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Abstract. The object of the present paper is to derive some sufficient conditions for
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1. Introduction. Let �(p) denote the class of the functions f(z)=zp+∑∞
n=p+1anzn

which are analytic in the open unit disc � = {z : |z| < 1}. A function f(z) ∈ �(p) is

called p-valently starlike if and only if the inequality

Re
{
zf ′(z)
f(z)

}
> 0 (1.1)

holds for z ∈ �. A function f(z) ∈ �(p) is called p-valently convex of order α (0 ≤
α<p) if and only if the inequality

1+Re
{
zf ′′(z)
f ′(z)

}
>α (1.2)

holds for z ∈ �. We denote by �(p,α) the family of such functions. A function f(z)∈
�(p) is said to be strongly starlike of order α (0<α≤ 1) if and only if the inequality

∣∣∣∣arg
{
zf ′(z)
f(z)

}∣∣∣∣< π2 α (1.3)

holds for z ∈ �. We also denote by STS(p,α) the family of functions which satisfy

the above inequality for the argument. From the definition, it follows that if f(z) ∈
STS(p,α), then we have

Re
{
zf ′(z)
f(z)

}
> 0 in � (1.4)

or f(z) is p-valently starlike in � and therefore f(z) is p-valent in � (see [1, Lemma 7]).

Nunokawa [2, 3] proved the following theorems.

Theorem 1.1 (see [2]). If f(z)∈�(p) satisfies

1+Re
{
zf ′′(z)
f ′(z)

}
<p+ α

2
, (1.5)

where 0<α≤ 1, then f(z)∈ STS(p,α).
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Theorem 1.2 (see [3]). If f(z)∈�(1) satisfies

∣∣∣∣arg
{

1+ zf
′′(z)

f ′(z)

}∣∣∣∣< π2 α(β) in �, (1.6)

then

∣∣∣∣arg
{
zf ′(z)
f(z)

}∣∣∣∣< π2 β in �, (1.7)

where

α(β)= β+ 2
π

tan−1
{

βq(β)sin(π/2)(1−β)
p(β)+βq(β)cos(π/2)(1−β)

}
,

p(β)= (1+β)(1+β)/2, q(β)= (1−β)(β−1)/2.
(1.8)

It is the purpose of the present paper to prove that if f(z) ∈ �(1,1−(α/2)), then

f(z)∈ STS(1,α).
In this paper, we need the following lemma.

Lemma 1.3. Let f(z)∈�(1) be starlike with respect to the origin in �. Let C(r ,θ)=
{f(teiθ) : 0 ≤ t ≤ r < 1} and T(r ,θ) be the total variation of argf(teiθ) on C(r ,θ),
so that

T(r ,θ)=
∫ r

0

∣∣∣∣ ∂∂t arg
{
f
(
teiθ

)}∣∣∣∣dt. (1.9)

Then

T(r ,θ) < π. (1.10)

We owe this lemma to Sheil-Small [6, Theorem 1].

2. Main theorem. Our main theorem for the starlikeness of multivalently convex

functions of order α is the following.

Theorem 2.1. Let f(z)∈�(1) and

1+Re
{
zf ′′(z)
f ′(z)

}
> 1− α

2
in �, (2.1)

where 0<α≤ 1. Then

∣∣∣∣arg
{
zf ′(z)
f(z)

}∣∣∣∣< π2 α in �, (2.2)

or f(z) is strongly starlike of order α in �.

Proof. We put

2
α

{
1+ zf

′′(z)
f ′(z)

−1+ α
2

}
= zg

′(z)
g(z)

, (2.3)
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where g(z)= z+∑∞
n=2bnzn. From assumption (2.1), we have

Re
{
zg′(z)
g(z)

}
> 0 in �. (2.4)

This shows that g(z) is starlike and univalent in �. With an easy calculation (cf. [4]),

(2.3) gives us that

f ′(z)=
{
g(z)
z

}α/2
. (2.5)

Since

f ′(z)≠ 0, 0< |z|< 1, (2.6)

we easily have

f(z)
zf ′(z)

=
∫ 1

0

f ′(tz)
f ′(z)

dt =
∫ 1

0
t−α/2



g
(
treiθ

)
g
(
reiθ

)


α/2

dt, (2.7)

where z = reiθ and 0< r < 1. Since g(z) is starlike in �, from Lemma 1.3, we have

−π < arg
{
g
(
treiθ

)}−arg
{
g
(
reiθ

)}
<π (2.8)

for 0< t ≤ 1. Putting

ξ =
{
g
(
treiθ

)
g
(
reiθ

)
}α/2

, (2.9)

we have

args = α
2

arg
{
g
(
treiθ

)
g
(
reiθ

)
}
. (2.10)

From (2.8) and (2.10), s lies in the convex sector
{
s : |args| ≤ π

2
α
}

(2.11)

and the same is true of its integral mean of (2.7), (cf. [5, Lemma 1]). Therefore, we have

∣∣∣∣arg
{
f(z)
zf ′(z)

}∣∣∣∣< π2 α in � (2.12)

or
∣∣∣∣arg

{
zf ′(z)
f(z)

}∣∣∣∣< π2 α in �. (2.13)

This shows that

Re
{
zf ′(z)
f(z)

}
> 0 in �, (2.14)

which completes the proof of our main theorem.
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Remark 2.2. This result is sharp for the case α→ 0 and α= 1.

(a) For the case α → 0, put f(z) = z, then f(z) is a convex function of order 1−
(α/2)→ 1 and f(z) then f(z) is a strongly starlike function of order α→ 0.

(b) For the case α= 1, put

1+ zf
′′(z)

f ′(z)
= 1

1−z . (2.15)

Then we have

1+Re
{
zf ′′(z)
f ′(z)

}
>

1
2

in �, (2.16)

and therefore f(z) is a convex function of order 1/2. From (2.10), we easily have

f ′(z)= 1
1−z , f (z)= log

{
1

1−z
}
. (2.17)

Putting |z| = 1, z = eiθ , 0≤ θ < 2π , then it follows that

z
1−z =−

1
2
+i cos(θ/2)

2sin(θ/2)
,

log
{

1
1−z

}
= log

∣∣∣∣1
2
+i cos(θ/2)

2sin(θ/2)

∣∣∣∣+iarg
{

1
2
+i cos(θ/2)

2sin(θ/2)

}
.

lim
θ→+0

arg
{
zf ′(z)
f(z)

}
= lim
θ→+0

arg
{

z/(1−z)
log(1/(1−z))

}

= lim
θ→+0

arg
{
− 1

2
+i cos(θ/2)

2sin(θ/2)

}

− lim
θ→+0

arg
{

log
∣∣∣∣1
2
+i cos(θ/2)

2sin(θ/2)

∣∣∣∣+iarg
(

1
2
+i cos(θ/2)

2sin(θ/2)

)}

= π
2
.

(2.18)

The above shows that the main theorem is sharp for the case α→ 0 and α= 1.

Applying the same method as above and [2], we can obtain the following result.

Theorem 2.3. If f(z)∈A(p) and satisfies

p− α
2
< 1+Re

{
zf ′′(z)
f ′(z)

}
in �, (2.19)

where 0<α≤ 1, then f(z)∈ STS(p,α).
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