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Abstract. We study the Marcinkiewicz integral operator M�f(x) = (
∫∞
−∞ |

∫
|y|≤2t f (x −

�(y))(Ω(y)/|y|n−1)dy|2dt/22t)1/2, where � is a polynomial mapping from Rn into Rd

and Ω is a homogeneous function of degree zero on Rn with mean value zero over the
unit sphere Sn−1. We prove an Lp boundedness result of M� for rough Ω.

2000 Mathematics Subject Classification. 42B20, 42B15, 42B25.

1. Introduction. Let Rn, n ≥ 2 be the n-dimensional Euclidean space and Sn−1 be

the unit sphere in Rn equipped with the induced Lebesgue measure. Consider the

Marcinkiewics integral operator

µf(x)=
(∫∞

−∞

∣∣Ft(x)∣∣2 dt
22t

)1/2
, (1.1)

where

Ft(x)=
∫
|x−y|≤2t

f (y)
Ω(x−y)
|x−y|n−1

dy, (1.2)

and Ω is a homogeneous function of degree zero which has the following properties:

Ω ∈ L1(Sn−1), ∫
Sn−1

Ω
(
y ′
)
dσ
(
y ′
)= 0. (1.3)

When Ω ∈ Lipα(Sn−1), (0<α≤ 1), Stein proved the Lp boundedness of µ(f) for all

1<p ≤ 2. Subsequently, Benedek, Calderón, and Panzone proved the Lp boundedness

of µ(f) for all 1<p <∞ under the condition Ω ∈ C1(Sn−1) (see [2]).

The authors of [3] were able to prove the following result for the more general class

of operators

µPf(x)=
(∫∞

−∞

∣∣FP,t(x)∣∣2 dt
22t

)1/2
, (1.4)

where

FP,t(x)=
∫
|y|≤2t

f
(
x−P(|y|)y ′) Ω(y)|y|n−1

dy (1.5)

and P is a real-valued polynomial on R and satisfies P(0)= 0.

Theorem 1.1 (see [3]). Let α> 0, and Ω ∈ Vα(n). Then the operator µP is bounded

in Lp(Rn) for (2α+2)/(2α+1) < p < 2+2α.
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In [1], Al-Salman and Pan studied the singular integral operator

TΩ,�f(x)= p.v.
∫
Rn
f
(
x−�(y)

)Ω(y ′)
|y|n dy, (1.6)

where � = (P1, . . . ,Pd): Rn → Rd is a polynomial mapping, d ≥ 1, n ≥ 2. The authors

of [1] proved that TΩ,� is bounded in Lp(Rd) whenever (2+2α)/(1+2α) < p < 2+2α
and Ω ∈ Wα(n). Here Wα(n) is a subspace of L1(Sn−1) and its definition as well as

the definition of Vα(n) will be reviewed in Section 2. It was shown in [1] thatWα(n)=
Vα(n), if n= 2 and it is a proper subspace of Vα(n) if n≥ 3.

Our purpose in this paper is to study the Lp boundedness of the class of operators

M�f(x)=
(∫∞

−∞

∣∣F�,t(x)
∣∣2 dt

22t

)1/2
, (1.7)

where

F�,t(x)=
∫
|y|≤2t

f
(
x−�(y)

) Ω(y)
|y|n−1

dy. (1.8)

Our main result in this paper is the following theorem.

Theorem 1.2. Let α > 0, and Ω ∈ Wα(n). Then the operator M� is bounded in

Lp(Rd) for (2α+2)/(2α+1) < p < 2+2α. The bound of M�f is independent of the

coefficients of {Pj}.

By [1, Theorem 3.1] and Theorem 1.2 we have the following corollary.

Corollary 1.3. Let α > 0, Ω ∈ Vα(2) and � : R2 → Rd. Then M� is bounded in

Lp(Rd) for (2α+ 2)/(2α+ 1) < p < 2+ 2α. The bound of M� is independent of the

coefficients of {Pj}.

2. Preparation. We start this section by recalling the following definition from [1].

Definition 2.1. For α> 0, N ≥ 1, let �̃(n,N)=⋃Nm=1 �(n,m) and let Wα(N,n) be

the subspace of L1(Sn−1) defined by

Wα(N,n)=
{
Ω ∈ L1(Sn−1) :

∫
Sn−1

Ω
(
y ′
)
dσ
(
y ′
)= 0, Mα(N,n) <∞

}
, (2.1)

where

Mα(N,n)

=max
{∫

Sn−1

∣∣Ω(y ′)∣∣( log
1

|P(y ′)|
)1+α

dσ
(
y ′
)

: P ∈ �̃(n,N) with ‖P‖ = 1
}
.

(2.2)

For α> 0, we define Wα(n) to be

Wα(n)=
∞⋂
N=1

Wα(N,n). (2.3)

Also, for α> 0, we define Vα(n) by Vα(n)=Wα(1,n) (see [6]).
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Here �(n,m) is the space of all real-valued homogeneous polynomials on Rn with

degree equal to m and with norm ‖·‖ defined by∥∥∥∥∥ ∑
|α|=m

aαyα
∥∥∥∥∥= ∑

|α|=m

∣∣aα∣∣. (2.4)

Now we need to recall the following results.

Lemma 2.2 (see van der Corput [7]). Suppose φ and ψ are real-valued and smooth

in (a,b), and that |φ(k)(t)| ≥ 1 for all t ∈ (a,b). Then the inequality∣∣∣∣∫ b
a
e−iλφ(t)ψ(t)dt

∣∣∣∣≤ Ck|λ|−1/k
[
|ψ(b)|+

∫ b
a

∣∣ψ′(t)∣∣dt], (2.5)

holds when

(i) k≥ 2, or

(ii) k= 1 and φ′ is monotonic.

The bound Ck is independent of a, b, φ, and λ.

Lemma 2.3 (see [7]). Let �= (P1, . . . ,Pd) be a polynomial mapping from Rn into Rd.

Let deg(�)=max1≤j≤ddeg(Pj). Suppose Ω ∈ L1(Sn−1) and

µΩ,�f(x)= sup
h>0

∣∣∣∣ 1
hn

∫
|y|<h

f
(
x−�(y)

)
Ω
(
y ′
)
dy
∣∣∣∣. (2.6)

Then for every 1<p ≤∞, there exists a constant Cp > 0 which is independent of Ω and

the coefficients of {Pj} such that∥∥µΩ,�f∥∥p ≤ Cp‖Ω‖L1(Sn−1)‖f‖p (2.7)

for every f ∈ Lp(Rd).

To each polynomial mapping �= (P1, . . . ,Pd) :Rn→Rd with

deg�= max
1≤j≤d

degPj =N, d≥ 1, n≥ 2, (2.8)

we define a family of measures{
ϑlt,λ

l
t : l= 0,1, . . . ,N, t ∈R

}
(2.9)

as follows.

For 1 ≤ j ≤ d, 0 ≤ l ≤ N let Pj =
∑
|α|≤N Cjαyα and let Ql = (Ql

1, . . . ,Q
l
d) where

Ql
j =

∑
|α|≤l Cjαyα.

Now for 0 ≤ l ≤ N and t ∈ R, let ϑlt and λlt be the measures defined in the Fourier

transform side by

(
ϑlt
)̂
(ξ)=

∫
|y|≤2t

e−2πiξ·Ql(y) Ω
(
y ′
)

|y|n−1

dy
2t
,

(
λlt
)̂
(ξ)=

∫
|y|≤2t

e−2πiξ·Ql(y)
∣∣Ω(y ′)∣∣
|y|n−1

dy
2t
.

(2.10)
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The maximal functions (ϑl)∗ defined by

(
ϑl
)∗(f )(x)= sup

t∈R

∣∣λlt∗f(x)∣∣, (2.11)

for l= 0,1, . . . ,N .

For later purposes, we need the following definition.

Definition 2.4. For each 1 ≤ l ≤ N , let Nl = |{α ∈ Nn : |α| = l}| and let {α ∈
Nn : |α| = l} = {α1, . . . ,αNl}. For each 1 ≤ l ≤ N , define the linear transformations

L
αj
l :Rd→R and Ll :Rd→RNl by

L
αj
l (ξ)=

d∑
i=1

(
Ci,αjyαj

)
ξi, j = 1, . . . ,Nl,

Ll(ξ)=
(
Lα1
l (ξ), . . . ,L

αNl
l (ξ)

)
.

(2.12)

To simplify the proof of our result we need the following lemma.

Lemma 2.5. Let {σlt : l= 0,1, . . . ,N, t ∈R} be a family of measures such that σ 0
t = 0

for all t ∈ R. Let Dl : Rn → Rd, l = 0,1, . . . ,N be linear transformations. Suppose that

for all t ∈R and l= 0,1, . . . ,N, then ∥∥σlt∥∥≤ C(l),∣∣(σlt )̂(ξ)∣∣≤ C Mα(
log

[
c2lt

∣∣Dl(ξ)∣∣])1+α ,

∣∣(σlt )̂(ξ)−(σl−1
t
)̂
(ξ)
∣∣≤ C2lt

∣∣Dl(ξ)∣∣.
(2.13)

Then there exists a family of measures {νlt : l= 1, . . . ,N}t∈R such that∥∥νlt∥∥≤ C(l),∣∣(νlt )̂(ξ)∣∣≤ C Mα(
log

[
c2lt

∣∣Dl(ξ)∣∣])1+α ,

∣∣(νlt )̂(ξ)∣∣≤ C2lt
∣∣Dl(ξ)∣∣,

σNt =
N∑
l=1

νlt .

(2.14)

Proof. By [5, Lemma 6.1], for each l= 1, . . . ,N choose two nonsingular linear trans-

formations

Al :Rr(l) �→Rd, Bl :Rd �→Rd, (2.15)

such that

∣∣Alπdr(l)Bl(ξ)∣∣≤ ∣∣Dl(ξ)∣∣≤N∣∣Alπdr(l)Bl(ξ)∣∣, ξ ∈Rd, (2.16)

where r(l)= rank(Dl) and πdr(l) is the projection operator from Rd into Rr(l).
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Now choose η∈ C∞0 (R) such that η(t)= 1 for |t| ≤ 1/2 and η(t)= 0 for |t| ≥ 1. Let

ϕ(t)=φ(t2) and let

(
νlt
)̂
(ξ)= (σlt )̂(ξ) ∏

l<j≤N
ϕ
(∣∣2tjAjπdr(j)Bj(ξ)∣∣)

−(σl−1
t
)̂
(ξ)

∏
l−1<j≤N

ϕ
(∣∣2tjAjπdr(j)Bj(ξ)∣∣) (2.17)

with the convention
∏
j∈∅aj = 1, 1≤ l≤N .

Hence, one can easily see that {σlt : l = 1, . . . ,N, t ∈ R} is the desired family of

measures.

Now for the boundedness of the maximal functions (ϑl)∗, l= 0,1, . . . ,N , we have the

following lemma whose proof is an easy consequence of Lemma 2.3, polar coordinates

and Hölder’s inequality:

Lemma 2.6. For l= 1, . . . ,N and p ∈ (1,∞), there exists a constant Cp,l which is inde-

pendent of the coefficients of the polynomial components of the mapping Ql such that

∥∥(ϑl)∗f∥∥p ≤ Cp,l‖f‖p. (2.18)

3. Boundedness of some square functions. For a nonnegative C∞ radial function

Φ on Rn with

supp(Φ)⊂
{
x ∈Rn :

1
2
≤ |x| ≤ 2

}
,

∫∞
0

Φ(t)
t
dt = 1, (3.1)

and for a linear transformation L :Rn→Rd, define the functionsψt , t ∈R by ψ̂t(y)=
Φ(2tL(y)).

For a family of measures {σt}t∈R, real number u and l∈N, let Jlu(f ) be the square

function defined by

Jlu(f )(x)=
(∫∞

−∞

∣∣σt∗ψl(t+u)∗f(x)∣∣2dt
)1/2

. (3.2)

For such a square function we have the following theorem.

Theorem 3.1. If {σt}t∈R is a family of measures such that the corresponding maxi-

mal function

σ∗(f )(x)= sup
t∈R

∣∣∣∣σt∣∣∗f(x)∣∣ (3.3)

is bounded on Lp(Rd) for every 1<p <∞, then

∥∥Jlu(f )∥∥Lp(Rd) ≤ Cp,l√∥∥σ∗∥∥(p/2)′ sup
t∈R

∥∥σt∥∥∥∥f∥∥Lp(Rd) (3.4)

for every 1<p <∞. Here Cp,l is a constant that depends only on p and the dimension

of the underlying space.



500 H. AL-QASSEM AND A. AL-SALMAN

Proof. If supt∈R‖σt‖ =∞, then the inequality holds trivially. Thus we may assume

that supt∈R‖σt‖<∞. In this case we follow a similar argument as in [4]. Let p > 2 and

q = (p/2)′. Choose a nonnegative function v ∈ Lq+ with ‖v‖q = 1 such that

∥∥Jlu(f )∥∥2
p =

∫
Rd

(∫∞
−∞

∣∣σt∗ψl(t+u)∗f(x)∣∣2dt
)
v(x)dx. (3.5)

Thus it is easy to see that

∥∥Jlu(f )∥∥2
p ≤ sup

t∈R

∥∥σt∥∥∫∞
−∞

∫
Rd

∣∣ψl(t+u)∗f(z)∣∣2σ∗(v)(−z)dzdt

≤ sup
t∈R

∥∥σt∥∥∫
Rd
[g(f)]2(z)σ∗(v)(−z)dz,

(3.6)

where

g(f)(x)=
(∫∞

−∞

∣∣ψl(t+u)∗f(x)∣∣2dt
)1/2

. (3.7)

Now since
∫
Rd ψt(x)dx = 0, it is well known that

‖g(f)‖p ≤ Cp‖f‖p ∀1<p <∞ (3.8)

with constant Cp that depends only on p and the dimension of the underlying space.

Thus by (3.6) and Hölder’s inequality we have∥∥Jlu(f )∥∥2
p ≤ sup

t∈R

∥∥σt∥∥‖g(f)‖2
p
∥∥σ∗(u)∥∥q

≤ C2
p sup
t∈R

∥∥σt∥∥∥∥σ∗∥∥(p/2)′‖f‖2
p.

(3.9)

Hence our result follows by taking the square root on both sides. The case p < 2

follows by duality.

4. Proof of the main theorem. Let α > 0, Ω ∈ Wα(n). Let � = (P1, . . . ,Pd) be a

polynomial mapping from Rn into Rd with deg�=max1≤j≤ddegPj =N , where d≥ 1

and n≥ 2. For 0≤ l≤N let Nl, Ql, νlt , λ
l
t , and Ll be as in Section 3.

The first step in our proof is to show that each ϑlt , l= 1, . . . ,N satisfies the hypothe-

ses of Lemma 2.5, that is, ∥∥ϑlt∥∥≤ C(l), (4.1)∣∣(ϑlt )̂(ξ)∣∣≤ C Mα(
log

[
c2lt

∣∣Ll(ξ)∣∣])1+α , (4.2)

∣∣(ϑlt )̂(ξ)−(ϑl−1
t
)̂
(ξ)
∣∣≤ C2lt

∣∣Ll(ξ)∣∣. (4.3)

One can easily see that (4.1) holds trivially. Using the cancellation property of Ω,

it is easy to see that (4.3) holds. Thus, we need only to verify (4.2). To see that, we

notice that

∣∣(ϑlt )̂(ξ)∣∣≤ ∫
Sn−1

∣∣Ω(y ′)∣∣∣∣∣∣∫ 1

0
e−2πiξ·Ql(2try′) dr

∣∣∣∣dσ(y ′). (4.4)
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Now the quantity ξ ·Ql(2tlry ′) can be written in the form

ξ ·Ql(2tlry ′)= 2tlr lλGl
(
y ′
)+ξ ·R(2try ′), (4.5)

where Ql is a homogeneous polynomial of degree l with ‖Gl‖ = 1, R is a polynomial

of degree at most l−1 in the variable r ,

λ=
Nl∑
j=1

∣∣Lαjl (ξ)∣∣≥Nl∣∣Ll(ξ)∣∣ (4.6)

and α1, . . . ,αNl are the constants that appeared in Section 2. Thus by van der Corput

lemma, we have∣∣∣∣∫ 1

0
e−2πiξ·Ql(2try′)dr

∣∣∣∣≤ Cmin
{
1,
(
2tl
∣∣Ll(ξ)∣∣∣∣Gl(y ′)∣∣)−1/l

}
(4.7)

and hence ∣∣∣∣∫ 1

0
e−2πiξ·Ql(2try′)dr

∣∣∣∣≤ C [ log
(
c
∣∣Gl(y ′)∣∣−1)]1+α(

log
[
c2tl

∣∣Ll(ξ)∣∣])1+α , (4.8)

where C is a constant independent of t and ξ. Since Ω ∈ Wα(n), the estimate (4.2)

follows.

By Lemma 2.5, there exists a family of measures {νlt : l= 1, . . . ,N, t ∈R} such that∥∥νlt∥∥≤ C(l), (4.9)∣∣(νlt )̂(ξ)∣∣≤ C Mα(
log

[
c2lt

∣∣Ll(ξ)∣∣])1+α , (4.10)

∣∣(νlt )̂(ξ)∣∣≤ C2lt
∣∣Ll(ξ)∣∣, (4.11)

ϑNt =
N∑
l=1

νlt . (4.12)

Also by Lemma 2.6 and the definition of νlt (see the proof of Lemma 2.5), we have∥∥(νl)∗f∥∥p ≤ Cp,l‖f‖p ∀1<p <∞. (4.13)

Now one can easily see that

2−tF�,t(x)= ϑNt ∗f(x)=
N∑
l=1

νlt∗f(x). (4.14)

Therefore, ∥∥M�f
∥∥
p ≤

N∑
l=1

∥∥Ml
�f
∥∥
p, (4.15)

where

Ml
�f(x)=

(∫∞
−∞

∣∣νlt∗f(x)∣∣2dt
)1/2

. (4.16)
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Thus to show the boundedness of M�f , it suffices to show that

∥∥Ml
�f
∥∥
p ≤ Cp,l‖f‖p (4.17)

for p ∈ ((2+2α)/(1+2α),2+2α), and for all l= 1, . . . ,N .

To show (4.17), we proceed as follows: let Φ and ψt be as in Section 3. Then

Ml
�f(x)= log2l

(∫∞
−∞

∣∣∣∣∫∞−∞νlt∗ψl(t+u)∗f(x)du
∣∣∣∣2

dt
)1/2

≤ log2l
∫∞
−∞
Sluf (x)du,

(4.18)

where

Sluf (x)=
(∫∞

−∞

∣∣νlt∗ψl(t+u)∗f(x)∣∣2dt
)1/2

. (4.19)

Now by (4.13) and Theorem 3.1, we have

∥∥Sluf∥∥p ≤ Cp‖f‖p (4.20)

for all p ∈ (1,∞) and for l= 1, . . . ,N which in turn implies that

∫ 1

−1

∥∥Sluf∥∥p du≤ 2Cp‖f‖p ∀p ∈ (1,∞). (4.21)

On the other hand, if u≥ 1, by the estimate (4.11) we have

∥∥Sluf∥∥2
2 =

∫
Rd

∫∞
−∞

∣∣νlt∗ψl(t+u)∗f(x)∣∣2dtdx

=
∫∞
−∞

∫
Rd

(
Φ
(
2lt+luLl(ξ)

))2∣∣(νlt )̂(ξ)∣∣2∣∣f̂ (ξ)∣∣2dξdt

≤ 22l−2lu
∫
Rd

∣∣f̂ (ξ)∣∣2
(∫ log(2l/|Ll(ξ)|)−u

log(1/2l|Ll(ξ)|)−u
dt
)
dξ

= 2log2l22l−2lu‖f‖2
2.

(4.22)

Thus ∥∥Sluf∥∥2 ≤
√

2log2l2l−lu‖f‖2. (4.23)

By interpolating between (4.20) and (4.23) we get

∥∥Sluf∥∥p ≤ Cp,l2θl−θlu‖f‖p (4.24)

for all 1<p <∞ and for some θ = θ(p) > 0. Hence we have

∫∞
1

∥∥Sluf∥∥p du≤ Cp‖f‖p for p ∈ (1,∞). (4.25)
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Finally, if u < −1, by the estimate (4.10) and similar argument as in the case of

u≤ 1, we get ∥∥Sluf∥∥2 ≤ Cl(|u|)−1−α‖f‖2. (4.26)

By interpolating between (4.26) and any p ∈ (1,∞) in (4.20), we get that, if p ∈
((2+2α)/(1+2α),2+2α) there exists β > 0 such that∥∥Sluf∥∥p ≤ Cp(|u|)−β‖f‖p, (4.27)

which implies that ∫ −1

−∞

∥∥Sluf∥∥p du≤ Cp‖f‖p (4.28)

for p ∈ ((2+2α)/(1+2α),2+2α).
Hence by combining (4.18), (4.21), (4.25), and (4.28) we get (4.17).
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