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DESCRIPTION OF THE STRUCTURE OF SINGULAR SPECTRUM
FOR FRIEDRICHS MODEL OPERATOR
NEAR SINGULAR POINT

SERGUEI I. IAKOVLEV

(Received 28 January 2001)

ABSTRACT. The study of the point spectrum and the singular continuous one is reduced
to investigating the structure of the real roots set of an analytic function with positive
imaginary part M (A). We prove a uniqueness theorem for such a class of analytic functions.
Combining this theorem with a lemma on smoothness of M (A) near its real roots permits
us to describe the density of the singular spectrum.
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1. Statement of the problem. We consider a selfadjoint operator A, given by
Ap=t*+(, @)@ (1.1)

on the domain of functions u(t) € L»(R) such that t2u(t) € L,(R). Here @ € L»(R)
and t is the independent variable. The action of the operator can be written as follows:

(Ayu)(t) = t2-u(t) +m(t)JRu(x)m(x)dx. (1.2)
The function @ is assumed to satisfy the smoothness condition
lp(t+h) -@t)| <w(hl), |kl <1, (1.3)

where the function w(t) (the modulus of continuity of the function @) is monotone
and satisfies a Dini condition

1
w(t) 10 as t10, J@dt@o. (1.4)
0

We are going to study the singular spectrum of the operator A,. Note that we define
the singular spectrum as the union of the point spectrum and the singular continuous
one. The structure of the spectrum 0Osing(S1) (the singular spectrum of the operator
S1 =t-+(-,p)p) has been studied in detail (see [2, 3, 6, 7, 8, 9, 10, 12, 13, 14]).
By using the simple change of variables t? = x, one can show that outside of any
neighborhood of the origin the structure of the spectrum 0Oging (A») is identical with
the one of the operator S;. This is due to the fact that this change of variables is
smooth outside of any neighborhood of the origin. Suppose that conditions (1.3), (1.4),
and also some additional conditions on the function ¢ are fulfilled only in a certain
interval (c,d) C R, then the main results of [2, 3, 6, 7, 8, 9, 10, 12, 13, 14] concerning
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the structure of Oiing(S1) will remain true in any closed subinterval A C (c,d). At
the same time, as it has been shown in [15], for the operator A, the behavior of the
singular spectrum has quite different character in a neighborhood of the origin. Here
we can also use the pointed change of variables but, since (t?)’|y = 0, it is not smooth
(i.e., not a diffeomorphism) near zero. Therefore, the point zero needs our special
attention and we are going to study the singular spectrum just in a neighborhood of
this singular point. Note that the origin is also a boundary point of the continuous
spectrum of A, coinciding with the interval [0, + o).

2. Analytic function M (z) and the singular spectrum. One of the approaches to
the investigation of the point and singular continuous spectra in the Friedrichs model
is based on studying some properties of analytic functions with positive imaginary
part. It is possible to define an analytic function in such a way that the singular spec-
trum of the perturbed operator embeds into its real roots.

Determine for z € C\ [0, + ) an analytic function M (z) as follows:

+ 00 2
M(z) = 1+J lo*®] 5, @2.1)

R

The proof of the following propositions is contained in [15].

PROPOSITION 2.1. If conditions (1.3) and (1.4) are fulfilled, then the analytic function
M (z) defined in the complex plane with the slit (0, + o) has continuous boundary values
on the edges of the slit.

We determine for A > 0 the value M(A) := M(A+i0) and let N:= {A > 0:M(A) = 0}
be the set of roots of the analytic function M(z). The set N is bounded [15].

PROPOSITION 2.2. If the function @ satisfies conditions (1.3) and (1.4), then the
singular spectrum of the operator A,, defined by (1.1), embeds into the set N plus the
origin, that is, Osing(A2) C N U {0}.

So the investigation of Oing(A») is reduced to the description of the set of roots
N. (It is not difficult to show that zero is not an eigenvalue of the operator A, = 2 -
+(-,@)@ [15].) It follows that we need to study the behavior of the function M(z) in a
neighborhood of its real roots. (The behavior of boundary functions and, in particular,
their sets of uniqueness were studied by many authors. See, for example, [1].) For this
purpose we prove a certain uniqueness theorem for this function, which imposes
some restrictions on the admissible structure of the set of its roots. This uniqueness
theorem may be applied in fact to the whole class of analytic functions. The functions
from this class admit a representation in a specific form. We start Section 3 with the
description of this class of functions.

3. Uniqueness theorem. Itis self-evident that, using the change of variables t2 = T,
the function M (z) can be written in the form

Mz =1+ [ YO 10,40, 3.1)
0 T—Z2
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where

|@*(VT) |+ [@*(=vT)|
2T ’
The following lemma describes a class of analytic functions. It is for this class that
a uniqueness theorem will be formulated.

Y(T) = (3.2)

LEMMA 3.1. Let the function f(z) be written in the form

+oo
f(z):1+J Avil) o c\[0,+w), (3.3)
0 t—z
with a positive finite measure dv (t),
+ 00
dv(t) =0, I dav(t) < o, (3.4)
0

Then the function (f(z))~! possesses the representation

-1 T du(t)
(f(2) —I—L iy 3.5)
where the positive finite measure du(t) has the following properties:
1
[famo @0
o t
+ o0
ydu(t)
o iyl <1 fory>O0. (3.7)
PROOF. The function @ (z) := f(z) — 1 has the integral representation
(T dv(t)
e@=| T (3.8)

with the positive finite measure dv (t) (in addition in our case dv(t) = 0 for t < 0), that
is, according to the definition (see [8, 9]), ¢ (z) is an analytic Ry-function. Recall that for
the function to belong to the class R it is necessary and sufficient, for example, that

Imp(z) >0 for Imz >0, @(iy) —0 asy — +o, 3.9)
ylil}l yImep(iy) < oo. (3.10)

If this is the case, the following relation is easily established

+ 00
ylirpooylmqa(iy) = J dav(t). (3.11)

Note that f(z) has no zeros in C\ [0,+). In fact, if Imzy > 0 and f(z¢) = 0,
then by the maximum principle for harmonic functions Im f(z) = [, = y/((t —x)2 +
y2)dv(t) = 0 is identically equal to zero in C,. This is possible provided that the

spectral function v(t) is constant. Then from the integral representation f(z) = 1
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for all z € C,. The case C_ is treated analogously. Now if z = xg < 0, then f(xg) =
1+ fom dv(t)/(t—xo) = 1. At the same time under certain smoothness conditions on
v(t) the function f(z) can be continuously extended to the positive half of the real
axis (0,+), where it can already have zeros. Studying the density of this zero set as
a closed set of Lebesgue measure zero is the main purpose of this paper.
Verify that the function
1 @(z)

giz)y=1-——-=

F2) " 1rpr)y ZEC\0+e), 3.12)

is also an analytic Ry-function. Conditions (3.9) are obviously fulfilled for g(z). For
checking condition (3.10), note that Img(z) = Im @(z)/|1 + @(z)|2. Then clearly

. . . Im @ (iy) . .
Iim yImg(iy)= lim y———————= = lim yIm@(iy) < «. (3.13)
yﬁmy gy J’~+°°y|1+<p(iy)|2 quy @y
Hence,
[ du()
g(z) = 2tz (3.14)

with a finite positive measure du(t). If x > 0, the function g(-x) =1-1/f(-x) take
real values, therefore by the Stiltjes inversion formula the spectral function u(t) has
no points of growth in the interval (—o0,0). By letting u(t) be left continuous at zero,
we can write

(T du(t)
9(z) = o toz (3.15)
Then
1 T du(t)
=1- . 3.16
f(z) 0o t-z ( )
Besides, using (3.11) and (3.13), we get
+ 00 + 0o
J du(t) = lim yImg(iy)= lim yIm p(iy) :I dv(t). 3.17)
0 y—+oo Y-+ 0
When x > 0, the following equality holds
o du(t) 1
P g(=x)=1-— — . 3.18
o tex 9CX 1+ dv(t)/(t+x) (5-18)
Letting x — 0 in it, we find
+ o0
awt) 1 (3.19)
0 t 1+ [y dv(t)/t
Since Re @ (iy) = Jy ~(t/(t2 +?))dv(t) = 0 for y > 0, we obviously have
Img(iy) = —mPEY) (3.20)

[T+@iy)|*
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It follows that

+o00
y _ .
Jo iyt Y du(t) =Img(iy) < 1. (3.21)

This completes the proof. O

The proof of a uniqueness theorem, which is formulated below, is based on
Lemma 3.1 and on the following remark. As it was shown in [4], if a positive locally
integrable (with respect to Lebesgue measure) function o (t) defined on the real axis
satisfies the following condition:

ignlg{('% L(r(x)dx) -esssxlg) ﬁ} < 00, (3.22)

where I is an arbitrary finite interval of the real axis, then for the Hilbert transform H
of any g € L, +(R) the following weighted norm inequality

J i U(t)dtsg-f oo|g(t)|0'(t)dt, a>o0, (3.23)
{IHg|>a} a J-w

holds with a constant C independent of g and a. (Here, and later, we denote by C
various absolute constants.)
Note that in the sequel we use the notation o —mesI := [; o (x)dx for I C R.

THEOREM 3.2 (uniqueness theorem). Let o (t)dt be the measure on the real axis
with the positive weight function o (t) being even, monotonically decreasing on the
positive half of the real axis

o(t)=0(-t); o)l aste(0,+c), (3.24)

and satisfying condition (3.22). Let the analytic function f(z) be written in the form
(3.3) and (3.4). Then the estimate

o-mes{x>0:|f(x+iy)| <d} <Cd (3.25)

holds for all sufficiently small d > 0 with a constant C independent of v > 0.

PROOF. For a =1/d we have
o-mes{x>0:|f(x+iy)| <d} =0 -mes{x>0:|f ' (x+iy)| >a}. (3.26)
By Lemma 3.1,

Flxeriy)=1- [ U=x)dutt) .J“" ydu(t)

0o (t—x)2+y2 )y (t-x)2+y2 (3.27)

=l-u(x+iy)-iv(x+iy).
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Clearly,

< JW du(t) Jk%dx - Terdu(t) <+, (3.28)

J[R“(X“y)nm =Jo —X)2+4 )2

Therefore (cf. [5, Chapter 6]), using the properties of the Poisson kernel, for T € R and
6 > 0 we have

7TJ w (T— X)2 v(x+1y)d

B 1 [+ T—X Y

_.[0 d“(t)rrjfm (T-x)2+062 (t—X)2+3’2dx (3.29)
+0o Tt

*Jo -2+ yrop

=u(t+i(y+9)).

Consequently,

+o00 T—x

u(r+iy) = hm vix+iy)dx = ﬁxqv(x+iy), (3.30)

0+ TT Jooo (T—x)2+62

that is, for any fixed y > 0 the next relation is valid
(Hev) (x +iy) = u(x +1iy). (3.31)

Hence, by (3.23), for every y > 0
, C .
o-mes{x:|u(x+iy)|>a} < o J v(x+iy)o(x)dx. (3.32)
R
We will estimate the integral

Jv(x+1y)a(x)dx J du(t)J (ty(r(x) dx. (3.33)

x)%+y?

For this we split the domain of inner integration into three parts

Yo (x) (J J”Z J ) yo(x)
anz = x)2+y2 t-x)21 2 dx. (3.34)
First observe that by (3.24) o (|x]|) < o (1) if |x| > 1. Besides, substituting I = (0,1)
into (3.22), we find that for x € (0,1)

O'(X)-X

(1) Co(l) 3.35)

1
C= Jo o(t)dt- ﬁ > J o(t)dt-

that is,

O‘(X)SCO’(I)-%, x € (0,1). (3.36)
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Using the first inequality, we obtain

-1
yo(x) y _
Jﬁw de U(l)J . mdxfﬂ'o'(l),
t/2 t/2
[ w2 i
—— —dx<—F—— o(x)dx
-1 (t=x)2+ 2 (t/2)2+y2 )
< #(2Jla(x)dx+a(l) : f) o
T (t/2)2+y? 0 2)
+o0 yU(X) E +00 y B £
L/z (t—x)2+y2dxsa<2>Loo (t—x)2+y2dx_m7(2)'
Thus we have
J[Rv(x+iy)a(x)dxsIooodu(t)[rra(l)+rr0'(%>
(3.38)

+(t/2)yTy2(2 L)lo(x)dxﬂf(l)%)].

We estimate each summand separately using the properties of the measure du(t)

proved in Lemma 3.1. Combining (3.4) for du(t) and (3.7), we get

7TO'(1)J du(t)+2j o(x)dx - ZI au(t) < co. (3.39)

t2+ (2 )2
From the monotonicity of o (t) for t > 0 and (3.36), it follows that

JOW du(t)a(%) <2Co(1) Jol @ +a(%) Jomdu(t) < oo (3.40)

The last inequality is due to (3.6) and (3.4). Further, as (t/2)y < ((£/2)? + y?)/2
we have

Cy(E/2) o(l) (= .
U(I)J 2y ey O = =5 JO du(t) < oo. (3.41)

Finally, we obtain
J v(ix+iy)o(x)dx <C (3.42)
R

uniformly for > 0. From this, by Chebyshev’s inequality, we get

afmes{x:v(x+iy)>a}séj v(x+1y)0'(x)dx<§ (3.43)

It is obvious that for a > 4

{x>0: 1+u(x+iy)| > %} < {x>0: lux+iy)| > %} (3.44)
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At the same time
o-mes{x>0:|f Y (x+iy)|>a}

sa—mes{x>0:|Ref*1(x+iy)| >%} (3.45)

+0'—mes{x>0: [Imf~Y(x+iy)| > %},

that is,

o-mes{x>0:|f " (x+iy)|>a}
. { a
< o —mes x>0.|u(X+ly)|>Z (3.46)
+a—mes{x>0: lv(x+iy)]| > %}

However, according to (3.32) and (3.42),

o-mes{x>0:|u(x+iy)| >a} < éjﬂxv(x+iy)0(x)dx < %. (3.47)

As a result we obtain
a—mes{x>0:|f‘1(x+iy)|>a}s%. (3.48)
In view of (3.26), this completes the proof. O

Being the function with positive imaginary part in the upper half-plane, f(x +iy)
has nontangential limits a.e. in the interval (0, +). Let f(x) :=lim, o f (x +1iy). The
following theorem shows that the estimate (3.25) is also valid for the limit function
f(x). Namely,

o-mes{x>0:|f(x)| <d} <Cd. (3.49)

THEOREM 3.3. Let (WU,X,p) be a measure space, and let {p,} be a sequence of
measurable functions defined on a set ¢ € X. Suppose that for all sufficiently small
a>0

pixe€:pu(x)<dl <Cd (3.50)

with the constant C > 0 independent of n.
If for a.e. x € € with respect to p there exists limy_ .. @, (x) =: (x), then the
analogous inequality is also valid for the limit function @ (x). Namely,

plxe€:.p(x)<d}<Cd (3.51)

with the same constant C > 0.

PROOF. If x(p<a;(t) is the indicator function of the set {p < d} = {x € €: p(x)
< d}, then

plo <di = Lx{w}u)dp(t). (3.52)
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Suppose that for a certain ty € € the function Xxp<a; (fo) = 1, that is, @(tp) < d. If
@ (to) =limy—1 o @n(to), then @, (to) < d for all n large enough. Thus, X, <d; (to) =1
for these values of n. Therefore,

Xign<d} (to) — Xip<aj (to) asn — +oo. (3.53)

Hence, a.e. in € with respect to p
Xigp<a) (t) < liminf xyq,, <a; (). (3.54)

It now follows that
pl@ <di = | Xip<a Odp(®) < [ TmintXig,<a (Ddp (). (3.55)

By Fatou’s lemma

J liminf x (¢, <a; (t)dp(t) slirrliolgfj Xipn<ay (£)dp (L)
€ n n € (3.56)
= limigfp{mn <d} =(Cd,

and the proof is complete. O
COROLLARY 3.4. The estimate (3.49) holds.

PROOF. Let the sequence @, (x):=|f(x+1iy,)|, where y, | 0. By the absolute con-
tinuity of the measure dp(t) := o (t)dt, the limit lim,,.., @, (x) = | f(x)| also exists
a.e. in (0,+o0) with respect to p. O

It is clear that this theorem imposes some restrictions on the decrease character
of such analytic functions in a neighborhood of their real roots and therefore on the
structure of the set of these roots, too.

A first uniqueness theorem of this type was obtained by Pavlov [11]. Then Naboko
proved some theorems of this kind for operator-valued functions (see [8, 9]). One can
apply these theorems in our case, but the structure of the zero set in the neighborhood
of the singular point t = 0 cannot be described precisely. This is due to some special
restriction on the weight function o (¢): uniqueness theorems proved earlier allowed
to use only Lebesgue measure, that is, to consider only the following weight function
o (t) = 1. Our theorem gives an opportunity to consider different measures: in this
paper we use the function o (t) = 1/t4, where g € [0,1). This permits us to obtain
sharp results concerning the structure of the roots set N.

4. Structure of the singular spectrum in a neighborhood of the origin. In order
to apply the uniqueness theorem (Theorem 3.2) proved above for the description of
the structure of the set N near the singular point zero, we need to know the behavior
of M (A) near its roots. In what follows, we restrict our consideration to the case where
the function @ belongs to the class Lipx, @ € (0,1/2), in other words, for a certain
x € (0,1/2) the following inequality holds:

lp(x+h)-@(x)| <Clh|% |hl<]1. (4.1)

If x > 1/2, then the roots set N, as it has been shown in [15], is empty near zero and
consists of at most finitely many eigenvalues of finite multiplicity.
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We need the next refinement of the Pavlov and Petras lemma [12] (see also
[9, 13, 14]).

LEMMA 4.1 (on smoothness of M(A)). Let the function @ belong to L, (R) NLipx, x €
(0,1/2), and the point Ay € N. Then the following estimate holds in an &-neighborhood
of A\g With0 < e < Ap/4

[A—2Ao|%"
|M(A)|:|M(A)*M(A0)|SCW (42)
PROOF. From the representation (3.1) by Sohockiy’s formulas we find that
_ et (VO +H e (=vT)| dt [ (VA) [+]|@*(=VA)|
M) = 1+va g 2ﬁ+l7T A . (4.3)

Hence, from the equality M (Aq) = 0 it follows that @ (v/Ag) = @ (—+/A¢) = 0. Obviously,
it suffices to check the estimate (4.2) for the function

e n( )
fA):= V.p.J dt+1r](2\) 4.4)
where the function n(t) is defined as follows:

0, t<0,

90D, )

NG

It is easy to check that n(t) satisfies a local Llpschltz condition in (0, + ), therefore,
understanding the integral [ (-)dt as thamf N ()dt, we can write

n(t):=

F) - (Ao )_LO ’7(” n(A)dt J ”(” )dt+m(2\) (4.6)

Letting 6 := |A — Ag|, define the interval S := (A9 —268,A¢ + 26). Then, since n(Ag) =0
the difference f(A) — f(Ag) can be rewritten in the form, [12],

() = [ 10=n@) 10 =no) 5 1A
f(/\) f(/\O)_ s t—A dt+JIR\S t—A dt ,[ng\st )\dt

[ n@®-no) .. [ n®-n)
s t—Ag at JR\S t—Ag

4.7)
dt+in(A).

Combining the second integral with the last one and calculating the third integral, we
find that

n(t)—n) n(t) —n(Ao)
D =f J r—a - J t Ao dt

5y () =n(Ao) 4.8)
+JR\S(A AO)(th)(t 2\)alt+(1+sgn(t Ao)In3)n(A)

EII +12 +13 +I4,

and we estimate each summand separately.
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For the function n(t) the following estimate holds

|t =2 |

[n(t) | SCW,

35

(4.9

the constant C is independent of Ay € N. Indeed, according to (4.1), for |/ —/Ag| < 1

we have

(V)| = |@(Vt) —@ (Vo) | = C|VE-VAo| ™

(4.10)

The relation @ € L, (R) together with (4.1) means that ¢ (t) — 0 as t — +co. Therefore,
substituting the constant C in inequality (4.10) for (maxg | (T)|+C), we see that this

inequality is also valid for |/ —+Ag| = 1. Consequently,

: 2«
In| = 120D -e(A)| sc'ﬁ—?ol

NG NG
|t77\0|2a <C|t77\0|20‘
VEWVE+VR0)™ T VEAS

Clearly, if t € S, then 1/t < 2/Ay, therefore,

2
n®)—n(o)| = [n(o ] =52l e
0 n = ALZ .

Now, we immediately deduce that

C 20 tZo( 520(
|12~S7]\é/2+“ 0 TdtSC7A(1)/2+u,

520(
Ll <Cn)]=CIn®],_, SC}\(I)/2+0('
Since 1/[t—A| <2/|t—Apl| for t € S, by (4.9), we obtain

| 200-2

Ag/2 Aog—20 +00 5 \t—)\o
e[ [ [ ) el
13| 0 Ao/2 A0+25 VE-Af

Ag/2 dt Ao—20 |t—A |20<—2 +o0 tZOHZ
B N e Ve )
O Jo VT AP 25 AP

Hence,

S 520(
|I3] < C<A(3)/2—o( + A(1)/2+o<>'

For estimating I; we need to consider the difference n(t) —n(A) fort € S.

He*(VD) [ - |@?(VA) ||

NG |<P(ﬁ)*¢7(\/7\70)|2|\/f_\/x|

[n(t)-n@)| < A

+

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

. (4.16)
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Using (4.1) and (4.9), we find
@2 (VE) [~ e*(VA) ||

Vit
< clPLD- 2D (o0 -9 () [+ |9 (/D - @ ()|
[t — A% |2\—/\0|°‘
SC)\(l)/Z-Hx/Z' AE 4.17)
|@(VA) - @ (vAo) |* _ L) - (VAg) [
NN VE=VA| <C " Alt=Al
[A=20|"
<C )\00 -|t—)\‘1/2-

Thus we have

|L|<C Zéalt(t“. [A=2ol” e, |AA0\‘X>
0

t A(1)/2+o< AO
(4.18)
520( 51/2+a
- C(W : Ao)-
Finally, for Ag € N and 6 < A¢/4 we obtain
520( S 51/2+rx 520(
|f(A)—f(A0)| SC()\(I)/2+¢X+)\8/2—D(+ AO >S CW (4.19)
This completes the proof of Lemma 4.1. O
For y > 1 we define the metric p, on the positive half of the real axis
Ydu
py(x,y):= U — 1, X,y €(0,+00). (4.20)
x uY

Let Bs(x) :=={y > 0:py(¥,x) < 6} be the ball of radius 6 with the center at the
point x. The following lemma gives us a certain information on the structure of the
set Bs(x) from the point of view of the Euclidean metric.

LEMMA 4.2. Ife, = 26xY, x > 0, then for each x from any finite interval (0,a), a > 0,
for all sufficiently small 6 (depending on y and a but independent of x) there exists the
inclusion

(x—%x,er%x) CBs(x) C(x—&x,X+&x). (4.21)

PROOF. Obviously, for checking the inclusion Bs(x) S (x — &x,X + £« ), it suffices to
show that for all sufficiently small 6 uniformly for x € (0,a) the inequality

X+E
5>J du 4.22)
x uy

implies € < &x.
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From (4.22) we see that € — 0 as § — 0. After making the change of variables u = xt,
we have

X+ du 1 1+e/x dt
— = —. 4.2
JX uy xv-1 Il ty ( 3)
Therefore,
1+e/x
5> L at. (4.24)
av-l); ty
Hence, £/x tends to 0 with 6 uniformly for x € (0,a). Now,
X+e 1-y
5>J %: ( fll)xé’-l [“(1‘5) ]
x Y | (4.25)
£ £
T (y-1)xr-1 [(y—l);+o(;)].
For sufficiently small 6 uniformly for x € (0,a), we have
£ 1 &
Consequently,
o> £ or £<20xY = &y. (4.27)
2xY
Further,
X du 1 Ex ( Ex )]
JHM = e (-1 +0(%)] 4.28)

where e /x = 28xY~1 < 28a¥~! tends to 0 with § uniformly for x € (0,a). Therefore
for 6 small enough uniformly for x € (0,a)

&\ L, _q) &
‘0<x>‘<2(y Dy (4.29)
Thus,
* du &
Jx—ex/:s uy < o2xY 5, (4.30)
and the proof is complete. 5

Now, by combining a uniqueness theorem with Lemma 4.1 on smoothness of M(A),
we can prove the main theorem of this section.

THEOREM 4.3. Let the function @ belong to L, (R) NnLip &, x € (0,1/2). Let the mea-
sure o (x)dx with the positive weight function o (x) satisfy conditions (3.22) and (3.24).
Then for all sufficiently small 6 > 0 the estimate

o-mes{A>0:pu2i02¢(AN) <8} < C5%% (4.31)

holds with the constant C depending only on the weight function o (x).
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PROOF. Consider the set N gy :={A>0:p,(A,N) < 6}, whichis the 6-neighborhood
of the set N in the metric p,. It is clear that Ngy = UyxenBs(x). The set N is bounded,
hence, according to Lemma 4.2, the set UxenBs(x) embeds into Uxen (X — &x, X + &x)
with &, = 26x?. At the same time, by Lemma 4.1, for x € N in the interval (x — &,
X + &) the following inequality holds

A— 2« 820‘
| x| <C_tx

200,20y —(1/2+0x)
i = Coirg < €8 : (4.32)

IMQA)| <C

With y = (1/2+ «) /2« this gives the uniform estimate |M (A)| < C5%*. So for this value
of y the following inclusion holds

N), c{A>0:[MQ)| < C&*. (4.33)

Hence, by (3.49), we get
o-mesN) <o -mes{A>0:|MQ)| <C6*} <Cs. (4.34)
The theorem is proved. O

Thus, the o-measure of the §-neighborhood in the metric p, with y = (1/2+ &) /2x
of the roots set N is O(5%%) as § — 0. It is evident that the estimate (4.31) imposes
some restrictions on the possible structure of the set N, and hence, on the structure
of Osing(A2) € NU {0}, too.

COROLLARY 4.4. If the function @ belongs to L>(R) NnLipx, « € (0,1/2), and the
sequence {Ay}y_, of eigenvalues of the operator A, = t2. 4+ (-, @)@ decreases to zero in
a power scale, that is, Ay = 1/kP, then it follows from the estimate (4.31) that the index

4
B = I —oa’ (4.35)
PROOF. Suppose that
4x
B < I —oa’ (4.36)

Then the intervals Iy := (A — &x,/3,Ax + &, /3) will be overlapping for all k large
enough. In fact, if Ay = 1/kB, then AAy := Ax —Agy1 < C/kP+L. The intervals I and Iy,
will intersect provided AAg < &y, /3. Since &, = 267\;{ with y = (1/2 + ) /2, the last
inequality is necessarily fulfilled if

C 26
T = ahy 4.37)
Hence, for k = C(1/8)Y/1-F0-1) =: m the &, /3-neighborhoods of the points A

will be overlapping, and therefore, (0,A) = UL (Ax — &a /3, Ak + €, /3). (Note that
1-B(y—-1)>0if and only if 8 < 4x/(1 -2x).) By (4.21) and (4.31), we obtain

CS°*> o -mes{A>0:p,(A,N) <5}

A (4.38)
za—mes(ufgf’l (Ak—%,zxw%))zj o (t)dt.
0
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Consequently, for o (t) = 1/|t|4, q € [0,1), we have

Am
C&** > dat (4.39)
o t4
with the constant C independent of § (but possibly dependent on q).
Am
a1 1 -sBa-aa-gu-1) (4.40)

0o t1 1-q mbl-a@
Thus for all sufficiently small 6 > 0 there must be fulfilled the following inequality:
SBU-a)/(A-B(y-1)) - c§2«, (4.41)

It follows that B(1—q)/(1-B(y—1)) =2x forall g € [0,1). As y = (1/2 + x) /2« this
implies that

4x

Letting g — 1~ yields B > 4/ (1 —2xx), contrary to (4.36). O

The index B makes sense of the convergence speed of Ay to zero. The estimate
(4.35) implies that the points of N, in particular, the eigenvalues of the operator A,
cannot tend to zero too slowly. The slower accumulation corresponds to a greater
density of N and hence to a greater value of its measure. As the function 4x/(1 —
2«) is increasing for & € (0,1/2) a better smoothness of the perturbation operator
V = (-,@)@ corresponds to a greater lower bound of the admissible values of f, that
is, to a greater rarefaction of the roots set N. Further, the index S 1 +00 as @ 1 1/2,
that is, the smoothness « = 1/2 is critical. This fact is consistent with the finiteness
of the roots set N for & > 1/2 (see [15]).

Theorem 4.3 can also be used for describing the structure of N outside of any
neighborhood of zero, that is, of the set N, := NN [b,+o0) for any b > 0. In this case
(4.31) coincides with the result of [12] (we already noted in Section 1 that the structure
of the roots set of the operator S; =t - +(-, @)@ is identical with that of Nj). In fact,
the set N is bounded, in every finite interval bounded away from zero €, > cd, and the
measures dt/t? are equivalent for different q. Putting q = 0, we obtain the following
estimate of Lebesgue measure of the §-neighborhood of the set N,

mes {A > 0:dist (A,N},) < 8} < C5%%. (4.43)

For the eigenvalues (roots) Ay = Ao+ 1/kP, Ag > 0, of the operator A, the estimate
(4.43) leads to the restriction 8 = 2«x/(1 — 2«x). It follows therefore from (4.35) that
we observe the duplication of the admissible speed of the eigenvalues convergence to
the limit point Ag = 0.
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