

The integral in the right-hand side is calculated exactly.
Similar quadrature rules are constructed for the singular integrals as (1.28)

kf- [ @@fmdr_(F w@Plflmdr (1.38)
1 Tt -1 Tt " '

The P, _1[f](t) is an interpolated polynomial with nodes —1 <t; <ty <--- <ty < 1.
These procedures have been investigated in [15, 16, 22, 23, 27, 33, 40].

Instead of the interpolation polynomials for the approximation of the integrand
function there often are used partial sums of Fourier series, Vallee-Poussin, Bernstein-
Rogozinski, Fejer, Abel-Poisson, Cesaro sums. Some results in this direction are given
in [45].

The discrete vortex method detailed for the solution of many tasks of aerodynamics
was used for the numerical calculation of singular integrals as (1.27), (1.28), (1.29), and
(1.30). Explicit presentation of discrete vortex method is given in [30].
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For evaluation of the singular integrals as (1.27) and (1.28) many authors approxi-
mate an integrand function with different splines. Investigation in this direction can
be found in [8, 9, 39].

Evaluation of singular integrals with Cauchy kernel based on approximating the
integrand function by Whittaker cardinal or Sinc functions was investigated in [44].

Quadrature rules with the highest trigonometrical precision for singular integrals
with Hilbert kernel and weight w was discussed in [18, 19].

For the evaluation of singular integrals many authors use the method of subtraction
of singularity. They write

(™) 4 (1.39)
T—t

KLf.t] zfl w (1) (f(1) - f(1))

T—t

1
(7l1'+f(t)£1

and approximate the integral on the right-hand side using classical quadrature rules.
Investigation in this direction can be found in [17, 27].

In the theory of numerical approximation of Cauchy type integrals, three kinds of
Gaussian quadrature rules have been investigated.

Let a function f (t) be interpolated by the polynomial P,,_;[ f] of degree n —1 using
the zeroes of the nth Jacobi polynomial with the weight function w (t) as interpolation
nodes. Then K[P,,_1 f, t] is the Gaussian quadrature rule for the Cauchy principal value
integral.

The results on the Gaussian quadrature rules can be found in [17, 20, 21, 22, 25].

On the other hand, the integral K[ f,t] can be represented as (1.39). Then the first
integral on the right-hand side of (1.39) is a Riemann integral. It can be approximated
with Gaussian quadrature rules for Riemann integrals. The resulting approximation
for K[ f,t] is called the modified Gaussian quadrature rules for the Cauchy principal
value integral. Results on the modified Gaussian quadrature rules can be found in
[20, 22, 24].

The Gaussian quadrature rule of the third kind

]zf @(T) (P1 [£1(T) = Pa-a [£1(1))
-1

O i (1.40)
T—t

T—t

1
K[f () arf |
was proposed in [18].

For the evaluation of polysingular integrals as (1.30) and (1.31) many authors re-
placed a function f on the interpolated polynomials or splines. These methods were
considered in [6, 8, 46].

The uniform convergence with respect to the parameters t; and t, of the numerical
methods for evaluating the Cauchy principal value integral (1.30), where w;, w; are
the Jacobi weight functions w; () = (1 —£)%i (1 +t)Pi, &;, Bi > —1,1 = 1,2, was studied
in [41].

The numerical methods of the evaluation of singular and polysingular integrals on
Hardy spaces are given in [8, 10].

From this short review it follows that many methods for calculating singular inte-
grals exist. It is necessary to find a criteria for the comparison of these methods. One
of these criterions is the optimality of algorithms.
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Optimal with respect to order quadrature rule for the evaluation integral as (1.27) on
Holder and Sobolev classes of functions was constructed in [26]. Later asymptotically
optimal and optimal with respect to order quadrature rule for the evaluation integrals
as (1.27), (1.28), (1.29), (1.30), and (1.31) on Holder and Sobolev classes of functions
was constructed by Boikov. These results were summed in [5, 6, 8, 9] which consist of
bibliography on numerical methods of the evaluation of singular and hypersingular
integrals.

Asymptotically optimal and optimal with respect to order quadrature rules for the
calculation of singular integrals was diffused in [11] to hypersingular integrals as
(1.32), (1.33), (1.34), and (1.35).

2. Singular integrals with fixed singularity. In this section, we give optimal, asymp-
totically optimal, optimal with respect to order quadrature rules for calculating one-
dimensional singular integrals with fixed singularity.

2.1. Optimal algorithms for calculating singular integrals with fixed singularity.
Up to now we know only four statements of optimal algorithms of calculating singular
integrals with fixed singularity.

We consider a singular integral

1
If = J md-r. (2.1)
-1 T
We will compute the integral I f by a quadrature rule as
N
If = 3 'puf (t) + Ry (f, pr, ti), (2.2)
k=-N

where -1 <t_ny<---<t_1 <0<t} <---<ty <1, prime in summation indicate that
k = 0.

We will consider the quadrature rules as (2.2) under two assumptions:

(1) t.iy = =1, such that formula (2.2) is a Markov quadrature rule;

2) ty=-1,ty < 1.

THEOREM 2.1 (see [6, 8]). Let ¥ = W1(1). Among all possible Markov quadrature
rules of type (2.2) the quadrature rule

N-1

B k+l(.(kk+1)\ ,( k(k+D)
If_k;zm k (f(N(N+1)) f( N(N+1))) 23)
FFO- ) Ry

N
is optimal. The error of the quadrature rule (2.3) is equal to R, (¥) =2In(1+1/N).
THEOREM 2.2 (see [6, 8]). Let ¥ = W1(1). Among all possible quadrature rules of
type (2.2) the quadrature rule
N

If:kzlzmkzl(f(flflk:ll)l)_f(_m»JrRN (2.4)

is optimal. The error of the quadrature rule (2.4) is equal to Ry (V) =2/(N +1).
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THEOREM 2.3 (see [37]). LetY = H,(1). Among all possible Markov quadrature rules
of type (2.2) the quadrature rule (2.3) is optimal.

THEOREM 2.4 (see [37]). LetY = H,(1). Among all possible quadrature rules of type
(2.2) the quadrature rule (2.4) is optimal.

PROOFS OF THEOREMS. To make some notices relating to the proofs of the theo-
rems.

First of all we assume that the quadrature rule (2.2) is strictly for polynomials of
order v — 1 in case applying it to functions of the W" (1) class.

We expand the function ¢ (t) by the Taylor formula with remainder term in the
integral form

_ 1
@) = Z (0) (7—11)'10 Ky (t—s)¢pM(s)ds fort =0,

(2.5)
k)
P(t) = Z (0) th+ o 1 J K, (t-s)¢pM (s)ds fort <0,
where
{u’l for u =0,
Ky(u) =

0 for u <0,

(2.6)

_ u™1 foru <o,
Ky (u) =
0 for u > 0.

Since the quadrature rule (2.2) is exact for polynomials of degree not higher than
¥ —1 hence

1 N
[ Y

k=—N,k+0
-t el
N tr
Pk r—1
- (tr—t)" M (t)dt
sz%,k;:o (r—1 JO @7

> piko (t-0) |ae
k=1

Ll 2

Ao [T S k0]
+ (r— 1)|J ¢ (1) o T at ngpkKr(tk t) dat.
Thus the error of the quadrature rule (2.2) on the function class W" (1) is defined
by the inequality

K t N

Ryl = (r— 1 U d)”’(t)[J Y(T ) - pkKr(tk—t):|dt‘. (2.8)
k=1

O
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PROOF OF THEOREM 2.1. It follows from the theorem conditions that» =1, t_y =
—1, ty = 1. In this case

LK (T-1)
J, "

N
. T—ZpkKl(tk—t)]dt‘

IRy | <2‘ jolqb'(t)[

k=1
(K-t S
<2 JO J; 7dT*]§1pkK1(tk7t) dat (2.9)

N
—Int - > piKi(t—t) ’dt.
k=1

1
o
0

We find the nodes t; and the weights py from the integral minimality conditions
assuming tp =0

1
An= |
0

t ty 1
=I | —lnt—M1|dt+J | —lnt—M2|dt+---+J | ~Int—My|dt
0 ty IN-1

N
—Int - z prKi (tx —t) ‘dt
k=1

t t
= J 1 (_lnt—Ml)dH-ﬁ (M1+lnt)dt+. . .+J
t

0 1 tN-1

,
th 1

(—mt—MN)dHﬁ (My +In)dt,
N

(2.10)
where t; € (ty,tg1).

We differentiate the expression Ay with respect to t;, t;, M; and assume the obtained
expressions are equal to zero. As a result we have the equations system

8£N:Mi+21nti+Mi+1=0, i=1,2,....N—1;

i

aaé{V:*ZMi*thFO, i=1,2,.... N~ 1,N; (2.11)
i

0AN , ‘

aMi :—Zti+ti+ti,1:(), l:172,---,N—1,N.

We transform the equations of system (2.11) to the following form:

(M;+Mi1)

lnti:*f, i=1,2,...,N-1;
M;=-Int;, i=12,...,.N-1,N; (2.12)
t;:(“zil), i=1,2,..,N—1,N.
Hence

Int, +Int;
lnti=w i=1,2,... N-1;

(fi o) (2.13)
t)=tTEY g1 2 N-1,N,

! 2
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It follows that

t;=tit;,,, i=12,...,N-1;
2 = ti+ti-1 tiv1+1t
i 2 2 ’

4t7 = (ti+tio1) (tier +ti).

i=1,2,...,N-1; (2.14)

We express t; (i = 2,...,N) by means of t; taking into account ty, = 0. It follows
from formula (2.14) that correctness of the recurrence relations is

(3t? —titiy) .
tiyg = —+—"%, i=12,...,N-1. 2.1
i+1 (ti+ti71) 3 1 y & 5 ( 5)

Using formula (2.15) we obtain
t, =3t; = (1+2)ty, t3 =6t; = (1+2+3)ty, ty =10t = (1+2+3+4)t;. (2.16)

The mathematical induction method makes it possible to prove that t,, = (1+n) X
nt; /2. In fact this formula is valid for n = 2, 3,4.
Let it holds for n. We show that it will be valid for n + 1. Then

tn+1 =

(3t —tntn-1) _ (n+2)(n+1)ty

(tn+tn-1) 2 @17

and the formula is proved. Now from the request ty = 1 we find that t; = 2/N(N +
1). Having known the values t; = i?t1/2 it is easy to obtain M; = —1In(i’t;/2) =
—In(i?/N(N +1)), i = 1,2,...,N. The coefficients p; of the optimal quadrature rule
can be determined with respect to the constants M;. Really,

PN =My, pPn-1 =Mn-1—Mn, pn2 =Mn_2—Mn_1, ..., p1 =M1 —M>. (2.18)

From here

pk=—21n< K ) k=1,2,...N—1. (2.19)

(k+1)

"’Nz_ln<(Nh+]1)>'

So we received the quadrature rule (2.3).
It is not difficult to estimate the value of its error

N-1 tk+1 51
Ryl =23 | [ 7 @@= tdr| | [ g
k=1 k -1
1 Nt t?
S2|:7+ [tkll’li, h +(t’ +t’k 1—2tk):|
N(N+1) k; tetiis k * (2.20)

_lnN(ﬁil) _(1_N(gil)>]

1
—21H(1+N)
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In order to prove the optimality of constructing the quadrature rule it is necessary
to point out the function ¢ (t) for which

N
Int - > prKy(t—t) | dt. (2.21)
k=1

1
IRy ()| = ZL

A function ¢ (t) determined by the formula ¢ (t) = ming |t — x|, k =0,1,...,N—1,N,
can be taken in the capacity of such function. This completes the proof. O

PROOF OF THEOREM 2.2. In principle this proof is similar to that of Theorem 2.1.
As in the proof of Theorem 2.1, the quadrature rule is defined by the inequality (2.9).
Since in this case ty must not be equal to 1 then Ay must be presented in the form

t1 t2
AN:J |flnth1|dt+J | —Int - M, |dt+---
0 3

N 1
+J |—1nt—MN|dt+J [Int|dt
tN-1 IN

(2.22)

t t1
=J1(—lnt—M1)dt+J (M, +Int)dt
0 t
th tN 1
+---+J (—lnt—MN)dt+J, (MN+lnt)dt+J —Intdt.
IN-1 t

N N

Having minimized Ay with respect to tx, t;, and My we arrive at the system of
equations

8£N =M;+2Int;+M;.; =0, i=1,2,....,N-1;
i
aaA% =MN+2ll’ltN:O;
BAN (2.23)
N = -2M;-2Int; =0, i=1,2,...,N—1,N;
ot;
0AN , )
oM, = —Zti+ti+t1'71 =0, i=1,2,...,N,
that differs from the system of (2.11) only by adding the equation
MJ =My +2Inty =0. (2.24)
oty

The solution of this system is not different from the solution of the equations
system (2.11) therefore is missing the intermediate evaluations. So we reduce the final
result: tx = k(k+1)/(N+1)?, t, =k?/(N+1)%, My = —2In(k/(N+1)), k=1,2,...,N.

Hence the optimal quadrature rule has the meaning (2.4). So it is easy to see that
the error of this quadrature rule is equal to the value 2/(N + 1). This completes the
proof. O
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2.2. Asymptotically optimal algorithms on the class H

2.2.1. Integrals on finite segments. Consider the singular integrals (2.1) on Holder
class of functions. As a method of evaluation we use a quadrature rule q.r.

N
Ip= > "pk@(tk) +Ry, (2.25)
k=-N
where —1 <t y<---<t_1=0=<t; <---<ty<1,is prime in summation indicates
that k # 0.
Input a quadrature rule
N-1 ¢
p= > "q;(t,;)ln( "“) +Ry, (2.26)
k=—N 2

where .y = = (k/N)IHO/% t) = (e +tge1) /2, k= 1,2, ,N =1, t] ) = (tp+1x41) /2,
k=2,3,...,N, is double prime in summation indicates that k # 0, —1.

THEOREM 2.5 (see [6, 8]). We set ¥ = Hy(1), 0 < & < 1. Among all possible quadra-
ture rules of type (2.25), the formula (2.26) is asymptotically optimal and has the error

21-0(1 4+ @)™

xlta N« (2'27)

Ry[¥]=(1+0(1))
PROOF. At the beginning we find value of Cn[¥]. Taking into account the symmetry
of the q.r. (2.25), we may restrict ourselves to the interval [0,1].
In the segment [0, 1] we shall input a function

0, O<t<t,
P*(t) = (2.28)
ming [t—tg], t1<t=<1,
if x=1and
0, O<t<ty k= [H—azz/""z]+l,
@*(t) = X (2.29)
min; |[t—¢;|%, ti<t<l,
if0<a<1.

We assume M for [InN] and divide the segment [0, 1] into smaller segments Ay =
[Skm, Sksvym]l, k=0,1,...,1=1; A; = [Sim, 1] where Sgy = (kM /N)1+®0/& |k = 0,1,...,1,
Su+1m =1, 1 = [N/M]. It is not difficult to see that

1 * 1+1 Sk
J L(T)d'rz ZL (p*(T)dT
0 T k=1 Skm Jsg-nym

_ (+ogamie s (k—ek)“*“”“( 1 2.30)

T 2aylta N1+« Pl k nk—1+1)

(1+(X)0‘M1+0‘ L

Do yl+aN1+a S (-1 + 1)""

> (1+o0(1))
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Here 0 < 0y < 1 and ny is the number of nodes of q.r. (2.25) situated in the segment
Ag. While deriving relation (2.30) the inequality

min max J (T)dT (b-a)i™ (2.31)
X1yeeXn QEH (1) (X] yorsXnt) P (1+o<)(2(n+1)) ’

was used, where Hy (1) (x1,...,Xy) is the class of functions belonging to Hy(1) and
vanishing at the nodes a, x1,...,x5, b.

And then we will find the minimal value of the sum Ziz m(Mk-1+1)"% We do not
know the value of ZLM ng_1 but it is evident that the more the sum Zi: v k-1 the
less the sum Xi:M(nk,l +1)~%. That is why we will look for the minimum of the sum
V= Xi:M(nk_l +1)«if ZLM ng_1 = N. Standard methods of mathematical analysis
make it possible to find out that the nodes ny—1 =ny=---=n;-1=N/(1-M+1)
give minimum of the sum V. Therefore V ~ [1**/N*. Substituting this value into the
expression (2.30) we conclude that for any nodes ty, 1 < k < N the inequality

1+x)*

1
@(7)
supJ‘0 —z (1+0(1)) S AN (2.32)

is valid, where the supremum is taken on all types of the functions @ (1) belonging
to class Hy(1) on the segment [0, 1] and vanishing at the points 0, t§, 1 < k < N. So,

21-¢(1 4+ @)«

On(Ha(1) = (1+0(1) 5 iya

(2.33)

The lower bound is received.
We will estimate the error of the q.r. (2.27). It is easy to see that

SRRV AR

t1

bt (T)—@(ty)
T

d'r‘ =1r1+712. (2.34)

By estimating each expression 71, > separately

ty «
(1) - @(0) 2t 2 1
n 22‘ Jo f“‘ <= e o(ye ) (2.35)
2l-apn(I+a) /e N-1 (tk+1*tk)l+u Dl-a(] 4 o)
= 1+« S ko = (1+0(1))W, (2.36)

and comparing the estimates (2.34), (2.35), and (2.36) with the estimate (2.32) we see
that Theorem 2.5 is valid. O

2.2.2. Integral on axis. In this section, we investigate calculation methods for the
singular integrals

_ Jm LSS (2.37)
— T

on Holder class of functions Hy,, (1), where p(t) = (max(1, [t]))2. As a method of
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evaluating the integral (2.37) we use the quadrature rule

N
> "pr@ (i) + Ry, (2.38)
k=-N

where —A<t y<---<t_1<0<t; <---<ty<A, Ais aconstant, which will be defined
below the prime in the summation to indicate that k # 0. Input a quadrature rule

= Lkl Mt -A -A
- 2 elm(5 )-3, X @) ()7 - v )
L Mt . . (2.39)
- Z @ ) ((vg-1) "= (v-k) ") +Ry,
k My
where
k o\l (tk+trs1)
+k = X — y L= ’ = 1 2 _1
Lk +<N1) bk 2 k »N1
, (t_k+t_gs1)
t*k:f! k=2!31-"!N1)
M\ 0/ (A-00)
vtk:i<7> , k=My,My+1,...,My; M1 —My= N>,
A(?\ﬂx)/(lﬂx)NZ (2.40)
[A<A a>/<1+a>_1)] M=l a1y |
vr _ ( Vg il) k Mo. M. _
£k = ) 0,Mo+1,...,M; -1,

3 (A_O()A(Aﬂx /(1+x) 3 (A()\fo()/(lﬂx) _ 1)0( B
Nl_[N AAQ-0/1+0) — ¢y |’ No=IN AAQ-0/ 1+ ¢ |’ N=Ni+N2,

the double prime in the summation to indicate that k # 0, —1.

THEOREM 2.6 (see [13]). Set ¥ = Hy,(1). Among all possible quadrature rules of
the type (2.38), the formula (2.39) is asymptotically optimal and has the error Ry[Y] =
L(N), where

LIN)=2(1+0(1))

Qa0 g ¢ G
N« (A—x)xAx@A- /0T X (AA-0/(+e) 1)
Al ’ (2.41)
(1+ 00 1+ o\ (AA-/ ey _q )t
€= Sagtia 27 (/\—cx) AVaQa(14x)
2N(X(A—o()(0‘+1)/°‘ 1/« (X>(1+¢x)/()\—¢x)
A= B(x+1,A—
(e B 1A= g :

and B(«x,A) is the beta-function.
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PROOF. At the beginning find the lower bound of the value Cy[¥]. Taking into
account the symmetry of the q.r. (2.38), we restrict ourselves to the interval [0, ).
We set that the nodes of the q.r. (2.38) are situated on the segment [0, A] and divide
[0, ) into three parts: [0,1], [1,A], [A, ). Let N; be the number of the nodes t; of
the g.r. (2.38) situated on the segment [0,1], N» is the number of the nodes t; of the
q.r. (2.38) situated on the segment [1,A]. It is clear that N; + N, = N.

In Section 2.2.1 we constructed the asymptotically optimal g.r. (2.26) for calculating
the integral (2.1).

Consider the integral

A
J @d-r. (2.42)
1 T
Making use of the results in [2] we have
cp( ) (H()()w(m W/ _pylte g
Sup | dt = (1+0(1)) Fy A 2511 NS’ (2.43)

where the supremum is taken on all types of the functions @ (t) € Hy(1) and being
vanished at the points t, situated on the segment [1, A]. It will be seen below that for
the optimal g.r. constant A must be strived to infinity. So,

Ap(1)
TA+1

sup dt = (1+0(1))CaN;5“. (2.44)

@eH(1) /1

Using [38, Formula 24, page 298], we find that

* (1) (T-A)" © T~ A
supJA A1 dTZJA TdT:J/O de:Aa B(O(-i-l,A—O(), (245)

where B(x,B) =T'(x)I'(B) /T (x+ B) is the beta-function, I'(x) is the gamma-function,
and the supremum is taken on all types of the functions @ (1) € Hy(1) and vanishing
at the nodes ty, 1 <k <N.

We will find the distribution of the nodes N; and N> on the segments [0,1] and
[1,A]. For this purpose it is necessary to find the minimum of the function

V(N1,N2) = CiN7*+ CoN5; ® + A B(x+1,A — ) (2.46)

under additional condition N; + N> = N.

In solving the problem on conditional extremum we find values of Ny, N», A (see
(2.40) and (2.41)) and receive the equality Cy[¥] = L(N).

The lower bound is received.

We will estimate the error of the q.r. (2.39). It is easy to see that

t 51 Ni-d b+ - A
o< [ 2 20|52ty
t_ t1 b
. (2.47)
X _
0 J Maﬁ' 2’ ﬂd'{" < L(N).
S _ T1+A T1+A

Comparing this estimate with the lower bound we see that Theorem 2.6 is valid. O
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2.3. Asymptotically optimal quadrature rules for calculating singular integrals
on the class W} (1)

2.3.1. Finite segments. We will calculate the integral (2.1) with q.r.

N B
Ip= 3 > pue@? () + Ry (@, pr. 1), (2.48)
k=—-N1=0
where —1 <t Ny<--- <l <fp<ti<---<ty=1l.

For approximating a function f (1) on the segment [vg, Vi.1] we will use the func-
tion f(T,[vk,Vks1]), which was introduced in Section 1.3. Spline is received by com-
bining the functions f (T, [vk,Vk+1]) and is denoted by f(T).

THEOREM 2.7 (see [6, 8]). Among all types of the q.r. (2.48) on the class W" (1) with
B=7r-1(r=1,2,...) the quadrature rule

M-1 t t_ ra
et (T, [t ]) ko f(T, [tok-1,t=x])
o ([ P

(2.49)

- 0 1
Z ,,i ! (1= (DY) 4Ry,

teg = =(k/N)T+DIT |k =0,1,...,N is asymptotically optimal. The error of the q.r. (2.49)
is equal to
r+1\"*t 1
RN[¥] = (2+0(1)) (7 ) o (2.50)
PROOF. We will first consider the lower bound. Taking into account the symmetry
of the formula (2.48) it is sufficient to consider a gap [0,1].
Consider an integral
1
J fO, 2.51)
0 T
Now we use designations S.x = =(k/N)"*V/" (k = 0,1,...,N), M = [InN],
= [N/M], Let Ny be the number of nodes of the q.r. (2.48) on the segment Ay =
[S¥,S¢11, k=0,1,...,1, where S} = Skm, k =0,1,...,1-1, S, = 1 corresponding to
the definition, f*(t) = (f(t)+1f(t)])/2, f~(t) = (f(t)—|f(t)])/2. To get the lower
bound we can consider only the segment [0,1]. On this segment we will construct a
function f*(t), equal to zero for t € [0,Sy], belonging to W" (1) and vanishing to-
gether with its derivatives up to (v — 1) order inclusive at the nodes t; (k =1,2,...,N)
of the q.r. (2.48) and the points S (k=1,2,...,1+1). Besides, we will require that

S+
‘ f*(m)dr=0, k=0,1,...,L (2.52)
Sk
It is obvious that
P ge 3 () [ s () [
f*(T)dT+(7*7) f* (T)d'r]zl +I. (2.53)
‘[ ; Ske1/ Jsg Sk Ska/ Jsg !
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It is shown in [36] that at any position of the nodes t

N r-1

1
J P(T)dT - kZ”ZOszQ? ) ‘ P raWN-D 2y @Y

inf sup
Pkl peW?™ (1)

According to Smolyk lemma and Nikol’skil theorem [36] we have

S*
k+1
sup J* e(T)dT
@eW? (1);pW (v)=0; Sk
i=1,2,..,Ny+2;j=0,1,...,r -1 (2_55)
Ng+2r-1
1 .
> (¢, =S inf  sup J p@dt— > > Pue? wk)‘
PklLWk peW?™ (1) k=1 1=0

where wj is the set of the nodes of q.r. situated on the segment Ay and the points S,
Sg.1- Therefore,

sup J% f(rydr = (St =S8 (2.56)
PEWT (19U (v;)=0 IS¢ TrA(Ne+ 1) +2 Yr 1] ’
Then
l S*
Z 1 k+1 f* (T)dT
Sk+1 S§
1
Z (S =SO" 2.57)
o SEar 4Nk +1) +2Vr +1 1"
r+1 r+l 1L
z(1+o(1))<ﬂ> %(%) 1 -~ -
r r! My [4(Ng+1)+2 Vr +1]
We can find the distribution of the nodes N minimizing the sum
! 1
= 2.58
ZM 4(Ng+1)+2r+1]"”’ (2.58)

provided that Zizl Ny = M. This sum can only be reduced if we suppose that Ny, +
Nyy+1+ -+ Np = M. It is easy to verify that the sum V reaches minimum, pro-

vided that Ny, = Npy+1 = -+ =Ny = N/(I-M +1) and this minimum is equal to
(14+0(1))I"*1/(4N)". So, it has been shown that the minimum is reached provided
the values Ny, = --- = Ny = N/(l-M + 1), which may be non-whole numbers. As we

consider the problem of minimization of whole values, where the values Nyy,...,N;
must be whole positive numbers, the minimum of the sum V under these circum-
stances must not be less than (1+0(1))(I"*1)/((4N)"). Therefore,

(r+1)r!
Estimate the expression I,
1 *
(T+1)M(1’+1)/r Skl ~
Z k+ Dk (r+1)/r N1+1/r I * f* (T)dT' (2.60)
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By construction every interval [Sk,Sk.1] has at least one node where the function
f*(t) with its derivatives up to order (v — 1) vanishes. In each interval we will take
one node and denote it by S* (k = 1,2,...,1). In the interval [Sk,Sk+1] the function
f*(t) may be represented as

* _ 1 T _\r—1 x(r)
f (T)—(T_l)!JS;*(T )" () dt (2.61)

and therefore,

Sk+1 Sk+1 (Sks1 _Sk)”“
*- d _J * dr <~ =8 2.62
Usk S (rydt| < . | f*(T)|dT < D) (2.62)
So, from (2.60) and (2.62) we have that
|| =o(M™T). (2.63)

Starting from that and the estimate of the sum I; we see that the upper bound of the
estimate from below on the segment [0,1] is not less than or equal to

+1 r+1
O [W ()] = (2+o(1))% (2.64)
We can estimate the error of the q.r. (2.49)
trs =
\RN| <92 k1 @ (T) (P(:[tk,tkn])d_r'
. o (2.65)
Lo, (0) —k(r+1) )7 B
+‘ - ar 2 ik (1-(=D)%) | =1 +1n.

It is easy to see that

a8 [ £ttt
k=1"tk T
S B )
=9 Z th+1 th+1 1 (K(yr('r1 t) Vzl (r Blki J)'Ky_j(tkﬂ —t))d’rdt‘
< 211321;(] ) | e 20 —gB’;ﬁf"f_‘j?{) (trr =) |t
S PTINIE —

(2.66)
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It is known that (Nikol’skil [36])

a+h opra+l R, (1 qa
J |Rm(a,h,x)|qu=M (2.67)
“h rq+1
Then
((teer—ti) /2)"" (r+1)7+!
ol <4Ry1(1)kz1 t(r+1)! S(1+0(1))m'
(2.68)
1 71<J r—-1 £(r) ) ZM_T_l
o = T J (T-t)"f(t)dt|dTt| < et
From the estimations (2.65) and (2.68) we get
r+1
Ry[¥] < (1+0(1)) =+ D (2.69)

22r=1yr+ly|NT’

Comparing this estimate with the estimate (2.64) we see that Theorem 2.7 is valid. Let
M =[In"?" N1, L = [N/M]. Consider a quadrature rule

1-(-1k

r—1
Lf = 2 Durp (f9(0) —

k=1

t

— tk+1 * g% * 1 1
Z Dn,r,p(TV—l(fy[tk:tk+1]),tk)(f_ ¥ )dT
k=1 T tk+1
(2.70)
i % * * 1 1
+J Dn,r,p(Tr—l(f;[tfkflntfk])tfk)<*_*7>d7
tr T 5,
L-1
+ 2 (g (5 [ B DEET + Dt O [E5 0 5 D) E5) + Ry,
k=0

where t¥, = £(k/L)Y, k =0,1,....L, v = (rq+1)/(rq+1—-q), 1/p+1/q = 1. The
operators Dy, and T,_1 (f, Ak, cx) were introduced in Section 1.3. O

THEOREM 2.8 (see [8]). LetV¥ = W;(l,l;[—l,l]), l<p=<oo,r=1,2,.... Among all
possible quadrature rules of the type (2.48), the formula (2.70) is asymptotically optimal
and has the error

rq+1

r+1/q
m) inf ||Dy (t) = |l 0.1- (2.71)

Rn(¥) = (1 +0(1)) (

2.3.2. Integrals on axis. In this section, we investigate the calculation methods for
singular integrals (2.37) on the class of functions W/} (1), where po(t) = max(1,|t]),

p1(t) = (po(t)r.
We will calculate the integral (2.37) with q.r.

-3

where —A<t_ y<---<t_1<typ<t; <---<ty <A, constant A will be defined below.

pue? (t), (2.72)

T [\/_]m
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THEOREM 2.9 (see [13]). Among all types of the q.r. (2.72) where B =v —1 (v =
1,2,...) on the class Y = W} (1), the quadrature rule

T [ T

f (0) —k(r+1)/v (1 _(_1\k
ik (1-(=D%) (2.73)

+Mlzl( vk Mdﬂjv“ﬂ“[”'”“])m> +Ry,

k= Vk+1 T V_k T
where
k (r+1)/r
tig == M) , k=0,1,...,M,
M r+1)/(A-r)
Vik = =x 7) y k:Mo,M0+1,...,M1,

], M, = [nA(A—n/(r+1>A<A—r>/(r+1> _ 1]’ 2.74)

AAQ-T)/(r+1) _ ¢

[ (A- r)/(1’+1) 1
/\ r)/(r+1) _ 1 A()\*'V)/(V‘Fl) A—
=[5 o] -] o=l

AAQ-7)/(r+1) _

(Dr,M))"" +

’

ANY(A—71)
-

r (r+1)/(A-r)
A(r +1)r+D/r

A

is asymptotically optimal. The error of the q.r. (2.73) is equal to

B (r+1)r*! Cilr+1) A" \ 1
Ryl¥1=(1+o(1) 27yl (A—v)" ( Cor A )NV’ 2.75)
where
_ D(r,A) _ (r+pr! Lori(-DkA-7)
C=Gonrr 2= apyraarey POA= Z Kokl —rik) 79

Proof of this theorem is the union of the proofs of Theorems 2.6 and 2.9 but the
technicality is more complex.

2.4. Optimal with respect to order quadrature rules. The optimal with respect to
order quadrature rules can be useful in practical calculations which have good nu-
merical properties and which are simpler for program realization than asymptotically
optimal quadrature rules.

Consider the singular integrals as (2.1). We will compute the integrals I f by quad-
rature rules as

If = z Z pief "V (tk) + Ry (f, pra - te), (2.77)
k=-N1=0

where -1 <t y<---<t1=0=<ti<---<ty=l.
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THEOREM 2.10 (see [6]). LetY = W"(1),v = 2,4,.... Let the integral I f be calculated
by the quadrature rule of the type (2.77), where p = 0. Then

(7, + l)r+]

Cnv(Y) = (1 +0(1))Krm,

(2.78)

where K, is Favar constant.

Let Ny = [N/r]+ 1. Let Agx = [Sk,Sk+1), k=0,1,...,N1 — 1, A = [S_k_1,Sk]), k =
0,1,...,N; — 1, where S, = +(rk/N)"+D/" 'k =0,1,...,N; — 1. Define S.y, as S.n, =
+1. Let Cx, k =1,2,...,7, be the nodes of Chebyshev polynomial of the type I.

Let Gy, k =1,2,...,1, be the result of mapping the segment [—1,1] onto the segment
[a,b]. Let P, (f,[a,b]) be the Lagrange interpolated polynomial: P, (f,[a,b])(T};) =
F@ k=1,2,...,7.

Then the integral I f we will be calculated by the quadrature rule

[ Y [P BT o [ PSS g
-1 T o sk T S T 2.79)
2.79
N1-1 S_k
+ > J 7Pk(T’A’k)dT+RN.
k=1 7S-k-1

THEOREM 2.11 (see [6]). LetY =W" (1), v =1,2,.... Among all possible quadrature
rules of the type (2.77), where p = 0, the quadrature rule (2.79) is optimal with respect
to order and its error occurs

(7, + l)r+1

Consider a quadrature rule
1 N-1 Sk S—k
J FO 4y U ITr_l(f,Ak,sk)dHJ 1 (fi8 kS k) 5o
-1 T k=1 Sk T S_ k-1 T
o " (2.81)
(k) —\=
+k§f O) oo g R

where Ag =[Sk, Sk+11, Ak = [Sk-1,5-k], k=0,1,...,N =1, Sep = £ (k/N)"D/" | =
0,1,...,N.

THEOREM 2.12 (see [6]). LetY =W"(1),r =1,2,.... Among all possible quadrature
rules of the type (2.77), where p = v — 1, the quadrature rule (2.81) is optimal with
respect to order and its error holds

(r+1)r*!
yrH12r-1(y 4+ 1)INT”

Ry (YY) < (2.82)

We give now the description of the quadrature rule which is not optimal with respect
to order but make use of one operation of multiplication and ANInN operation of
addition.
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Consider a quadrature rule

1

-y

M
> f(t})+Ry, (2.83)
=—M,k+0

where t.p = EN"VXkIN th = (tpq + 1) /2, th = (bker +E4) /2, k=1,2,...,M, M =
[ INInN].

THEOREM 2.13 (see [6]). LetY = Hy(1), 0 < @ < 1. The quadrature rule (2.83) has
the error Ry[Y] < 2(e®N/(aN) + 1/ (2¥xN®) + 1/ (aN*+%)).

Proofs of Theorems 2.10, 2.11, 2.12, and 2.13 are given in [6]. At the end of the
section we describe one optimal with respect to order quadrature rule that is very
simple in realization. Convergence of this quadrature rule was proved in [12]. Intro-
duce the nodes t.x = +(k/N)V, k=0,1,....M,v = (r+1)/r. Let C4,...,C, € [-1,1]
be the nodes of order » Legendre polynomial. On every subinterval [ty,tx+11, k =
-n,...,N —1, we construct interpolated polynomial P, (f,[ty,tx+1]) of degree r — 1
with nodes ty + (1+Cy) (txe1 —tx) /2, v =1,2,...,7. The integral (2.1) is approximated
by the quadrature rule

o zl;lel (Jt—k PV(Q?(T) , [t,k,l,t—k])dTJrrM Pr(q)_(l_T):[tk,tk+l])dT)

g1 T Lk

(2.84)

t —

+J Pr<7q)(-r) (p(0)>dT+RN.
(] T
Its error is equal to
2r+1,.) r+1

Ry = (1+0(1)) > Hr+ D™ (2.85)

r)lrr+tINT

REMARK 2.14. The quadrature rule (2.84) is asymptotically optimal for » = 1 and
optimal with respect to order for r = 2,3,....

2.5. Stability of quadrature rules. Consider singular integrals of the kind (2.1),
which we will compute by quadrature rule as (2.2).

Practically, we cannot calculate the exact values of the functionals f (t;) and weights
pk.Itis necessary to investigate the influence of the calculation error of the functionals
f(tx) and the weights py on exactness of quadrature rules.

Let the functionals be calculated with exactness € = | f (tx) —f(tk)l <€ k=-N,...,
-1,0,1,...,N.

THEOREM 2.15 (see [6]). Let ¥ = Hy(1), 0 < & < 1. Let the functionals f(ty) be
calculated with the error equal to €, 0 < € < 1. In this case for any points t, € [—-1,1],
k=-N,...,—1,0,1,...,N the error of quadrature rules of the type (2.2) is not less than
(1+0(1))(1 —et/A-)ltapl-a(] 4 )¢/ (@l tANX) 4 2e(|In€e| + 1)/ .
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THEOREM 2.16 (see [6]). Let ¥ = Hy(1), 0 < x < 1. Let | f(ty) —f(tk)l <e k=

-N,...,-1,0,1,...,N. Then the quadrature rule
N-1 _ t
If= >  Ff(tp)m=L 1Ry, (2.86)
k=-N,k=-1,0 Li

where t.q = £(k/N)I®0/& k= 0,1,...,N, t_; = (tek + tek+1)/2 has the error |Ry| <
(1+0(1))21 %1+ )%/ (! **N*®) +2ex 1 (1 + ®) InN + AN~1-«,

THEOREM 2.17 (see [6]). Let¥ = Hy, 0 < x < 1. Let | f(tx) — f(tx)] <€, k=—N,...,
—-1,0,1,...,N. Then the quadrature rule

1f= S () L s Ry, (2.87)

wheret g = = (k/N) 1@/t = (Eog+tikar) /2, the prime in the summation indicates
that k ¢ [—k* ,k*],k* = [Ne/1+®] has the error |[Ry| < 2e(|In€| +1)/x +217%(1 +
)*(1+(1+x)N'InN)/(xl**N%).

3. Optimal methods of calculating singular integrals with Cauchy and Hilbert
kernels

3.1. Introduction. In this section, we will investigate optimal methods of the cal-
culation of singular integrals with Cauchy and Hilbert kernels. Consider singular in-
tegrals with Hilbert kernel as

1 (%" o-Ss
Fo = o Jo ¢ (o) ctg Tdo-, s e [0,2rm], 3.1

that we will compute by quadrature rules as
N p
Fop=> > pu(s)d'(s) +Ru(s,skpr(s), ) (3.2)
k=11=0

with nodes 0 < s < 271 and weights pi(s), k =1,2,...,N, and singular integrals with
Cauchy kernel as

1
K¢: M! (te(_lyl))! (33)
1 T-t
that we will compute by quadrature rules as
N p
K= > > put)'(te) + Ry (t, te, pra(s), ), (3.4)

k=—N1=0

where -1 <t y<-- <t <trp<thi<---<ty=<l.
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3.2. Asymptotically optimal quadrature rules on the class H(1)

THEOREM 3.1 (see [6, 8]). Let¥Y = Hy(1) (0 < & < 1). Then among all possible types
of the quadrature rules as (3.2), where p = 0, the formula

1 N b , o—5s
Fd)zz— > d)(tk_l)cthda
m k=1,k=v,v+1 fr-1

(3.5)

1 ty41

, o-s
o) ¢(t,_;)ctg 5 do +Ry(s)

is asymptotically optimal. There is ty = 2k1 /N, t, = 2k+1)m™/N, k =0,1,...,N, s €
[ty_1,ty). The quadrature rule (3.5) error is equal to

Ry[M]=2InN/mt'"*(1+ x) N* + 0(N~%). (3.6)
THEOREM 3.2 (see [6, 8]). LetY =H,,, where w (o) € ®. Then among all possible quad-

rature rules using N values of integrand function the formula (3.5) is asymptotically
optimal. The error of this formula is equal to

1 /N
Ry[¥] :2N(lnN+0(1))¥JO w(o)do. 3.7)

THEOREM 3.3 (see [8]). LetY = Hy(1) (0 < x < 1). Then among all possible quadra-
ture rules as (3.4), where p = 0, the formula

( bogr 21 et gr

t J Aar | t J Aar to<t <t
¢ (to) M g:z(l)( k) W To1 0 1
L (e dr tie dr

To=Ryti 3 o) | e | Tttt 69
Pt  T-—t tiog Tt
2N-2 b+l dr N 4T
¢(t1’<)J 7+¢(t2N)I —, tavo1 <t <tw;

Pt f T-—t tonog T

wherety = -1+k/N,k=0,1,...,2N, t;, = (tx+tr+1)/2,k=0,1,...,2N—1,t € [tj, t}:1),
the prime in the summation indicate that k = j—1, j, j+ 1, is asymptotically optimal.
The error Ry[¥Y] = (1+0(1))21%InN/(1 + x)N is valid.

REMARK 3.4. Theorem 3.3 is valid for even number of the nodes too.

THEOREM 3.5 (see [6, 8]). Let ¢ € Hy (w € ®). Then among all possible quadrature
rules as (3.4), where p = 0, the formula (3.8) is asymptotically optimal. The error of this
formula holds

1/(2N+1)
Ry[Hw] = (1+0(1))2(2N+1) w(t)dtInN. (3.9)
0

REMARK 3.6. Theorem 3.5 is valid for even number of the nodes too.
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PROOF OF THEOREM 3.1. At first let us find the lower bound of value Cy[H(1)]
in computing the integral F¢ by the quadrature rule (3.2), where p = 0. Let S be a
vector S = (s1,...,5y) of the nodes of the quadrature rule (3.2). Fix an arbitrary value
s;. Let the point s; + 17 belongs to the segment A = [s;,5;,, ], the endpoints of which
are neighboring nodes of the vector S.

We associate to each value s; the 271 periodic function defined for « =1 by expression

0, oeN;
o —S; (3.10)

i (o) = , 0€[0,2mI\Aj;

miny (| o —sx|) sgnctg
and for 0 < & < 1 defined by expression

0, 0 €Qj=[8jv,Sjs10]U[$5 0,850 ];

P (o) = (3.11)

o—5;
miny (|0 —sk|) sgncthJ, o €[0,2m]\Q;.

Here v = [21/%-2]+1,j=1,2,...,N, moreover, Sy, = 277 + ;. Similarly sy, = 277 + 5,
S—q = Sn—q — 21 for ¥ > 0, g > 0. Introduce a designation xy = (Sx+1 — sx)/2. There
arises two cases:

(1) at least one of the values x, (v = 1,2,...,N) is not less than 2N~ (InN)1/&;

(2) all of these values are separately less than 2rN 1 (InN)1/«,
In the first case assuming, without loss of generality, that 2N 1 (InN)V/* < x; < 11/2
we have

2m - 2 1InN

N og-—s
¢i (o) ctg > do = AN (3.12)

max
o<s<2m 27T Jo

As for the second case, divide a segment [0,27r] into M = [N /2 In'/*N] equal portions
by the points vy = 2kmt/M, k = 0,1,...,M. Then a single node of the q.r. (3.2) exists
at least in each segment [vg,vi+1]. Choose in each segment [vg,Vi+1] exactly one
single node that we denote by s; (k = 1,2,...,M). Fix an arbitrary value 1 < j < M and
estimate the integral

_ ok

* * 1 2w % o Sj
(Fd)j)(sj):%‘l’o ¢j(o)ctg > do

2 . M (ij+k+l (]5*(0')da‘+'[vjik

+Dm\ Jv; Vjk

[M/2] (3.13)

1

21T Pt

+1
> (1)*(0)(10),
where ¢* (o) is 21 periodic function defined by formula ¢* (o) = ming (|0 — sg|%).
Having averaged values (F¢7) (s} ), we have

M [M/2]-2 v; Vi
1 M 1 J+k+1 j-k

max (Fp¥)(s)=z— > — J *a'd0+J

nax (F7) ()= 37 > 5 k+1< by F@dor]

. d)*((r)da)
M= k=1

[M/2]-2

M Vjt+k+ Vi ks
T 2m? 2. klﬁz (J ’ 1¢*(U)dU+J ] 1qb*(cr)ala) (3.14)
= j:1

Vj+k Vj-k

1 21 [M/2]-2
== P*(o)do >
0

k=1

1 InN (%7

= /7 *
k+1 2 Jo ¢*(0)do.
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Thus this problem has reduced itself to finding the lower bound of the values
02" ¢*(0)do in varying the nodes s; (k =1,2,...,N). It is obvious that

21 ) N-1
* 1+
=— g 1
JO ¢*(o)do 1+0‘k:0xk , (3.15)

where x( = 51 + 27 — sy. Find the minimum of the function

5 N-
W(X0,y.eyXN) = —— > xp (3.16)
1+ P

under limitation 2 Y4 xy = 27,

It is possible to show that @ (xg,...,xy) = 2%/ (1 + x) N* and maxs,j(Fqb;‘)(s) >
(14+0(1))2m* 1 InN/(1 + x)N*.

The error estimate of the quadrature rule (1.1) is given by the inequality Ry[¥] <
(2+0(1))InN/m~%(1 + x)N*. This completes the proof. O

Proofs of Theorems 3.2, 3.3, and 3.5 are similar to that of Theorem 3.1 but technical
realization of these proofs is more difficult. These proofs are given in [6, 8].

3.3. Asymptotically optimal quadrature rules on the class W" (1)

THEOREM 3.7 (see [6, 8]). Let'¥ = W"(1) (v = 1,2,...,) and the integral F¢ is eval-
uated by the quadrature rule (3.2), where p = 0,1. Then Cn[¥] = 2K, 7w 'N~"InN +
o(N7T).

THEOREM 3.8 (see [6, 8]). Let¥Y = WVLp(l), r=1,2,...,1 < p < . Let the integral
F¢ be calculated with quadrature rules of the type (3.2), wherep =v—-1,v =1,2,...,
orp=v-2,v=2,4,.... Then

(1+0(1))2(2m) /4R, ,(1)InN

CnIY] = Tri(rg + DI2N)" (3.17)
Consider the quadrature rule
tvz o -5
F¢=t ¢(U,[tj72,tj+z])cthda'
-2
3.18
NS e o o-s (3.18)
+ > J ¢ (o, [tr,tri1]) ctg ——do +Ry,
k=0 2

where ty = 2k1/N, k =0,1,...,N; s € [tj,tj1); (f)(t, [tx,tx+1]) is the local spline that
was constructed in Section 1.3, the prime in the summation indicate that k # j—1, j,
j+1.

THEOREM 3.9 (see [6, 8]). Let¥ =W"(1),r > 3. Lets € [t;,tj+1). Among all quadra-
ture rules of the type (3.2) provided p = v — 1 the quadrature rule (3.18) is asymptotically
optimal.

THEOREM 3.10 (see [6, 8]). LetV¥ = W;(l), r=1,2,..., 1 < p < oo. Let the integral
K f be calculated with quadrature rules of the type (3.4) provided p = 0. Then C[¥Y] =
(1+o0(1))2"+1*Vainf, By (-) = clir,011INN/N".
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THEOREM 3.11 (see [6, 8]). LetV¥ = W;(l), r=1,2,..., 1 < p < . Let the integral
K f be calculated with quadrature rules of the type (3.4), wherep =v—-1,v =1,2,...,
orp=vr-2,v=2,4,... ThenC[¥]=2(1+0(1))Ryq(1)(InN)/2"r!(rq+H/4(N -1+
(Ryq (1)),

Consider a quadrature rule

+2
Kf = JJ f 222t1+2 dT +Z tkstk+1])d_r

(3.19)

N Z f(t tk,tk+1])d Ry,
Tt
k=j+2

where ty = -1+2k/N, k=0,1,...,N; t € [tj,tji1), f(T,[tk,tk+1]) is local spline that
was constructed in Section 1.3

THEOREM 3.12 (see [6, 8]). Let¥Y =W" (1), v =1,2,.... Among all quadrature rules
of the type (3.4), where p = v — 1, the quadrature rule (3.19) is asymptotically optimal
and has the error Ry[Y] = (1+0(1))Rg(1)(In((N—-j-1)(j—1)))/(r + )I(2N)".

Consider a quadrature rule

Kf= vt (Qumro (f5[Vj-1,V5]) + Qur oo (f5 [V, Vji1]) + Qrr oo (f [V)ir1,Vj42]))
L1 Vje2 dr
+ 3 g Ul = | D (T i vl ) £

v —t
Vk+1 aTt
+z [, Prr T (v v o) 5 R,

(3.20)

where M = [In'/*"N1; L = [N/M]; vx = -1 +2k/L, k = 0,1,...,L; t € [v;,v;41); the
prime in the summation indicate that k = j—1, j, j+ 1.

THEOREM 3.13 (see [6, 8]). Let¥Y =W" (1), v =1,2,.... Among all quadrature rules
of the type (3.4) provided p = 0 the quadrature rule (3.20), where p = 0 is asymptotically
optimal and has the error

Rn[¥] = (1+0(1))2“2N‘VlnNirle||Dy(-)—c||L1[0,1]. (3.21)

The similar statement is correct for singular integrals with Hilbert kernels.

PROOF OF THEOREM 3.7. We find the lower bound of the value Cx[¥]. There are
two possibilities:

(1) at least one of the values syi1 — sk is not less than hy = 2(A 'K, (v +

1)InN)Y/2N-1;

(2) all of these values are separately less than hy.
The constant A is defined below.

In the first case assuming without loss of generality that s> —s; > hg, introduce a
function ¢p* (o) = A((0—51)(s2—0))" (s2—51) " on the segment [s1,52] and ¢p* (o) =0
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on other segments. The constant A is selected such that |(¢*)™)| < 1. Such constant
exists. It is not difficult to see that

T, o-5
I o ), PTOICETSmdo

1

21
g-—3S5
>—| ¢*(o)ctg =1
0

do

1 (Gr+s2)2 o— 3.22)

- *
> o ), d*(o)ctg

>2KylnN
- mNT

52 —
all dU+i d)*((r)ctgg all

do
2 27T J(s1452)/2

As for the second case. Denote by ¢* (o) a function satisfying the following condi-
tions:

(1) ¢p*(0) €Y =W (1);

(2) ming ¢p*(0) = dp*(sx) =0, (k=1,2,...,N);

B3) " ¢* (0)do = 21K, N".
The existence of such functions was proved by Motornii in [32]. Divide the segment
[0,277] into M equal portions (M = [2711/ho]) by the points vy = 2kt/M,k = 0,1,...,M.
In each segment it exists at least a single node of the quadrature rule (3.2). Denote
this point by s;’. Take an arbitrary number j (0 < j < M) and select the segments
[s}‘,l,s};l], [s‘f,l,s'}‘ﬂ], moreover 5}‘ +1T C [s‘f,l,s';‘ﬂ]. Denote by Lp}‘(cr) a function
satisfying the following conditions:

(1) yjlo)eY = W

(2) on the segment [S;-k+1,5_;-k_1] (/Jj‘(O') =¢p*(0);

(3) on the segment [s‘j‘+l,sj‘_l] w}‘(a) =—¢*(0).

For = 1,2 the function L,U;‘(U) on the segments [s;‘_l,S;‘H], [ff—pf}il] can be
assumed to be equal to zero. It follows from the fact that at the points sj (k =
0,1,...,N) the function ¢p* (o) and their first derivative are equal to zero. In the ex-
plicit form the function L//;‘ (o) can be constructed for r = 3.

However it was not succeeded in making for » > 4. Therefore to prove the existence
of the required function is naturally to take advantage of the “cut-off function method”
applied by Sobolev in [43, page 697] in investigating quadrature rule with boundary
layer. Select the segments [sj‘_N] ,sj+N1 1, [S'J’-‘_NI ,§f+N1 1, moreover a value N; will be
defined below.

Introduce a function

L selsfinSin
Lits)=1-1, se[5fn, sinm] (3.23)
0, sel0,2mI\[sfn,S N VST STon, |-
Now construct a “cutting off” multiplier 6;(s) that is equal to unit on the segment
(s} 3n,,5-3n, |; that is equal to minus unit on the segment [}, 5y, ,5/ 3y, ] and has

continuous derivatives of all orders. In addition we require that 6;(s)¢p(s) € W" (1 +
0(1)). In the capacities of function §;(s) we will take a mean function (with infinitely
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differentiable kernel of average) with average radius h = 2N;1r/M for function [;(s).
It is not difficult to see that at the points vicinity sjf,s'J’.‘ the function 6;(s) is equal to
zero, on the segments [s}‘HNl,s';‘,gNl ], and [§j+3Nl,s*,3Nl] it is, respectively, equal to
unit and minus unit and has derivatives of all orders.

J
Remember that by definition a mean function is given by
S+TT _
5" (s) :KhJ w(%)lj(o)do, (3.24)
- S—TT

where w((s—0)/h) is the average kernel satisfying the norm requirements (Sobolev
[43, page 104]). It follows from definition of the function 55-‘(3) that

dré?(S) ehl-r J“”w(ﬂ (s—(r

- 2 )j(odo = 0(h ). (3.25)

S—TT

Find norm 6?(5)(1)* (s). First of all notice that since the function ¢*(s) has deriva-
tive of order » not exceeding a unit module and at N points distant from each other
by not more than hy, is equal to zero, then its derivatives of order » — 1 vanish not less
than at N —7 + 1 points distant each other by not more than 2"~ hy. Since |¢*T) (s)| <
1 then [p* D (s)| <27 Thy, [p*T=2(s)| <227 3h3,..., |p*)| < 2V2/2h6. Therefore
1(85()p* ()] =18 (5)p* () + LY (5)p* M (8) + -+ -+ 8;(s)p* M) (5)].
On the segments [s}lNl ,S‘j‘_Nl 1, [s‘;’;Nl ,S;‘_Nl ], the formula |(6j(s)<i>*<” ()] =
16;(s)p*™) (s)] < 1isvalid and for other values | (5;(s)¢p(s)) | = o(h~"hl+h'""h;™!
+---+h 'hg) + 1. Now assume h = hoInN. Then |(5;(s)$*(s))™| =1+ 0(1) for all
Jj. Therefore Ny = [InN]+1.

Fix a positive arbitrarily small € (0 <€ < 1) and let 8 = 1 —¢€. The function y;(s) =
B6(s)p*(s) satisfies all formulated requirements. Therefore having repeated the ar-
guments made in proving Theorem 3.1, we have

2(1+0(1))(1-€)K,InN

Fyi(s) = 3.26
swpFu 2 S 326
It follows from arbitrariness of € that the final estimation holds
2 1))K,1
sup F¢ > M. (3.27)
peWr (1) N
This completes the proof. O

3.4. Optimal with respect to order quadrature rules. In computing singular inte-
grals by asymptotically optimal quadrature rules constructed in the Sections 3.2, 3.3
it is necessary to evaluate the coefficients py(s) for every value of s.

Construct less exact but more easy realizable algorithms. Divide the segment [0, 277]
into N equal parts by the points t; = 2kmt/N, k = 0,1,...,N. Let t;, = (2k + 1)1t/N,
k =0,1,...,N. Let the point s lies in the segment [¢;,t;,1]. The integral F¢ we shall
calculate by the formula

1 21

g-—5 1 N ,
o d)(a)cthd(T—;k;d)(tk)ln

sintr((2k—2j—1)/2N)
sin (m(2k—2j —3)/2N)

+Ry. (3.28)
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THEOREM 3.14 (see [6, 8]). Let ¥ = Hy(1) (0 < x < 1). Among all quadrature rules
of the type (3.2) with p = 0 the quadrature rule (3.28) is asymptotically optimal for
0 < @ < 1 and optimal with respect to order for « = 1. Its errvor is equal to Ry[¥V] <
2InN/T%(1 + x) N*+ O (N~ %).

In computing singular integrals, the quadrature rules is based on the change of
the integrand function by some approximating assembly. Changing of the integrand
function by Lagrange interpolated polynomial constructed on 2N + 1 equidistant point
Sk = 2kmm/(2N + 1), k = 0,1,...,2N is used particularly often in (see [23, 27]). The
interpolated polynomial is given in [34, 35] by the formula

2N .
7 1 sin(2N+1/2)(s—sx)
Py[¢] = I;)(l)(Sk)Wk(S),Wk(S) “oNT1 sin(s_s/2) (3.29)
The quadrature rule has the form
1 (2 o-5s
Fp=— Pn[p(0)]ctg——do +Ry(s). (3.30)
21T Jo 2
This quadrature rule can be represented as the finite summation
2 X SIN(N +1) (s —s,/2) sinN (s — s/2)

Fé = _2N+1l§0¢(5k) sin (s —sx/2) ) (3.31)

Assume that function ¢ (t) is representable in convolution form

™

P(x) = J G(x-t)h(t)dt, (3.32)

where h(t) is continuous 2rmr-periodic function such that max_r<<x |h(t)] < 1,
essmax_n<r<rr | (t)] < K; h(t) is the function conjugate h(t); G(t) has property An+1.

DEFINITION 3.15. The function G(x) has the property Ay.1 provided
(@) G(x) is even and for any ay, k = 0,1,...,N, the function G(x) — Zg’ acoskx
cannot have more than N + 1 nodes in the interval (0, 1);
(b) G(x) is odd and for any ay, k = 0,1,...,N, the function G(x) — Z]f]ak sinkx
cannot have more than N nodes in the interval (0, 7).

THEOREM 3.16 (see [6, 8]). Let ¢p(t) belong to the class of functions represented in
convolution form of (3.32) and maX_r<i<r |R(t)| < 1,essmax_r<;<rr |A(t)| < K. Then
the quadrature rule (3.30) error is estimated by the inequality |Ry| < KEnx1(G) +
1 'En(¢p)(InN + C), where Eyp(G) is the best approximation of the function G(t)
by trigonometric polynomials of degree N in the metric Ly, En = En,o, C =0,577215.

THEOREM 3.17 (see [6, 8]). Let ¢ € W,;(l), 1 < p < 2. Then the error of quadrature
rule (3.30) is estimated by the inequality |[Ry| < Ey 1 (Dy) 2p'+17"InN), where D, (x)
are Bernoulli polynomials, 1/p+1/p’ = 1.
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Proofs of these theorems are given in [6, 8]. At the end of the section we introduce
optimal with respect to order algorithm of evaluation of the singular integral K f,
which is based on Gauss quadrature rule. This algorithm is very simple in application.
Convergence of this algorithm is given in [12].

We rewrite the integral K f as

Kf = J f(T)dT

U g(mdr
T—-t

~(r@+3ren) (3.33)

R e)

and we will construct numerical algorithm for evaluation of the integral

' g(ndr

1 Tt

where g(1) = f(T)—-(T+1)/2[f(1) - f(-D]-f(-1).

We now construct continuous local spline that approximate the function K f(t)
with accuracy An~"Inn, where n is the number of functionals f(tx), used in the
construction of the algorithm. For this purpose, we divide the segment [—1,1] into
2n parts by the points ty = -1+ (k/n)Y and T, =1-(k/n)?, where k = 0,1,...,n and
v = 7. We construct interpolating polynomial whose interpolation points contain the
endpoints of the interpolation segment.

The polynomial P, (f,[a,b]) that interpolated the function f(t) on the segment
[a,b] is constructed as follows. Denote by Ci, k = 1,2,...,¥ roots of the Legendre
polynomial of degree v. We map the segment [C1,C,] € [-1,1] onto [a,b] so that
the points ¢, and €, map to a and b, respectively. Images of the points C; under this
mapping are denoted by ¢}, i = 1,2,...,¥. Using the points of ¢;, i = 1,2,...,7, we
construct the interpolation polynomial P, (f,[a,b]) of degree r —1.

We divide segments [—1,t;] and [T1,1] onto M = [InN] parts by the points to; = —1+
lty/M and 19 = 1—-1t1/M, L =0,1,...,M, respectively. The function G(t) = (Kg)(t)
is approximated by interpolation polynomials P, (G (t),Aq;) and PY(G(t),A{;l) on the
segments Ay = [to,t0,+1] and Agﬁl =[To1+1,To0], 1 =0,1,...,M —1, respectively.

The function G(t) = (Kg)(t) is approximated by interpolation polynomials
P, (G(t),Ar) and P, (G(t),A}) on the segments Ay = [ty,tx+1] and Af = [Tke1, Tk,
1=0,1,...,n—1, respectively.

The values G(@k,l) and G(C,f’ 1), where Cy; and C,f’ , are nodes of the interpolation
polynomials P, (G(t),Ay) and P, (@(t),A,’g ), are found from quadrature rules

Kg = ) (3.34)

G(Ck,j) = zjwm (‘q(-r)_g(;k'j),[wl,wl+1])d'r+g(§k,j)ln 1_§k’j, (3.35)

T—C,j 14Tk,

where w; = -1+2l/n,1=0,1,...,n
The error of this algorithm is equal to AInN/N".
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4. Optimal quadrature rules for calculating polysingular and many-dimensional
singular integrals

4.1. Optimal algorithms for calculating integrals with fixed singularity. Consider
quadrature rules of the following type

Sf= J J ftl’tz L2 andt, = i

pruf (ti, tr) + Rn (fs pristi, tr)
k=N, k,1#0
where ty = —t_k, Pr1 =Pk -1 = —P-k1 = — Pk, K, = —

~1k,l=-N,...,—1,1,...,N.
THEOREM 4.1 (see [6]). LetV¥ =
with tn=-1,1tn

4.1)

Wb1(1). Among all quadrature rules of the type (4.1)
=1 the formula

N J+1 k+1
f:Z 241 1 [.va’vk f(_vj!vk)_f(vj!_vk)"’_f(_vj!_vk)]-"_RNN,
ot 4.2)
where vy = k(k+1)/N(N+1), k=1,2,...,N is optimal and has the error

Rnn[Y¥] <

Nal (4.3)
REMARK 4.2 (see [42]). The exact value of Ryy[¥] is equal to Ryn[¥] = 8In(1 +
1/N) +4In*(1+1/N).

THEOREM 4.3 (see [6]). Let¥ = WL1(1). Among all quadrature rules of the type (4.1)
the formula

1 1
Z 241 J+ kz Lf (v, ) =f (= vj,vi) = f (vj, =vi) +f (= v}, = Vi) |+ Run,
SR (4.4)
where vy = k(k+1)/(N+1)2, k = 1,2

N, is optimal and has the error equal to
Run[¥]<8/N+1+4InN/(N +1)2

REMARK 4.4 (see [42]). The exact value of Ryn[¥] is equal to Ryn[¥]
4/(N+1)2.

=8/(N+1)+
Consider singular integrals
If = J J f tl""’ dt1 -dt (4.5)
We will calculate the singular integrals I f with quadrature rules
If = Z Zl’kl ..... kS (tkys-- oo try) + RN, (4.6)
k1=1 k=1
S R SR UL (. thy)
XX S S Pt RAUCTHELT N
Ki=1 =1i1=0  i;=0 oty -+ -0t

My e[-1,11% 4.8)
k=1
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THEOREM 4.5 (see [6]). Let ¥ = Hy, .,
quadrature rules of the type (4.6). Then

«(1). Let the integral 1f be calculated with

(1+0(1))22%(1+ )1 1In*" ' N

Cn[Y] = N

(4.9)
THEOREM 4.6 (see [6]). LetY = C, v =1,2,.... Let the integral I f be calculated with
quadrature rule of the type (4.6). Then Cx[¥] > AN~"In'"' N.

THEOREM 4.7 (see [6]). LetY = C/, v =1,2,.... Let the integral I f be calculated with
quadrature rule of the type (4.7). Then Cn[¥Y] > A(rN) " In‘'N.

THEOREM 4.8 (see [6]). Let ¥ = Z* or ¥ = H, i = 1,2,3. Let the integral I1f be
calculated with quadrature rule of the type (4.8). Assume that the integral 1 f is two-
dimensional integral (1 = 2) when the function f belongs to the classes H{, i = 2,3 or

Z%,i=2,3. Then Ty (HY) = 2Cn (ZY) = Di(2(1+ 0) [ )N ~%/1 4 o (N~/1), where

l 2170(/2 12 ( 1 >(0(+2)/2Jrr/6 dat

D=+ = = (= —_—
U7 U+ )2 2+’ 3T 21 a\23 0o cos2tat

2= (4.10)
We construct some optimal with respect to order quadrature rules for calculation
of the integral I f.

THEOREM 4.9 (see [6]). Let ¥ = Hyx(1), 0 < x < 1. Let Il = 2. Among all possible
quadrature rules of the type (4.6) the formula

N-1 N-1
_ ;o dt; dt,
If= > > (vk,vi)J e +Ry, (4.11)

k=-N,k#-1,0 i=—N,i#-1,0

where v.y = = (k/N) 1/ k =0,1,...,N;vp = (V1 +0k) /2, Aij = [V, Vis15 V5, V541 ],
i,j=-N,...,—1,0,1,...,N — 1, is optimal with respect to order and has the error

2+« ll’lN
2aN«”

|Ry| < (8+o(1))(1f7“) (4.12)

Let D = [-1,1]%. Let f(t1,t2)((t1,t2) € D) be a function from the class C¥, v =
1,2,.... We construct a local spline for approximation of the function f(t;,t,). Let
Aij = [V4,Vi:1;V5,Vj41), 1,j = =N,...,N =1, where v, = +(k/N)"+D/" k =0,1,...,N.
In each domain A;; we approximate the function f(t,t>) with Taylor series T,_; X
(f,Aij, (vi’,vj'.)), where v] = (Vi+vi+1) /2.

Let fn(t1,t2)(t1,£2) € D be local spline which consists of polynomials T, - (f,A; ),
i,j=-N,...,.N-1.

THEOREM 4.10 (see [6]). Let ¥ = C3, v = 1,2,.... Among all possible quadrature
rules of the type (4.7) the formula If = 1 fy + Ry is optimal with respect to order and
has the error |Ry| = AN""InN.

Proofs of Theorems 4.1, 4.3, 4.5, 4.6, 4.7, 4.8, 4.9, and 4.10 are given in [6, 8].
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4.2. Approximate methods of the calculation of the polysingular integrals with
Cauchy and Hilbert kernels. In this item we investigate optimal methods of the cal-
culation of the polysingular integrals with Hilbert kernel as

1 2m 2m o1 —51 o1 -5
Hf_(21r2)lJ0 S f(o1,...,00) ctg > .- -ctg > doy---doy, (4.13)

the polysingular integrals with Cauchy kernel as

f T1,..., T, dT1 --dT
Gf = J T17t1 ( tl) (4.14)

and the many-dimensional singular integrals as

o) f(1y,...,T1)dT1---dT)

, D=[0,11,1=2,3,.... 415
D ((ti—t1)2+-+ (1 —t))")"? [0,1] @.15)

Kf=

For calculating integrals as (4.13) we will use quadrature rules of the following types:

ny p1
Hf = Z D NDIEE z iy kit iy (S SO ST (X, X))
k1=1 k;=1i1=0 ;=0 (416)

F R (S1y ey SEXKy s -0y XKJ5 Pt okt f )

where 0 < x1 <X < --- <Xy < 271, and
N
Z Sly oS f(Mk)+RN(Sl! Sl;pk!Mk)f)y (4-]-7)

where My € D =[0,2m]}, k=1,2,...,N
For calculating the integrals (4.14) and (4.15) we will use quadrature rules of the
following types

n n o p1 o1 '
Gf= 2+ > D > Phyorkguia iy (B £1) f 010 (o )
ki=1  k=1i1=0 ;=0 (4.18)
+Rn (1o L Py kg i By e oo B3 )
N
Gf = 2. Pty ) f (M) + R (b1, b i M ), (4.19)
k=1
n n Pl o1 o
Kf=2 -2 D Phgeekgin iy (B ey £) LI (Er L By
ki=1  k=1i1=0 ;=0 (4.20)
+R1’L(t11---!tl;pkl---klil---il;tkli---ytkl;f);
N
Kf =D pr(ty,...,tr) f(Mi) + Ry (t1,..., t5 01 M f ). (4.21)
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4.2.1. Asymptotically optimal quadrature rules on Holder classes of functions.
Consider the polysingular integrals of the type (4.13), where [ = 2. We restricted our-
selves to two-dimensional integrals only for simplicity.

THEOREM 4.11 (see [6, 8]). Let Y = Hy«(D) or ¥ = H$(D). Let the integral (4.13)
be calculated with quadrature rules of the type (4.16), where n = n; = np, p1 = p» =0.
Then

(1+0(1))8m*2

CN[H{X,(X(D)] P Wln n,

I ) ) 4.22)
n?ln“n (TN (TN 2 2\ /2
CuI¥]= (4+o(1) " JO L (2 +72)*2dt dr.

THEOREM 4.12 (see [6, 8]). The quadrature rule

n-1

1
HE = g 2

k=0

m-1
> flteT) J L* ctg & 5 1 org 22 5 32 4o dos + R, (4.23)
=0 kl

where Ay = [ty tke1; T, T ]y te = 2km/n, t, = Qk+ 1D)m/n, k = 0,1,...,n;, T; =
2lm/m, 1) = 2L+ Dm/m, 1 = 0,1,...,m; Ay = [s1 — 4m/n,s1 + 41w/n;0,21w]U
[0,21T;50 — 41T /M, Sp + 411 /m], A§ = D\ Ag; Af; = AN A, has the error

4 &l T
Ryn|Hayoo (1) ]| = — +
mn[ oqo(z( )] = T2 ((1+(X1)1’L°‘1 (1+0(2)mo<2> (4.24)

X (4+ (Inn+o(Inn))(Inm+o(lnm))),

Rum[H$(D)] < %nm((lnnJro(lnn))(lnm+o(lnm)) +4)
i etim (4.25)
2 2\ /2
xjo JO (te+T12)" dtdT.

In the case when x; = &, and n = m the quadrature rule (4.23) is asymptotically
optimal on classes of functions Hxx (1), H§' (D) and has the error

8m*2In’n

Rnn[How((l)] = (1+0(1)) A+ x)ne’

(4.26)

2112 m/n /N
Run[HS(D)] = (4+0(1)) " 113 "J j (2 +72)dt dr.
o Jo

THEOREM 4.13 (see [6, 8]). Let¥Y = Hy( (D). In the case n = m the quadrature rule
(4.23) is asymptotically optimal and has the error

nin’n
3

m/n
Run[Huww (D)] = (8+0(1)) jo w(t)dt,

(4.27)

2112 T/n cm/n
RunlH (D)] = (4+00) "5 [ [ w (VT dt .
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THEOREM 4.14 (see [6, 8]). LetY =HY or¥ = Z, i =1,2,3. Let the integral (4.13)
be calculated with quadrature rules of type (4.17). Assume thatl =2 if i = 2,3. Then
CN[HE] = 2881281 = (1 +0(1) (2P *Dymre-ly /(1IN In' N, where constants Dy, D,
D3 was defined in Theorem 4.8.

THEOREM 4.15 (see [6, 8]). Let ¥ = H (0 < « < 1). The quadrature rule

) gy —S
Hf = Z Z F(tiyseonth, J J Ctg Feeectg =, doy - Ot Ry,
- (4.28)

where n = [NV']; ty = 2kmt/n, t;, = Rk +1)11/n, k =0,1,...,n; Ag = [s1 — 610/n,581 +
61/1;0,21;...;0,2w] U - - - U [0,217;...;0,211;5; — 67T/, 5 + 6TT/n]; A = D\ Ao;
Akl ..... klz[tkl’tlirl;---;tklatlirl]yki=0,1’---1n_1yl_1,2’ I'Akl _____ kl_AO ﬂAkl ..... ks

ki=0,1,....,.n—1,1i=1,2,...,1, is asymptotically optimal among all quadrature rules
as (4.17) and has the error

_, In‘NI?
Rnn[Hix] = (1+0(1))Zl & lW. (429)
Consider the quadrature rule
1 nlnl g1 —3$1 02 —52
=4722 > f(tk,Ti)JI*Ctg 5 g doidos
T 1in ki
(4.30)

+f(t, 7)) JJ ctg g1=51 ctg g2 =52 doy d(rg] +Run,
daj; 2 2

where (tx,T;) = (2mk/n,2mi/n), (t,,7;) = (k+1)w/n, i+ 1)1w/Nn); Ay = [51 —
21t /N, 51+ 21 /n;0,21w] U [0,21T; 50 — 210 /M, S0 + 27T /N ]; gki and dy; are domains which
are defined by the expressions |s; —tx|+[s; —T;| < w/n and |s; — & |+ [s2 —T/| < 7W/m,
g5 = 10,2112\ Ao) N Gki, dff; = ([0,21112\ Ag) Ndki, k,i=0,1,...,n—1.

THEOREM 4.16 (see [6, 8]). Let N =2n?,1=2. Let ¥ = H$(0 < « < 1). The quadra-
ture rule (4.30) is asymptotically optimal among all quadrature rules as (4.17) and has
the error equal to

In’N
(2+x)N«/2”

THEOREM 4.17 (see [6, 8]). Let N =n?,1=2,3,.... Let¥ = H;‘, j=13,0<ax=<l.
Let the integral G f be calculated with quadrature rule of the type (4.18), where p; = 0,
i=1,2. Then

Ryn[HY] ~ 21+a/2qa=2 (4.31)

2[—0(
CN[HiX] > (1 +0(1))m]n2]\]
(4.32)

1/2n r1/2n
Cn[HY] z4(1+0(1))N1n2NJ J (t?+72)%%dtdT.
0 0

THEOREM 4.18 (see [8]). Let¥Y = HY, j =1,2,3,0 < « < 1. Let the integral G f be
calculated with quadrature rule of the type (4.19). Let 1 =2 if j = 2,3. Then §N[HJ‘?‘] >
(1 +0(1))21DJ-N*°‘/llnlN, where D1, D», D3 are defined in Theorem 4.8.
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Consider a quadrature rule

, dti---d
Gf = Z thkl. tkl)J---Lk X T (le +Ry, (4.33)

ki1 Lk] (Ti—t1) - (Ti—tr)
where di,, .k, = Dky,kg NAS, AF =[0,111\ Ao, Ag = [t1 - 1/n,t1 +1/n;-1,1;...;-1,1]
U=, .-, -1/n, 1+ 1/n); tk = k/n, k=0,1,...,n; tl,< = (tx +tre1)/2,

k=0,1,....,n—-1.

THEOREM 4.19 (see [6, 8]). Let ¥ = H“*, j=13,0<ax=<l.letl/n<t=<1-1/n,
i=1,2,...,1l. Letl = 2 if j = 3. Among all quadrature rules of the type (4.18) provided
pi =0,1=1,...,1, the quadrature rule (4.33) is asymptotically optimal and has the error

RN[HE] = (1+0(1))2F N~ (1+ &) ' In' N,

1/2n (1/2n w2 (4.34)
RN[H§‘]:4(1+0(1))N21n2NJ J (2 +t2)* 2 dt at,.
0 0
We consider a quadrature rule
n-1 n-1
dt,dT,
Gf = [ Vi, Wk J TN i
D ) P R Towry
(4.35)

, , dTlde }
+f(vi,, wy, ———————— | +Run,
Wiy kl)L,’:lkz (T1-t1) (T2~ 12) "

where (vi,wp) = (k/n,l/n), (v, w;) = (k/n+1/2n,l/n+1/2n),k,1=0,1,...,n; Ag =
[ty —1/n,t; +1/n;0,1]1U[0,1;t, — 1/n,ts + 1/n]; q and dy; are domains which are
defined by the expressions |t1 —vi| + [t2 —wi| < 1/2n and |t; —vi| + [t —w[| < 1/2n;
AS :[O,I]Z\Ao;qul:qklﬂAé,le:dklﬁAg,k,l:(),l,...,n—l.

THEOREM 4.20 (see [7, 8]). Let N =2n?. Let ¥ = H¥ (0 < & < 1). Among all quadra-
ture rules of the type (4.19) the quadrature rule (4.35) is asymptotically optimal.

THEOREM 4.21 (see [7, 8]). LetV¥Y = HJ?‘, j=1,3,0 < & < 1. Let the integral K f be
calculated with quadrature rule of the type (4.20) provided p, = p» = 0. The estimates
occur

(1+0(1))

21
—0(/2 . )
20((1+0() lnNJO | f(cos,singp) | dep;

Cv[HY] =
(4.36)

21
Cn[HY] = (1 +0(1))4N""/21nNJ0 | f(cos,singp) | dep.

THEOREM 4.22 (see [7, 8]). LetY =H, j =1,2,3, and the integral K ¢ be evaluated
with cubature rule as (4.21) (1 = 2 if j = 2,3). The estimate

Cn[H] = 5(1+0(1))D;N- /ZlnNJ | f(cos,sing) |d¢ (4.37)

.1
2

is valid. The constants D are defined in Theorem 4.8.
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THEOREM 4.23 (see [7, 8]). LetV¥ = HJ‘?‘, j=1,3, l =2. Among the cubature rules as
(4.20) for p1 = p> = 0 the formula

0B o Lo

km T1—t1 (Tz—tz)z

(4.38)

+¢(t£,t})J f(g)dTldTZ

+RN
[ti—1,tivostj—1,tj42] J (T1 - t1)2 + (Tz - t2)2

is asymptotically optimal for 1/n <t; <1-1/n,i=1,2. Here (t1,t2) € Ay}, the prime
in the summation indicate that (k,m) + (i—1,j-1),(i,j—1),...,(i+1,j+1). The
cubature formula error is equal to

a_ 1to(D) o o _
Ry[HY] = 21+ 0) (x)N lnNJ0 | f(cos,sing) | dep, 3o
21 )
Ry[HS] = (1 +0(1))4N“"/21nNJ0 | f(cosp,sing) |dep.
Consider a formula
n-1 n-1
f(9)dT1 dT;
K , .
b= ZOIQZ ( (Vi) Wk, JLklkZ 1) (a-1)
(4.40)
f(9)dT1 at, )
’ R y
Vkl W JLklkz T1—t1 (Tz—t2)2 T

where the definitions of formula (4.35) are used.

THEOREM 4.24 (see [7, 8]). Let N = 2n?, ¥ = HJ‘%‘, Jj = 1,2. Among all possible
cubature rules as (4.21) the formula (4.40) is asymptotically optimal on class Y for
2/n<t;<1-2/n,i=1,2. The error is equal to

21
l(1 +0(1))DJ-N""/21nNL | f(cos,singp) | dep. (4.41)

Ry[H}] = >

J

PROOF OF THEOREM 4.11. For simplicity we assume that [ = 2, n; = n, = n. We
introduce nodes vy = 2kmm/M, k=0,1,2,...,M, M = [n/Inn]. The union of the nodes
(Xk;,Xky), 1 < Xi;,Xk, < n of quadrature rule (4.16) and the nodes (vy,vy), k,l =
1,2,...,M,we denote by (wi,,wk,), k1,k> = 1,2,...,L, L < n+M.For eachnode (v;,v;),
i,j=1,2,...,M, we compare the function

0, if (01,02) € U}_o[Vi—a + kT, Vi1q +k1T;0,277]

X UJ_ 0,210V j_q + 1T,V s g + LT,
* ) = 4.42
wii(01,02) S (4.42)
W (01,07)sgn (ctg 5 8 )

in other points of the domain D,

where a = [21/%]+1, @ (0y,0%) = (min; |07 —w;|%) + (min; |0, —w;|*) is the function
which was introduced in [34, 35].
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It is easy to see that

(Fyi) (vi,v))

21T 21
g1 —V; 02 —Vj
(2Tr)2J yii(o1,02) ctg 5 Clg——~doido;
[M/2]-1[M/2]-1 .
1 Tl'(k+1) l+1) kaHJWHH
> ctg Y(o1,02)dordo
kza lzzlz (2 )2[ M Viti Uiy
Vi+i+l (Vj-1
+ctgn(k+1) ctg"(HZ) J " Y(oy,02)doy dos
M Vivi Vj-1-1
2 1 Vi-k Vj+l+1
+cthr(kJr )cthr(lJr ) J’ Y (oy,02)doydos
M Vi-k-1YVj+l
T(k+2) TT(l+2) (Vi-k J —1
t t ,on)dodos |.
+ctg v, ctg v, . ](11(0'1 or)doy do»
(4.43)
Averaging this inequality on i and j, we have
M-1M-1
1
sup max(F@)(s1,52) = 177 2, >, (Fyf5) (vi,v;)
@EHxx 5152 i=0 j=0
1 21 ;21 [M/2]-1[M/2]-1 (k+2) 7T(J+2)
=3 o Jo W(Ul,Uz)dUldUZ* kza Z ctg M
21 21
= ILPannJ Y (o1, 00)doy dos.
T o Jo
(4.44)
So,
sup max(FQ)(sy,s2) = (1+0(1))8m*2(1+ &) 'n *In’n. (4.45)
QeHxx S152
This proves Theorem 4.11. O

Other theorems of this section are proved by similar way but technically more com-
plicated.

4.3. Asymptotically optimal methods of the calculation of the polysingular inte-
grals on Sobolev classes of functions. Consider the polysingular integrals as

1 1
Ff= L Jo Flo,00)ctgm (o —s1) ctgm(om — 55 )doy dov. (4.46)

For evaluating the integral F f we use the following quadrature rules

m on o1 op2
Ff=2 > > > prij(s1,52) S (X1, 20) + Rum (81,82 Prvis Xio Vi f) . (4.47)
j=0

k=11=1i=0 j=
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THEOREM 4.25 (see [6, 8]). Let ¥ = C‘Zy(l), v =1,2,.... Let the integral (4.46) be
calculated with quadrature rules of the type (4.47), where p1 + p, < v, n =m. Then

N (4+0(1))R,1(1)In’n
r+D!2n)rm?

CunlY (4.48)

THEOREM 4.26 (see [6, 8]). Let¥ = W"S(1), r,s = 1,2,.... Let the integral (4.46) be
calculated with quadrature rules of the type (4.47), where p1 =v —1, p» =s—1. Then

4+0(1)( Ry1(1) Rs1(1)

T2 m) (r+1)! (Zn)s(s+1)!>lnnlnm' (4.49)

Cnn[¥] =

Construct the special polynomial for approximating function f(t;,t>) belonging

to the class W"S(1) on the rectangle [a,b;c,d]. Let t; be fixed value. Introduce a
polynomial

- (Ol)
Lt t) Z[f N )(tz—C)l+Bl5(“(t1,d)], (4.50)
where
(0,1)
5(t1,t2) = f(tr,t2) = > %(tz—c)l. (4.51)
1=0 :

The coefficients B; are defined from the equality

s—1 _ |
Bi(d—c)s c+d d—c tz) 4.52)

s : s=1-1
(@)= 3 T )™ = R (55,5

where R, (a, h,t) is the polynomial of order s with respect to the variable t deviating
least from zero in the space L,[a—h,a+h].
Special polynomial f;(t1,t2;[a,b;c,d]) is defined by the formula

r—1 (1,0
frs(ti,t2;[a,b;c,d]) = z [l('a’tZ)(tl—a)l+Blé(”(b,tz)}, (4.53)

where

(1,0)
a,t
5(t1,t2) = fultr, L) - z At gy (4.54)
The coefficients B; are defined from the equality

, ' Bib-a)r!
(b=t)" =2, lr(—L—ai)T'

= (

a+b b—a t1>-

(b—tl)”’1=<—1)TRm( 01, (4.55)

Cover the square D = [0, 1]? with parallelepipeds Ay = [tx, tx+1; T, 1411,k =0,1,...,
n-1,1=0,1,....m—-1,wherety =k/n,k=0,1,...,n,1;=1l/m,1l=0,1,...,m. Assume
that the singular integral (4.46) is calculated at the point (s1,52). Let (s1,52) € A; ;. We
approximate the function f(s1,s2) by the function f,(s1,$2;Ax;) in the parallelepiped
Ay for (k,l) so that k +i—1,i,i+1orl=+ j—1,j,j+1.In the parallelepiped Ag; for
k=i-1,i,i+1,l=0,1,....m—-1lork=0,1,...,n-1,1l=j—1,j,j+1 function f (o, 072)
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is approximated by Taylor series T-—; s—1(f, Ak, (tk, T1)). Local spline is constructed

in [0,1]2 thus we define as f, m (071, 02).
Consider the quadrature rule

11
Ff = Jo Jo fro(on,00)ctgm (o, —s1) ctgm (02 — $2)d o1 Aos + Ry (51,52).  (4.56)

THEOREM 4.27 (see [6, 8]). Let¥ = W"5(1). Among all quadrature rules of the type
(4.47) the quadrature rule (4.56) is asymptotically optimal and has the error

(4.57)

an[‘I']z(1+o(1))4lnnlnm( Ry (1) Ra (D) )

w2 (r+1)12n)"  m2(s+1D)!(2m)s

Consider a quadrature rule

T],TZ = n ! fnn Aklkz)
Gf= ——————dTdT = Z —dT1 dT+Ry,
(t1—t1) (T2 —t2) Z0koe N (t1—t1) (T2 —t2)
(4.58)

where T = (11,T2); Ajj = [ti, tiv5t),tj1], ti=i/n,i=0,1,...,n

THEOREM 4.28 (see [7, 8]). Let N = n? and¥ = W"" (1). Among all possible cubature
rules as (4.18) forl =2, p; =v —1,1i = 1,2, the formula (2.64) is asymptotically optimal.
Its estimation is Ry[¥] = (1+0(1))21n> N/¥14"N"/2,

THEOREM 4.29 (see [7, 8]). Let Y = W"" (1) and the integral K¢ be evaluated with
cubature rule as (4.20) forl =2, p; =v —1, i =1,2. It is valid the estimation

(1+0(1))InN

AN | f(cosp,singp) |dep. (4.59)

Cn[Y] =

THEOREM 4.30 (see [7, 8]). Let N = n? and¥ = W"" (1). Among all possible cubature
rules as (4.20) forl=2,p;=v—1,i=1,2;2/n<t; <1-2/n,i=1,2; the formula

n-1n-1
K= ZJ ¢nn T1,T2)f(9)dT1dT2

+ Ry, (4.60)
k=0 i=0 7 Aki tl) +( z—tz)z

where we use as designations as in (4.58), is asymptotically optimal on class Y. Its error
is equal to
(1+0(1))InN

Ry[Y] = AN | f(cos ¢,sing) | dep. (4.61)

Proofs of these theorems are given in [7, 8].

4.4. Optimal with respect to order quadrature rules on Hélder classes. Consider
polysingular integrals as (4.13) for calculation of which we shall use the quadrature
rules (4.16) and (4.17). For simplicity we shall put [ =2

Let D = [0,277]2. We cover the square D with parallelepipeds Ax; = [tx, tke1; Tty Tix1],
k=0,1,....n-1,1=0,1,...,m — 1, where t, = 2kmt/n, 7, = 2lt/m, k = 0,1,...,n
1=0,1,....m
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THEOREM 4.31 (see [6, 8]). On classes Hu,,«, (1), H¥(D) and HS (D) (0 < &, &,
o2 < 1) the quadrature rule
n-1

L
4172];)

where (s1,52) € Ajj; t, = Qk+1)m/n, k=0,1,...,.n—-1; 1, = 2l+1)/m, 1 =0,1,...,
m — 1; is optimal with respect to order. The error holds

S o -t 02-T;
> f(tk,Tl)ﬂA ctg ctg ——dodo, +Rum (s1,82;.f), (4.62)
1=0 kL

n m 2l+er _q Dl+ea _q
an[Hul,az(l)] = 4ln§1n?((1+0(1)ﬂ2_0‘11’10‘1 + (1+o<2)1'r2—°‘2m"‘2>
4 2/n p2m/m
Rum[H$(D)] =< nm(lnn+o(lnn))(lnm+o(lnm) I J (s2+52)ds, ds,,

Rum [H{(D)] = 225%m%2n~In’ n+ 8em® >~ 'n *Inn.
(4.63)

5. Quadrature rules for Hadamard finite part integrals. In this section, we inves-
tigate the approximate methods of calculation of one-dimensional and many-dimen-
sional Hadamard finite-part integrals.

5.1. Introduction. Suppose that a function f(t) integrable over [a,b] belongs to
the class W' (M), v > p, p = 1,2,.... The Hadamard finite part (f.p.) integral is given by

b x
f(t)dt _hm[ f(t)dt B(x) } 5.1)

o (b—t)rre o b—typre " (h-x)prad

where 0 < & < 1. The function B(x) is an arbitrary function which satisfies the follow-
ing conditions:
(1) limit in (5.1) exists.
(2) the function B(x) has at least the derivatives of order p in a neighbourhood of
the point b.
Sampling the function B(x) does not influence the values of the Hadamard f.p. inte-
gral. The Cauchy-Hadamard finite-part integral is given by

P far JH’ fwadt (" fode B 5.2)
a (t=c)P  n-0 (t=c)P  Jewn (t=c)P  (c—m)P~! '
where p = 2,3,..., a < ¢ < b. The function B(x) is chosen thus that the limit in (5.2)

exists.

5.2. Asymptotically optimal quadrature rules for the calculation of the Hadamard
finite part integrals with fixed singularity. In this section, we review the quadrature
rules for the computation of the Hadamard f.p. integrals

1
If = df(;zdt, V=23, (5.3)
Lf= J f(t)dt, v=12,..., 0<x<1. (5.4)
1 |t|v+tx
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We will use the following quadrature rules:

N p

If = > > puf P (t) + Ry (pirs e, f ), (5.5)
k=N 1=0
N p

Lf= > > puf(tc) +Rn(pri, ti, f)- (5.6)
K=—N1=0

We will use the local spline f (t,Ay) that was constructed in the section preliminaries
of the introduction.

THEOREM 5.1 (see [11]). Set¥ = W;(l), 1 < p < 0. Among all possible quadrature
rules of the type (5.5), where p = v — 1, the formula

r—1 (k)
If z f (0) t{(+lfv(1_(_1)1’+lfv)

o kl(k+1-v)
(5.7)
N-1 ot 7
N s J K+l w +Ry,

k=-N,k=-1,0" tk

where ty = +(k/N)T+l/ar+1/a-v) 1/ 1 1/q =1 is asymptotically optimal. The error
occurs

Rn[Y] =

r+1/
(1+0(1))Rrq(1) ( r+l/q ) ‘1 (5.8)

2r-Va(rg+1)Vart\r+1/q-v NT°
THEOREM 5.2 (see [11]). SetV¥ = Wy (1), r=1,2,..., 1 £ p < . Among all possible
quadrature rules of the type (5.6) providing p = v — 1, the formula

fk)(o) k+1-v-«
Lf= 2 (kl(k+1-v— (x)tl

o (5.9)
bt f (8, [ty trar])dt
+ da L e ¥Ry,
t |t|v+0(
k=-N,k=-1,0" "k
where tiy = =(k/N)T+H@r+1/a-v-0 j¢ gaeymptotically optimal. The error holds
Ru[WI(1)] = (L1+0(1))Ryq(1) ( r+1/q )V“/q (5.10)
2r-Ya(rg+1)YarIN* \r +1/g-v -« ’ ’

Proofs of Theorems 5.1 and 5.2 are similar to the proof of Theorem 2.7.

5.3. Evaluation of the Hadamard finite part integrals on finite curves. Let L be an
arbitrary piece-continuous closed curve. Let f(t) € W"(1). In this section we investi-
gate quadrature rules for the Hadamard f.p. integrals of the following type

f(nydr
L(t-tv’

Af = (5.11)

Let tx, k = 0,1,...,N are the equidistant points on the closed curve L. Let fx be the
equidistant point from t; and ty.+1, k=0,1,...,N—1.
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Let to = ty. Consider a quadrature rule

1N_l - - tk+1 1 1
=§k§0f(tk)Lk <(T_t+ﬁh)y+(T—t—ﬁh)v>dT+RN’ (5.12)

where 71 is outside the normal vector to the curve L at the point fy, h = 0(N~1/?).
We assume that the values f(t) at the points fx can be computed up to €: | f (k) —

S <e.

THEOREM 5.3 (see [11]). Let f € W' (1), v = v. The quadrature rule (5.12) error
N =AN"YYInN +eN¥-1/?) js valid.

Consider the Hadamard f.p. integrals

U f(mdr
-1 (T*t)v )

Hf = (5.13)
Let ty = —1+2k/N, k=0,1,...,N, t, = (tx +tx+1)/2, k=0,1,...,N—1. Let h =N-Uv,
We assume that the singular point t belongs to the segment [-1+05,1-6], § > h. We
also assume that t € [t;,tj.,1). We suppose that the values f(t;) can be calculated up
toe:|f(ty) —f(t)] <e.

We will compute the integrals as (5.13) with the quadrature rule

N-1

— tk+1 1 1
Hf= > f(tk)Lk ((T—u—ih))”+(T—(t+ih))”>dT

k=0,k+j—1,j,j+1

— Lj+2 1 1
+f(tf)Lj,l ((T—(t—ih))v - (T—(t+ih>)”)dT+RN'

(5.14)

THEOREM 5.4 (see [11]). Let f € W' (1), v = v. The quadrature rule (5.14) error
Ry = A(N"Y?InN +eN1-17?) s valid.

Application of the interpolated polynomial to the value of the Hadamard integrals
is illustrated on the example of the integral

f(r)dr
A J . 5.15
lf 1 T2 1/2(T—t)2 ( )
Approximate the function f(t) by the interpolated polynomial
fn(t) :Ln(f) = z ( Z Ilk T; t))f( ) (5.16)
k=0 i=0

where Ty, (t) = y/2/mmcos(marccost) are Chebyshev polynomials of type I of degree
m; tx = cos((Qk—-1)m)/(2n+2), k =1,2,...,n+ 1 are the nodes of the polynomial
Tt (8); Y = D10 T (Hk)-
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Substituting f;, (t) instead of f(t) into the integral A; f and having taken advantage
of the formulae [28]

! Tp(T)dT
J i =0 (5.17)
-1 (1-T2)"(T-1)2
for n=0,1 and
1
Tp(T)dT _om <_n71 n+2 )
J (1_T2)1/2(T_t)2—17t2 5 Un(t)+72 Ujp-2(t) (5.18)
for n = 2,..., we obtain the quadrature rule
Jl f(r)dr
(1-72)"*(T—1)2
(5.19)
-y MiT-(uk)(—i_—lU'<t>+ﬂUl>z<t)) Ry
-l w5 2 7 2 ’

where U, (t) are Chebyshev polynomials of the type II.
THEOREM 5.5 (see [14]). The quadrature rule (5.19) error |R, | < AE, (f)n?A,, isvalid.
PROOF. Estimate value of the error of the quadrature rule (5.19)

(f(T) = fu(T))dT

(1-12) V2 (r )2

|Rn| = ‘ (5.20)

U Yu(T)dT
(1-72) ]/Z(T—t)z ’

where @, (T) = f(T) — fu (7). Having made use of the Taylor formula with the re-
mainder term in integral form we obtain @, (T) = Yu () + (@, (&) /1) (T —t) + (1/11)
IF (T =v)w}(v)dv. So,

_ Yn(r)dt
|Rn| = ’J (1-72) (1 —1)2
L W)+ @ (1) (T - t)+j (T-v) @) (v)dv
d
“ (1-72) (T =12 ' (5.21)
1 at , 1 at
T "’“”Lm e ont [ e
+max|(p t)|= J 1/2

It is known [28] that [',dT/(1 - T2)2(t-1)2 =0, [, dT/(1-T)Y2(T—t) = 0,
“1<t<l.
Therefore,

|Rn| < max |y (t)]. (5.22)
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The interpolation error by the polynomial f;,(t) occurs |, (t)| = |f(t) — fu(t)| <
E,(f)(1+A,). Using Markov inequality [34, 35] and the circuit of the Bernstein theo-
rem proof about structural properties of functionals [34, 35], itis possible to show that

Wi ()| < ARPEn(f)(1+A,). (5.23)
It is known [34, 35] that for the points of Chebyshev polynomials of the type I
A < Alnn. (5.24)

Collecting the estimations (5.21), (5.22), (5.23), and (5.24) we finish the proof of the
theorem. 0

Similar results are obtained [14] for different weight functions and for different
integer degrees of the difference (T —1t).

5.4. Weight quadrature rules for the Hadamard finite part integrals. Consider the
Hadamard f.p. integral

Hf = J p((_;_r)J;():)dT, v=23,.... (5.25)
For simplicity we assume that p(t) =t~¥,0 < y < 1. We use the interpolated polyno-
mials P, (f;[Sk,Sk+1]) for approximation of the function f(t) on the segment [ s, Sk+11.
The construction of this polynomials was described in Section 1.3.
Let feW"(1),r >p—1.Let sy = (k/N)4, q=7v/(r—y), k=0,1,...,N. Let t €
[sj,5j+1]. The Hadamard f.p. integrals of the type (5.25) we evaluate with the quadra-
ture rule

§per Pefilsesenl) p o Pe(filsisi ])
Hf = YA PR IRTLLT “rAJ o PRy IRFLT
f EOL (T-1) dﬂkész r-ne (5.26)
Siv2 Py (f5[5-1,5+2])
+Lj71 TV (T —t)V dTt +Rn.

THEOREM 5.6 (see [11]). Let¥ = W7"(1). Among all possible quadrature rules of the
type Hf = S350 o v () fO(ty) + Ry (t, pristi, f) With 0 < p < v the quadrature
rule (5.26) is optimal with respect to order. The error of quadrature rule (5.26) |[Ry| <
AN-TT+l=v=0/0=y) fort € [so,sn_0] is valid.

5.5. Evaluation of the many-dimensional Hadamard finite part integrals. Con-
sider the following type of Hadamard f.p. integrals

J J’ T1,T2 )dT,dT> (5.27)
Ly JL2 Tl—tl Tz—tz)

where L;, i = 1,2 are piece-continuously closed curves.

Divide the closed curve L; into N; equal parts by nodes ty,, k1 = 0,1,...,Nj, to =
tn, . Divide the closed curve L; into N, equal parts by the nodes ty,, k> = 0,1,...,N>,
to = tn,. Let 1, i = 1,2 be a unit normal to the curve L;, i = 1,2.
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We will compute the integral (5.27) with the quadrature rule

| MmN
Z Z f tkl’tkz
=0 kp=0
th1+1 J‘tk2+1|: 1
hy —(ti+ 7 h))" (12 = (t2 + 72 h2)) 72
. 1
(11— (t1 + 7 h))" (T2 = (t2 — 2h2)) ™
1
+ -
(11— (tr =71 hy))" (T2 = (2 + i2h2))7?
1
+ dTti1dT2+ Ry, N,
(Tl_(tl_ﬂlhl))m(TZ_(tZ—ﬂZhZ))m} T ATz ENN,

(5.28)

where t,'(,_, i =1,2 is the point equidistant from the points t;, and ty, ;1,1 =1,2, h; =
-1/p; .
N. ,i=1,2.

1

THEOREM 5.7 (see [11]). Let¥ = Wn"2(1),r;>1,i=1,2. Letp; = p» = 2. Let h; =
N; 1/2 ,1=1,2. The quadrature rule (5.28) error is equal to |Rn;n, | < Ahi1hz|Inh;Inh,]|.

Consider the Hadamard f.p. integrals of the following type

Af = J J TI’TZ) S d Ty dTo. (5.29)
T1—t1)" (T2 - t2)
For the evaluation of the integrals of the type (5.29) we introduce the following
quadrature rule

N1 1N>-1

2 > fltiytiy)

=0 kp=0

J‘tk1+1 th2+l ( 1
ey, Ity — (tr—ih1))"" (T2 = (t2 - ih2))"?
N 1 (5.30)
(T1 = (t +ih))" (T2 = (t2 - ih2)) "
. 1
(11— (t1 = ih1))" (T2 = (t2 + ih2)) "

1
i (1= (b1 +1h)) " (T2 = (2 +ih2)) "

)dTl de + RN1N2 y

1

where ty, = —1+2k;/Ni (ki =0,1,...,Ni); t; = (tx +tx1) /2, hi = N; P i =1,2.

THEOREM 5.8 (see [11]). Let¥Y =W""2(1). Letpy =p2=p,hi=hy=h,r =1 =7.
The quadrature rule (5.30) error |Ryn, | < Ah?|1In® h| is valid.
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Consider the Hadamard f.p. integrals of the following type

Af J J f TI:TZ dTl de (531)

(T1—t1) T2*t2)

We assume that the function f(t;,t,) can be represented as f(ty,t2) = pi(t,to2)
g(ty,t2), where p;(t1,t2), i = 1,2, is a weight function, g(ty,t,) is a smooth function.

As weight functions we will use the following functions p;(t1,t;) = a~lil-ltzl
a>1; pa(ty, ) =e i3,

DEFINITION 5.9. Class W""2(1,k), »; = 1,2,..., i = 1,2, consists of the functions
f(t1,t>) which are defined on domain (—o0, )2, These functions have the continu-
ous derivatives f1O (tq,t2), FOD (t1,t2),..., T2V (¢ t), F1-172) (¢ ¢,) and the
piece-continuous derivative f1:72) (¢, ¢t,). Functions f(t,t») and its derivatives sat-
isfy the following conditions: max | f 7172 (t,t2)| < 1, max (|| f (t1,t2) |, | fF 1O (t1,t2)]],

IF OBy, ) e, L2 (g, t) (|, I 072 (2, 82) 1) < ke

Let N be integer. Let r; =1, = 7. Let A; = [rlog,N], Ap = [InN], where [a] is the
greatest integer in a. Let N = N/alK" k = —Ay,...,-1,0,1,...,A;, N2 = N/exp(k?/7),
k=-A,...,—-1,0,1,...,Ap.Let ty ; =k+1/Ny, k= —Ay,...,-1,0,1,...,A;;1=0,1,...,N,
ti=k+1/Ni, k=—As,...,—1,0,1,...,A5; 1 =0,1,...,N}

THEOREM 5.10 (see [11]). Let¥Y = W"")(1,k), v > p—1. Let h = N~'/?, The quad-
rature rule

i i
A Ai-1 Nkl Nk2

Ap)=3 5 X XY

k1:—Ai ka=—-A;11=012=0

Gy +1 (Trpilp+1 1
|, ; 2 2
tk] rll thvIZ (Tl - tl + lh) (T2 - t2 + lh)

. 1
(T1 =ty +ih)* (T2 — ta — ih)°

. 1
(T1 - —ih)2(T2 —t +ih)2

+ 21 > )dTl daTt, +Rn; Ny
(T1 -t - ih) (Tz -1l — ih)

(5.32)
has the error |Ry,n,| = Ah|In*h| +1/Nh?2.
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