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MOTION OF TWO POINT VORTICES IN A STEADY,
LINEAR, AND ELLIPTICAL FLOW
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ABSTRACT. For a pair of point vortices in an inviscid, incompressible fluid in the plane, the
relative and absolute motion are determined when the vortices move under the influence
of (1) each other, and (2) a steady, linear, and elliptical background flow.
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1. Introduction. The point vortex model [1, 4, 5] is an idealization of the motion of
a collection of vortices in an inviscid, incompressible fluid in the plane. Each vortex is
assumed to be a point, and to induce in the surrounding fluid a velocity field, namely
that of a Rankine vortex whose core has shrunk to a point. Each such point P moves
with a velocity equal to the sum of the velocities induced by the other points, and the
velocity field induced by P moves, without change of form, with the same velocity as
P itself.

We investigate the absolute and relative motion in the plane of a pair of point
vortices that are embedded in a steady flow whose velocity field has the form

(—oy,Bx), (1.1)

where « and $ are constants such that « > > 0. The flow (1.1) carries fluid particles
counterclockwise around the origin, in elliptical trajectories. Kimura and Hasimoto [3]
have analyzed a similar problem in which two vortices move in a simple shear flow
(xxy,0). They require their vortices to be identical; here that requirement is dropped.

Here are the basic equations and notation needed for our analysis.

First, we need some information about the flow (1.1) (henceforth called the “back-
ground flow”). The position (x,7y) of a given fluid particle in the background flow
satisfies the equations

dx dy
dt = -y, dt = Bxl (]-2)
which have a general solution
X = xpcoswt —Dypsinwt, y = D 'xysinwt + yycos wt, (1.3)

where x¢ = x(0), yo = ¥(0), and

D=|%  w=yaB. (1.4)
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Thus, a fluid particle that begins at (xg,yo) will complete one counterclockwise
revolution around the ellipse x2/x+ y?/B = x3/«+ 3/ in time 217 //&p.
It follows from (1.3) that the linear transformation L; : R? — R2, defined by

I X _ coswt -Dsinwt | [ X (1.5)
‘\lY|) |D'sinwt coswt Y|’ :
takes as input the location of a given fluid particle in the background flow at time 0,
and gives as output the particle’s location at time t. The inverse transformation

[ X _ coswt Dsinwt || x
b ([y])_[—Dlsinwt coswt ||y (1.6)

takes as input the location of a given fluid particle in the background flow at time ¢,
and gives as output the particle’s location at time 0.

Next, we introduce the equations of motion of the vortices. Denote by (xj, ;)
(j = 1,2) the position of the jth vortex, and put

2

T=\/(x2—x1)2+(y2—y1) . (1.7)

Then, because the velocity of each vortex is the sum of the background flow’s veloc-
ity and the velocity induced by the other vortex, the vortices’ positions satisfy the
following differential equations:

% = Kz%_“yl; (1.8)
% = —Kz%"'ﬁxl; (1.9)
% = —Kl%_o‘yﬂ (1.10)
G (L.11)

here k; and k, are nonzero constants.
Finally, to obtain differential equations for the vortices’ relative position, we first
define

E=Xx2—Xx1, N=Y2-Y1, K=K +Kp; (1.12)
then, by subtracting (1.8) from (1.10) and (1.9) from (1.11), we get
d K
£:_<ﬁ+a>n’ (1.13a)
d K
7?: (ﬁJrB)g_ (1.13b)

The system (1.13) has a Hamiltonian
H:f%[xlog(§2+n2)+[3§2+(xn2]; (1.14)

thatis, 0H/0n equals the right-hand side of (1.13a) and —0H /0§ equals the right-hand
side of (1.13b). Each solution curve of (1.13) is contained in a level curve of H. (Cf. [6,
pages 43-45] for an introduction to Hamiltonians.)
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In polar coordinates » and 6 defined by
& =rcos0, n=rsind, (1.15)

where v satisfies (1.7), equations (1.13) and (1.14) take the form

ar _ -2 (x—=B)rsin26, (1.16a)
dt
a0 _ « 2 2
TR +osin® 0 + Bcos< 0, (1.16b)
H =-2""2klogv + Br?cos? 0 + ar?sin® 0]. 1.17)

We are now ready to begin our analysis. In Section 2, we consider absolute motion; we
consider relative motion in Sections 3.1, 3.2, 3.3, and 3.4. The character of the relative
motion depends on whether & = 8 (when the background flow is solid-body rotation)
or o > 8 (when the background flow is elliptical but not circular); in the latter case the
behavior depends on the sign of k.

2. Absolute motion. Theorems 2.1 and 2.2 below describe the absolute motion in
the cases k + 0 and k = 0, respectively.

For k = 0, the center of vorticity of the vortices (x;,y;) (j = 1,2) is defined to be
(Xc,¥c), where

Xe = kN K1X1 + Kax2), Ve = K (Kiy1 + K2 yo). (2.1)

THEOREM 2.1. Fix x and 8, where « = > 0, and let {xj,y;) (j = 1,2) be a solution
of the system (1.8), (1.9), (1.10), and (1.11). If k defined by (1.12) is nonzero, then the
center of vorticity moves with the background flow.

PROOF. By computing k1 {k;[(1.8)] + k2[(1.10)]}, we find that dx./dt = —xy.
Similarly, dy./dt = By.. Thus, since the background flow is given by (1.1), the proof
is complete. O

THEOREM 2.2. Fix & and B, with «x = B > 0, and pick real numbers k1 and k, such
that k = k1 + Ko = 0. Define D, w, and L; by (1.4) and (1.5). Finally, choose real numbers
X1, Y1, X5, and Y», with (X, —Xl)z + (Y, — Yl)z +0,andset&y = X, —X; andng =Y,-Y7.

Then the system (1.7), (1.8), (1.9), (1.10), and (1.11) has a unique solution satisfying
x;(0) = Xj and y;(0) =Y, (j = 1,2); that solution is

A R () R 4

_n-1
G(t) = —&log{(&% +n2) " [(82 +nd) cos? wt — (D — DY) Eynosin2wt
2(x—p) (2.3)

+(D72E% + D?n3) sin? wt]}.
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PROOF. We will rewrite the system (1.8), (1.9), (1.10), and (1.11) in terms of new

variables X; and y; defined by
HEA(H)
Vi Yi

We hope in this way to simplify the system by eliminating (or at least reducing) the
effect of the background flow.
To convert (1.8), (1.9), (1.10), and (1.11) to the new variables, we first rewrite (2.4) as

Xj =xjcoswt+Dy;sinwt, ¥y =-D"'xjsinwt + y,coswt. (2.5)

We then differentiate the four equations in (2.5) with respect to t, use (1.8), (1.9), (1.10),
and (1.11) to eliminate the derivatives of x; and y;, and apply (1.12), (1.4), and the
condition k = 0; the result is

dx; (-ncoswt+DEsinwt) dy; (D~ 'nsinwt + & cos wt)
i g R4 N .26
dt r2 dt 12
Now by (1.13),
ag dn
- _ — RE. 2.7
- o ar =~ P (2.7)

This last system is just (1.2) with x and y replaced by & and n; thus, by (1.3), the
definitions of &, and ng, and (1.12), the general solution of (2.7) is

& =&pcoswt—Dngsinwt, n =D&y sinwt + ngcos wt. (2.8)

After solving (2.8) for coswt and sinwt and substituting the result into (2.6), we
obtain

d". —
% = k1 (D"'E2+Dn?) 1[—D'70+ (D—D’l)go(gziinnz)]’
(2.9)
dA, —
B a0 g+ D) ! [D 60+ (D-D ]

But by (2.7), (d/dt)(E2 +n?) = —2(x— B)En. This last equation allows us to integrate
(2.9), after which, using (2.3) and (2.8), we find that

%j=%;(0)+ k(D' +Dng) " [~ Dot +EG(1)],
(2.10)
Vi =3;(0)+ k1 (D' +Dng) ' [D &t +noG(D)].

Finally, we put (2.10) into matrix form and apply L; to both sides; (2.2) then fol-
lows because, by (2.5), X;(0) = x;(0) and ¥;(0) = »;(0). This completes the proof of
Theorem 2.2. O

COROLLARY 2.3. Under the hypotheses of Theorem 2.2,

Xj|_ Kkt —Dno
[J’j] B D1§5+Dn%Lt([Dl§o} ) +ot. @1
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PROOF. This follows trivially from (2.2), (2.3), and (2.5). O

From Corollary 2.3, along with (1.4) and the interpretation of L; given in Section 1,
it follows that, when k = 0, the two vortices move in a spiral around and away from
the origin. More precisely, each vortex stays a bounded distance from a moving point
which behaves as follows:

(a) it moves counterclockwise around the origin with period 27 //&p;
(b) it lies, at time t, on the ellipse
X2 (e

(D?n3/x+D2E3/B)
x B )

2
(D15 +Dng)

(2.12)

3. Relative motion
3.1. The case & = . The following theorem is a direct consequence of (1.16).

THEOREM 3.1. Fix real numbers «, B, and k such that « = B > 0, and consider a pair
of vortices whose positions satisfy equations (1.7), (1.8), (1.9), (1.10), and (1.11). The line
segment joining the two vortices has constant length and rotates with constant, possibly
zero, angular velocity Kvy 2+ &, where 1y is the segment’s length.

3.2. The case k = 0. From the proof of Theorem 2.2 (see (2.7) and (2.8)) we have
the following result.

THEOREM 3.2. Fix real numbers «, B, k1, and k> such that « > > 0 and k =
K1 + k2 = 0, and consider a pair of vortices whose positions satisfy equations (1.7), (1.8),
(1.9), (1.10), and (1.11). In (&, n)-coordinates (1.12), the second vortex moves around
the first, with period 27 /\/&B, on the ellipse E2/x+n?/B = €3/ x+n3/B.

Theorems 3.1 and 3.2 agree in the case where & = 8 and k = 0.

3.3. The case & > B, k > 0. Our investigation of the motion when « > 8 and k = 0
depends on understanding the level curves of the Hamiltonian H in (1.17), which in
turn requires us to analyze the function

9w () = (= PB) 4r%(klogr +w) + x+ B]. (3.1)
For k > 0, the following lemma gives the information we need.

LEMMA 3.3. Pick &, B, and k, with x > B > 0 and k > 0, and define g, (v) by (3.1). Set
r* =r*(w) =e!/FV/K (3.2)

Then,

(@) guw is increasing on (0,v*]; limy o+ gy () = —00; g (¥) > 1 forv = v*;

(b) given a number u in [—1,1], the equation g,, (v) = u has exactly one solution v
in (0, 00], namely, v = f,, (1), where f,, is the inverse function of the restriction
of gw (r) to the interval (0,7*];

() 0< fu(u) <v* forall realw and allu in[-1,1];

(d) for each real w, and each fixed u in [-1,1], f,, (1) is a decreasing function
of w;

(e) limy . fuw(u) =0 andlimy, . o fi, (U) = +oo, uniformly for u in [-1,1].
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PROOF. The first two statements in (a) are obvious; the third holds because (i) g
is decreasing for v > v*, while (ii) lim, _ o g (v) > 1. Part (b) follows immediately from
(a), and (c) from (b).

To prove (d), we fix u in [—1,1] and pick real numbers z and w such that z < w.
Then f,(u) > fi, (u); otherwise, since g,, () is an increasing function of + < r* for
fixed w, and an increasing function of w for fixed r, we would have

u=g:(fz(w) <g-(fww)) < gw(fww)) =u. (3.3)

The first limit in (e) is a consequence of (c) and (3.2). To establish the second limit,
we first calculate, using (3.1), that g, 3/—w) — —o as w — —oo; thus, when w is a
sufficiently large negative, u > g, 3/—w) for all u in [—-1,1]. The second limit then
follows when we apply f,, to this last inequality. This completes the proof of (e) and
of Lemma 3.3. O

THEOREM 3.4. Fixreal numbers &, 3, kK1, and Kk, suchthatx > > 0 and k = k1 + K >
0, and consider a pair of vortices whose positions satisfy (1.7), (1.8), (1.9), (1.10), and
(1.11). In (&€, n)-coordinates, the second vortex moves around the first counterclockwise
in a simple closed curve, with period

(3.4)

sz do
0 2k/[fuw(cos260)] + (a+B) — (t—B)cos26’

The period T is a decreasing function of w such that T — 21/ /& as w — —o, and
T — 0 as w — oo, The maximum separation v of the vortices occurs when 0 = 0,1, and
the minimum when 0 = 1t/2, 311/2.

PROOF. The identities sin® 0 = (1 —co0s26)/2 and cos? 6 = (1 +c0s260)/2 allow us
to rewrite (1.16b) and (1.17) as

do  k  (a+p) [(x—p)cos20]

dat ~ r? 2 2 ’

(o + B)r? . [(x—B)r2cos20]
4 4

Using (3.1), the equation H(7,0) = w can be rewritten as g, (r) = cos20, or, by
Lemma 3.3(b), as

(3.5)

H = —«klogr -

¥ = fw(cos20). (3.6)

The latter is a simple closed curve, symmetric with respect to the &- and n-axes, and
enclosing the origin. Each trajectory of (1.16) lies on a curve (3.6) for some w. By (3.5),

ao  (x+B) (x-B)

a2 2
so the motion is counterclockwise. By (3.5) and (3.6), the period T is given by (3.4).
By (3.4), along with Lemma 3.3(d), (e), T is a decreasing function of w such that
T —2m/JaxBasw — —oo,and T — 0 as w — oo. Finally, the statements about the sep-
aration of the vortices (which, by symmetry, need only be verified for 0 in [0,17/2]),
follow from (1.16a) since the motion is counterclockwise. This completes the proof of
Theorem 3.4. O

0, (3.7)
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Because f, is a decreasing function of w, smaller values of w correspond to larger
curves; that s, if z <w, then the curve r = f, (cos 20) encloses the curve v = f,, (cos 20).
Thus a consequence of Theorem 3.4 is that, if two vortices are close to each other,
then their period of rotation around each other is what it would be if there were no
background flow, while, if the vortices are far apart, then that period is approximately
what it would be if the vortices did not affect each others’ motion.

3.4. The case « > B, k < 0. The Hamiltonian H defined by (1.14) has maxima at the
points =P, where, in (&,n) coordinates, P = (/—k/B,0). Also, H has saddle points at
+Q, where Q = (0,/—k/x). The points =P and +Q are the only stationary points of
the system (1.13). If the pair of vortices begin with relative position given by =P or
+Q, then they maintain that relative position while their center of vorticity revolves
about the origin. The values of H at those points are

k[1-log(—k/B)] _ k[1-log(—k/x)]

M=H(+£P) = > > 5 =H(+xQ) =S, (3.8)

and the behavior of a trajectory lying on a level curve H = w depends on where w lies
in relation to M and S. As in Section 3.3, we use the function g,, of (3.1) to explore
that behavior. The following lemma gives the information we need; I omit the proof,
which is similar to that of Lemma 3.3.

LEMMA 3.5. Pick &, B, and k, with « > 8 > 0 and k < 0; define g,, (v), r*, M, and S
by (3.1), (3.2), and (3.8). Then,

(@) gw is decreasing on (0,v*] and increasing on [v*,c0); lim,_o+ gy (¥) = +00;
lim; o gw(r) >1;

(b) gw (r*(w)) is an increasing function of w such that (i) gy (v*(M)) = 1;(ii)) —1 <
Guw(r*(w)) <1if§S <w < M; (i) gs(r*(S)) = —1; and (iv) g (r*(w)) < -1 if
w<S;

(¢c) given w < M and u in (g(r*),1], the equation g,,(r) = u has exactly two
solutions v in (0,c0], namely, v, = f,,(u) and r» = hy, (1), where f,, and h,,
are the inverse functions of the restrictions of g, (v) to the intervals (0,7 *]
and [r*,00); if u = g(r*) then the equation has exactly one solution, namely
Swu) =hy(u) =7v*;

(d) 0< fuw(u)<r*andh,(u) >r* forallw <M and allu in (g(r*),1];

(e) for each fixedu in[—1,1], fi, (u) is an increasing function of w and h,, (1) is
a decreasing function of w;

() limy-_o fiw(u) =0 andlimy, _._o hy(U) = oo,

The following definitions are helpful in describing the level curves of H. With & and
n given by (1.12), and polar coordinates 7, 8 given by (1.7) and (1.15), we define four
curves in the En-plane (see Figure 3.1):

C1:7 = fs(cos20), 7g<9<%; Co 17 = hs(cos20), ,g<9<%;
(3.9
C3:7v = fs(cos20), %<9<37"; Cy:7 = hg(cos20), f%<9<37".

We also define four open, connected sets: R; is the inside of C; u C; U {Q,—-Q},
excluding P; R; is the inside of C3 U Cs U {Q,—-Q}, excluding —P; R3 is the inside
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Q
R4

Cy

-Q

FIGURE 3.1

of CiuC3uU{Q,—-Q}, excluding the origin; and R4 is the outside of C,UCsU{Q,-Q}.
(The curve C; UC> U {Q, —Q} encloses P because fs(1) <+/—k/B < hs(1) by (3.8) and
Lemma 3.5(a).) Then H(R;) = H(Ry) = (§,M) and H(R») = H(R3) = (—,S); this re-
sults from (3.8) along with (i) limg p)~. H(&,n) = —o0, (ii) H=S on {Q,-Q} UU;Ll Ci,
and (iii) H has no critical points in U?:l R;.

By the Poincaré-Bendixson theorem and a corollary [2, Theorem, page 248 and Theo-
rem 3, page 252], each region R; is a union of periodic orbits of (1.13). The following
theorem gives more detail.

THEOREM 3.6. Fix real numbers «, B, k1, and K> such that « > > 0 and k =
K1+ k2 <0, define M and S by (3.8), let H be given by (1.14), (1.15), (1.16), and (1.17),
and consider a pair of vortices whose positions satisfy (1.7), (1.8), (1.9), (1.10), and (1.11).
For those vortices, define & and n by (1.12), and put &, = £(0) and ny = n(0). Then:

(a) If (£0,n0) € R1 URy, then the line segment joining the vortices periodically rocks
from side to side in such a way that its maximum and minimum angels with the positive
E-direction are +0*, where

0* =2"1cos ' gy (#*) =271 cos ! [(x— B) 1 (2ke®* /%1 + x + B) ] (3.10)

and w = H(&y,No). The period is

hw (1)

w

r1-[gum 2} Car. (3.11)

The maximum and minimum length of the segment occur at the two instants in the
cycle when the segment is horizontal.

(b) If (E0,n0) € U?:l C; then, ast — oo, the line segment joining the vortices tends to
a vertical position. The segment’s length approaches \/— k[ «.

(c) If (€0,n0) € R3 URy then, in (&,n)-coordinates, the second vortex moves around
the first in a simple closed curve.

If (€0,n0) € R3, then the motion is clockwise, with period

/2 2K

T=78J’ ————— +(a+p) - (x—p)cos20 do. (3.12)
0 [fw(cos20)]

The period T is an increasing function of w such that T — 0 as w — —o. (That is, the

period is small when the vortices are close to each other.) The maximum separation v

of the vortices occurs when 0 = 1t/2, 311/2, and the minimum when 6 = 0, 1t.
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If (§0,n0) € R4, then the motion is counterclockwise, and the period is

e 2K
" Ui tcos2o? ~ (o~ B) cos20 - do. 3.13
J {[hw(cosze)]er(OHﬁ) (ex—B) cos } (3.13)

The period T is an increasing function of w such that T — 21t /\/&B as w — —oo. (That
is, the period is close to the background flow period when the vortices are far apart.)
The maximum separation v of the vortices occurs when 0 = 0,11, and the minimum
when 0 = 1t/2, 311/2.

PROOEF. In proving (a), we can assume that (&p,ng) € R;; this is because (1.13) is
unchanged when & and n are replaced by —& and —n. Then (&(t),n(t)) € R; for all t.
The trajectory is contained in a level set H = w such that S < w < M. As in the proof
of Theorem 3.4, the equation H = w can be written in the form g,, () = cos26. By
Lemma 3.5(a), (b), and (c), this last equation has solutions 7 if and only if

0820 > g, (r*). (3.14)
Since Ry C {—1/2 < 0 < 11/2}, the solutions are
v = fw(cos20), ¥ =hy(cos20), where 0 €[—-0% 0*]. (3.15)

Equations (3.15) together represent a simple closed curve; this is a consequence of
Lemma 3.5(d) and the equation (from (3.10)) fi (cos20*) = hy, (cos260*). Therefore
the motion is periodic, with the maximum and minimum values of 8 stated in part (a)
of Theorem 3.6. To verify the formula (3.11) for the period, we first rewrite (1.16a),
for 0 in [0,0%*], as

% = 27 (- Byr1—[gu (1) 12. (3.16)

We then define Ty and Ty to be the amounts of time spent by the second vortex in
the parts of the upper half-plane {n > 0} where v < r* and v > r*, respectively. After
separating variables in (3.16), we find that

2 (" ar 2 (e ar
T = oog o Tl T GaD)
Jw) 1= [gw ()] 1= [gw ()]

which yields (3.11). Finally, by (3.15) and Lemma 3.5(a), the smallest and largest values
of v are, respectively, f3, (1) and h,, (1); these occur when 0 = 0. Thus the minimum
and maximum separations of the vortices occur when the segment joining them is
horizontal, and the proof of (a) is complete.

Part (b) is clear since the boundary of each curve C; is {Q,-Q}.

We prove (c) only in the case where (&, n¢) € R3; the proof for (£,n0) in Ry is
similar. Put w = H(&p,No). Then, since w < S, it follows from Lemma 3.5(b), (c) that
the level set H = w consists of two disjoint simple closed curves v = f,, (cos26) and
¥ = hy (cos26).By Lemma 3.5(d), the former is the one that lies in R3. By Lemma 3.5(a),
dr/dO > 0 on the part of that curve in the first quadrant. But dr/dt < O there by
(1.16a), so the motion is clockwise. The statements about the vortices’ separation, and
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the formula (3.12) for the period, are established as in the proofs of the corresponding
facts in Theorem 3.4. The period T is an increasing function of w such that T — 0
as w — —oo by (3.12) and Lemma 3.5(e), (f). This completes the proof of Theorem 3.6.

O

Under the hypotheses of Theorem 3.6, the solutions of the linearization of (1.13)
about P = (v/—«/B,0) have period 217 /+/2B(x - B). The following statements are prob-
ably true, but we have been unable to prove them: (i) if w € (S, M), then the period T is
a decreasing function of w such that lim,, .y~ T = 277//2B(x— B); (ii) lim,, .5 T = co.
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