

ON THE STRONGLY STARLIKENESS OF MULTIVALENTLY CONVEX FUNCTIONS OF ORDER α

MAMORU NUNOKAWA, SHIGEYOSHI OWA, and AKIRA IKEDA

(Received 16 November 2000)

ABSTRACT. The object of the present paper is to derive some sufficient conditions for strongly starlikeness of multivalently convex functions of order α in the open unit disc.

2000 Mathematics Subject Classification. 30C45.

1. Introduction. Let $\mathcal{A}(p)$ denote the class of the functions $f(z) = z^p + \sum_{n=p+1}^{\infty} a_n z^n$ which are analytic in the open unit disc $\mathcal{E} = \{z : |z| < 1\}$. A function $f(z) \in \mathcal{A}(p)$ is called p -valently starlike if and only if the inequality

$$\operatorname{Re} \left\{ \frac{zf'(z)}{f(z)} \right\} > 0 \quad (1.1)$$

holds for $z \in \mathcal{E}$. A function $f(z) \in \mathcal{A}(p)$ is called p -valently convex of order α ($0 \leq \alpha < p$) if and only if the inequality

$$1 + \operatorname{Re} \left\{ \frac{zf''(z)}{f'(z)} \right\} > \alpha \quad (1.2)$$

holds for $z \in \mathcal{E}$. We denote by $\mathcal{C}(p, \alpha)$ the family of such functions. A function $f(z) \in \mathcal{A}(p)$ is said to be strongly starlike of order α ($0 < \alpha \leq 1$) if and only if the inequality

$$\left| \operatorname{arg} \left\{ \frac{zf'(z)}{f(z)} \right\} \right| < \frac{\pi}{2} \alpha \quad (1.3)$$

holds for $z \in \mathcal{E}$. We also denote by $\operatorname{STS}(p, \alpha)$ the family of functions which satisfy the above inequality for the argument. From the definition, it follows that if $f(z) \in \operatorname{STS}(p, \alpha)$, then we have

$$\operatorname{Re} \left\{ \frac{zf'(z)}{f(z)} \right\} > 0 \quad \text{in } \mathcal{E} \quad (1.4)$$

or $f(z)$ is p -valently starlike in \mathcal{E} and therefore $f(z)$ is p -valent in \mathcal{E} (see [1, Lemma 7]). Nunokawa [2, 3] proved the following theorems.

THEOREM 1.1 (see [2]). *If $f(z) \in \mathcal{A}(p)$ satisfies*

$$1 + \operatorname{Re} \left\{ \frac{zf''(z)}{f'(z)} \right\} < p + \frac{\alpha}{2}, \quad (1.5)$$

where $0 < \alpha \leq 1$, then $f(z) \in \operatorname{STS}(p, \alpha)$.

THEOREM 1.2 (see [3]). *If $f(z) \in \mathcal{A}(1)$ satisfies*

$$\left| \arg \left\{ 1 + \frac{zf''(z)}{f'(z)} \right\} \right| < \frac{\pi}{2} \alpha(\beta) \quad \text{in } \mathcal{E}, \quad (1.6)$$

then

$$\left| \arg \left\{ \frac{zf'(z)}{f(z)} \right\} \right| < \frac{\pi}{2} \beta \quad \text{in } \mathcal{E}, \quad (1.7)$$

where

$$\begin{aligned} \alpha(\beta) &= \beta + \frac{2}{\pi} \tan^{-1} \left\{ \frac{\beta q(\beta) \sin(\pi/2)(1-\beta)}{p(\beta) + \beta q(\beta) \cos(\pi/2)(1-\beta)} \right\}, \\ p(\beta) &= (1+\beta)^{(1+\beta)/2}, \quad q(\beta) = (1-\beta)^{(\beta-1)/2}. \end{aligned} \quad (1.8)$$

It is the purpose of the present paper to prove that if $f(z) \in \mathcal{C}(1, 1 - (\alpha/2))$, then $f(z) \in \text{STS}(1, \alpha)$.

In this paper, we need the following lemma.

LEMMA 1.3. *Let $f(z) \in \mathcal{A}(1)$ be starlike with respect to the origin in \mathcal{E} . Let $C(r, \theta) = \{f(te^{i\theta}) : 0 \leq t \leq r < 1\}$ and $T(r, \theta)$ be the total variation of $\arg f(te^{i\theta})$ on $C(r, \theta)$, so that*

$$T(r, \theta) = \int_0^r \left| \frac{\partial}{\partial t} \arg \{f(te^{i\theta})\} \right| dt. \quad (1.9)$$

Then

$$T(r, \theta) < \pi. \quad (1.10)$$

We owe this lemma to Sheil-Small [6, Theorem 1].

2. Main theorem. Our main theorem for the starlikeness of multivalently convex functions of order α is the following.

THEOREM 2.1. *Let $f(z) \in \mathcal{A}(1)$ and*

$$1 + \operatorname{Re} \left\{ \frac{zf''(z)}{f'(z)} \right\} > 1 - \frac{\alpha}{2} \quad \text{in } \mathcal{E}, \quad (2.1)$$

where $0 < \alpha \leq 1$. Then

$$\left| \arg \left\{ \frac{zf'(z)}{f(z)} \right\} \right| < \frac{\pi}{2} \alpha \quad \text{in } \mathcal{E}, \quad (2.2)$$

or $f(z)$ is strongly starlike of order α in \mathcal{E} .

PROOF. We put

$$\frac{2}{\alpha} \left\{ 1 + \frac{zf''(z)}{f'(z)} - 1 + \frac{\alpha}{2} \right\} = \frac{zg'(z)}{g(z)}, \quad (2.3)$$

where $g(z) = z + \sum_{n=2}^{\infty} b_n z^n$. From assumption (2.1), we have

$$\operatorname{Re} \left\{ \frac{zg'(z)}{g(z)} \right\} > 0 \quad \text{in } \mathcal{E}. \quad (2.4)$$

This shows that $g(z)$ is starlike and univalent in \mathcal{E} . With an easy calculation (cf. [4]), (2.3) gives us that

$$f'(z) = \left\{ \frac{g(z)}{z} \right\}^{\alpha/2}. \quad (2.5)$$

Since

$$f'(z) \neq 0, \quad 0 < |z| < 1, \quad (2.6)$$

we easily have

$$\frac{f(z)}{zf'(z)} = \int_0^1 \frac{f'(tz)}{f'(z)} dt = \int_0^1 t^{-\alpha/2} \left\{ \frac{g(tre^{i\theta})}{g(re^{i\theta})} \right\}^{\alpha/2} dt, \quad (2.7)$$

where $z = re^{i\theta}$ and $0 < r < 1$. Since $g(z)$ is starlike in \mathcal{E} , from Lemma 1.3, we have

$$-\pi < \arg \left\{ g(tre^{i\theta}) \right\} - \arg \left\{ g(re^{i\theta}) \right\} < \pi \quad (2.8)$$

for $0 < t \leq 1$. Putting

$$\xi = \left\{ \frac{g(tre^{i\theta})}{g(re^{i\theta})} \right\}^{\alpha/2}, \quad (2.9)$$

we have

$$\arg s = \frac{\alpha}{2} \arg \left\{ \frac{g(tre^{i\theta})}{g(re^{i\theta})} \right\}. \quad (2.10)$$

From (2.8) and (2.10), s lies in the convex sector

$$\left\{ s : |\arg s| \leq \frac{\pi}{2} \alpha \right\} \quad (2.11)$$

and the same is true of its integral mean of (2.7), (cf. [5, Lemma 1]). Therefore, we have

$$\left| \arg \left\{ \frac{f(z)}{zf'(z)} \right\} \right| < \frac{\pi}{2} \alpha \quad \text{in } \mathcal{E} \quad (2.12)$$

or

$$\left| \arg \left\{ \frac{zf'(z)}{f(z)} \right\} \right| < \frac{\pi}{2} \alpha \quad \text{in } \mathcal{E}. \quad (2.13)$$

This shows that

$$\operatorname{Re} \left\{ \frac{zf'(z)}{f(z)} \right\} > 0 \quad \text{in } \mathcal{E}, \quad (2.14)$$

which completes the proof of our main theorem. \square

REMARK 2.2. This result is sharp for the case $\alpha \rightarrow 0$ and $\alpha = 1$.

(a) For the case $\alpha \rightarrow 0$, put $f(z) = z$, then $f(z)$ is a convex function of order $1 - (\alpha/2) \rightarrow 1$ and $f(z)$ then $f(z)$ is a strongly starlike function of order $\alpha \rightarrow 0$.

(b) For the case $\alpha = 1$, put

$$1 + \frac{zf''(z)}{f'(z)} = \frac{1}{1-z}. \quad (2.15)$$

Then we have

$$1 + \operatorname{Re} \left\{ \frac{zf''(z)}{f'(z)} \right\} > \frac{1}{2} \quad \text{in } \mathcal{E}, \quad (2.16)$$

and therefore $f(z)$ is a convex function of order $1/2$. From (2.10), we easily have

$$f'(z) = \frac{1}{1-z}, \quad f(z) = \log \left\{ \frac{1}{1-z} \right\}. \quad (2.17)$$

Putting $|z| = 1$, $z = e^{i\theta}$, $0 \leq \theta < 2\pi$, then it follows that

$$\begin{aligned} \frac{z}{1-z} &= -\frac{1}{2} + i \frac{\cos(\theta/2)}{2 \sin(\theta/2)}, \\ \log \left\{ \frac{1}{1-z} \right\} &= \log \left| \frac{1}{2} + i \frac{\cos(\theta/2)}{2 \sin(\theta/2)} \right| + i \arg \left\{ \frac{1}{2} + i \frac{\cos(\theta/2)}{2 \sin(\theta/2)} \right\}. \\ \lim_{\theta \rightarrow +0} \arg \left\{ \frac{zf'(z)}{f(z)} \right\} &= \lim_{\theta \rightarrow +0} \arg \left\{ \frac{z/(1-z)}{\log(1/(1-z))} \right\} \\ &= \lim_{\theta \rightarrow +0} \arg \left\{ -\frac{1}{2} + i \frac{\cos(\theta/2)}{2 \sin(\theta/2)} \right\} \\ &\quad - \lim_{\theta \rightarrow +0} \arg \left\{ \log \left| \frac{1}{2} + i \frac{\cos(\theta/2)}{2 \sin(\theta/2)} \right| + i \arg \left(\frac{1}{2} + i \frac{\cos(\theta/2)}{2 \sin(\theta/2)} \right) \right\} \\ &= \frac{\pi}{2}. \end{aligned} \quad (2.18)$$

The above shows that the main theorem is sharp for the case $\alpha \rightarrow 0$ and $\alpha = 1$.

Applying the same method as above and [2], we can obtain the following result.

THEOREM 2.3. *If $f(z) \in A(p)$ and satisfies*

$$p - \frac{\alpha}{2} < 1 + \operatorname{Re} \left\{ \frac{zf''(z)}{f'(z)} \right\} \quad \text{in } \mathcal{E}, \quad (2.19)$$

where $0 < \alpha \leq 1$, then $f(z) \in \text{STS}(p, \alpha)$.

REFERENCES

- [1] M. Nunokawa, *On the theory of multivalent functions*, Tsukuba J. Math. **11** (1987), no. 2, 273–286. [MR 89d:30013](#). [Zbl 639.30014](#).
- [2] ———, *On certain multivalently starlike functions*, Tsukuba J. Math. **14** (1990), no. 2, 275–277. [MR 92b:30016](#). [Zbl 728.30014](#).
- [3] ———, *On the order of strongly starlikeness of strongly convex functions*, Proc. Japan Acad. Ser. A Math. Sci. **69** (1993), no. 7, 234–237. [MR 95f:30019](#). [Zbl 793.30007](#).

- [4] M. Nunokawa and S. Owa, *On certain subclass of analytic functions*, Indian J. Pure Appl. Math. **19** (1988), no. 1, 51–54. [MR 89c:30029](#). [Zbl 646.30020](#).
- [5] C. Pommerenke, *On close-to-convex analytic functions*, Trans. Amer. Math. Soc. **114** (1965), 176–186. [MR 30#4920](#). [Zbl 132.30204](#).
- [6] T. Sheil-Small, *Some conformal mapping inequalities for starlike and convex functions*, J. London Math. Soc. (2) **1** (1969), 577–587. [MR 40#2842](#). [Zbl 201.40803](#).

MAMORU NUNOKAWA: DEPARTMENT OF MATHEMATICS, UNIVERSITY OF GUNMA, ARAMAKI MAEBASHI GUNMA, 371-8510, JAPAN

E-mail address: nunokawa@edu.gunma-u.ac.jp

SHIGEYOSHI OWA: DEPARTMENT OF MATHEMATICS, KINKI UNIVERSITY, HIGASHI-OsAKA, OSAKA 577-8502, JAPAN

E-mail address: owa@math.kindai.ac.jp

AKIRA IKEDA: DEPARTMENT OF APPLIED MATHEMATICS, FUKUOKA UNIVERSITY, NANAKUMA JONAN-KU FUKUOKA, 814-0180, JAPAN

E-mail address: aikeda@sf.sm.fukuoka-u.ac.jp

Special Issue on Space Dynamics

Call for Papers

Space dynamics is a very general title that can accommodate a long list of activities. This kind of research started with the study of the motion of the stars and the planets back to the origin of astronomy, and nowadays it has a large list of topics. It is possible to make a division in two main categories: astronomy and astrodynamics. By astronomy, we can relate topics that deal with the motion of the planets, natural satellites, comets, and so forth. Many important topics of research nowadays are related to those subjects. By astrodynamics, we mean topics related to spaceflight dynamics.

It means topics where a satellite, a rocket, or any kind of man-made object is travelling in space governed by the gravitational forces of celestial bodies and/or forces generated by propulsion systems that are available in those objects. Many topics are related to orbit determination, propagation, and orbital maneuvers related to those spacecrafts. Several other topics that are related to this subject are numerical methods, nonlinear dynamics, chaos, and control.

The main objective of this Special Issue is to publish topics that are under study in one of those lines. The idea is to get the most recent researches and published them in a very short time, so we can give a step in order to help scientists and engineers that work in this field to be aware of actual research. All the published papers have to be peer reviewed, but in a fast and accurate way so that the topics are not outdated by the large speed that the information flows nowadays.

Before submission authors should carefully read over the journal's Author Guidelines, which are located at <http://www.hindawi.com/journals/mpe/guidelines.html>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/> according to the following timetable:

Manuscript Due	July 1, 2009
First Round of Reviews	October 1, 2009
Publication Date	January 1, 2010

Lead Guest Editor

Antonio F. Bertachini A. Prado, Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, 12227-010 São Paulo, Brazil; prado@dem.inpe.br

Guest Editors

Maria Cecilia Zanardi, São Paulo State University (UNESP), Guaratinguetá, 12516-410 São Paulo, Brazil; cecilia@feg.unesp.br

Tadashi Yokoyama, Universidade Estadual Paulista (UNESP), Rio Claro, 13506-900 São Paulo, Brazil; tadashi@rc.unesp.br

Silvia Maria Giuliatti Winter, São Paulo State University (UNESP), Guaratinguetá, 12516-410 São Paulo, Brazil; silvia@feg.unesp.br