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ABSTRACT. The group dihedral homology of an algebra over a field with characteristic zero
was introduced by Tsygan (1983). The dihedral homology and cohomology of an algebra
with involution over commutative ring with identity, associated with the small category,
were studied by Krasauskas et al. (1988), Loday (1987), and Lodder (1993). The aim of this
work is concerned with dihedral and reflexive (co)homology of small pre-additive category.
We also define the free product of involutive algebras associated with this category and
study its dihedral homology group. Finally, following Perelygin (1990), we show that a
small pre-additive category is Morita equivalence.

2000 Mathematics Subject Classification. 55N91, 55P91, 55Q91.

1. Preliminaries. Suppose that A% is a small category, with objects, the set {[0],[1],
.._,[n],...}, and the following family of morphisms 6% : [n] — [n—1], 0 < i < n,
on:[nl—-[n+11,0<i<n, T,:[n] - [nl, pn:[n] - [n] such that

J i _ osi i-1
03100 =010, -, 1</,
i S
OnOpi1 = O0p0piy, 1<,

i1 sJ P
0-111—2611—11 1=],

ol,,6L =114, i=j,j+1, (1.1)
0-11'1—26;'17—111 i> jv
T8 =6 1, O<i<mn, (t)" ' =1,  p2=1,
Twoi =03 "us, 0<j<m, TnPn = PnTy'.

DEFINITION 1.1. The category A% is called a dihedral category. Note that the cate-
gory generated by only the morphisms &, and oy{ is called a simplicial category and
is denoted by A, the category generated by &%, 0'7{, and T, is a cyclic category and is
denoted by AC (see [6]), and the category generated by the family of morphisms &,
0',{, and p,, is called a reflexive category and is denoted by AR.

DEFINITION 1.2 (see [3]). Let k be a commutative ring with identity and involution.
An algebra over k associated with the category A%(AR) is an algebra with identity
generated by the morphisms &%, 07, T, and py, (84,01, pn).
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DEFINITION 1.3. For an arbitrary category €, following [3], for case of presentation,
a simplicial object in the category € is a functor % : A°°? — € (the category AP is the
inverse of A).

DEFINITION 1.4. Following [2] (see also [6]), for an arbitrary category €, the dihe-
dral (reflexive) object in € is a functor % : AD — €, (¥ : AR°P — ). If we drop the
morphism p, from the group family of morphisms (6;,0',{,7”,;7”), we get a cyclic
object of an arbitrary category € (see [5]). Suppose that F([n]) = X, F(5}) = d;,
@(Uy{) = S‘ll, F(Tyn) = tn, F(py) = 1. We write the dihedral (reflexive) object by the fam-
ily (X, d;'l,sﬂ, tn,tn) (X, d;,sﬂ,rn). We can easily check that the morphisms dil,s{'i, tn,
and r,, satisfy relations (1.1).

DEFINITION 1.5. Let k be a commutative ring with identity and involution and let €
be a category of k-modules. The dihedral k-module in € is defined to be the dihedral
objects (Xn,dil,sil, tn,y) in the category C.

2. The reflexive and dihedral homology of pre-additive category. In this section,
we define the dihedral k-module associated with a pre-additive category and study its
(co)homology.

DEFINITION 2.1. Let k be a commutative ring with identity and involution. Following
[2], the k-category A with an involution is defined to be a small pre-additive category
with objects the k-modules of set morphisms A(i,j), where, i,j are in A, and the
bilinear maps A(i,j)xA(j,k) — A(i, k), as morphisms. Suppose that, for all objects
i,j € A, there exists a k-linear map * : A(i,j) — A(j,1), such that *%: A(i,j) — A(i, ).
Define the family M = {M,,},,>0 of k-modules and k-morphisms as follows:

My= o A(io,io), ey My, = (&) A(io,io) %A(il,l‘g) % e %A(ln,lo) (2.1)

ig€|Al i0,i1,--in €Al
On the family M = (M,,), define the morphisms d;,sil, t, 1, as follows:
dil:Mn — My, sil:Mn — M1, Ty, byt My — My, (2.2)

such that

di(ap®---oan)=di(ag®---®ay)+(-1)"anao®---®an_1,

n-1
di(ag®---®an) = > (-Dkap®---@arar1®- - ®ay,
k=0
sn(Ap® - ®ay) =ap®a;®---0a;®10a; 18 - dy, (2.3)

th(ap®---®ay)=(-1"(an®ap®---®ay_1),

‘[‘n(a0® e ®an) = a(_l)n(n+l)/2a(>i)< ®a:® PR ®ai‘<, o= il,

where a;’s are the image of the elements a; (0 < i < n) under the involution .
Clearly, the module M = {M,,} under the last morphisms is a dihedral k-module. Now,
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we define the dihedral homology group. Suppose that M = (M,,) = C»%", p, q, v > 0,
and consider the complex (CP4" §t), i =1,2 (see [3]), where

st:crar — cr-tar, 52 cpar — cra-tr (2.4)
are defined by
1-T,, n=1 (mod?2),
ol =
Np=1+Ty+---+T)}, n=0 (mod?2),

(2.5)
5 {bml:(l)idiwl, n =0 (mod?2),

-b=(-1)idi, n =1 (mod?2).

Clearly, by definition, 6¢-5' = 0, i = 1,2. The complex (CP%",§) can be illustrated
by Tsygan’s bicomplex € (M) (see [5]):

b v b v
022 <X oo o N copp UT 300 N

2.6)
b Y b -V @.
co1 <21 cran <N a0 o N
b v b v
000 < 100 <N 200 T 300 <N

where the morphisms b, —b’ : CP4" — CPA4-L7" gre given by b = > ,(-1)idi, -b’ =
SrEA(=1)idi, T = (=1)"t,, N = 1+Ty + - - - + T2. Following [5], the homology of the
bicomplex (2.6) gives the cyclic homology group: #C,, (M) = %, (€ (M)). Following [3],
if we act by the group Z/?2 on the bicomplex (2.6): on the column 2 (£ > 0) by means
of the automorphism

(-1)nn+b/zele — (_1)fR,, where R, (ap®---®ay,) = (-1)""+D/2¢ (2.7)

and on the column 2¢ + 1 by means of the automorphism (—1)"(n-D/2++1y ~—
(-1)!R,, T,,, we get the tricomplex (CP4" &%), i = 1,2,3. The differentials §!,52 are
defined in (2.5) and &3 : CP4"+1 - CP:a7 js defined by

(=D)"(1+(-D'Ry), n =0 (mod4),
(- 11+ (-1)*'R,Ty), n=1 (mod4),

& = 2.8)
(=) (1+ (=1)!*1R,), n =2 (mod4),

(1)1 (1+(-1)*'R,Ty), m=3 (mod4), R, = (—1)"ty,.

Following [4], the dihedral homology of the module M (*%%(M)) is the homology of
the complex (CP47 §t),i=1,2,3, x = 1.
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DEFINITION 2.2. The dihedral homology of a k-category A with involution is the di-
hedral homology of the associated dihedral k-module M={M,,} : *#%,, (A) =*H%D,, (M),
o ==1.

DEFINITION 2.3. The reflexive homology of a k-category A with an involution is the
reflexive homology of k-module {M;eq}:

SHRR(A) = 0(%gln(Mmﬂ)a o1, (2.9)

where M;.q is the reflexive k-module M = {M,}. Similarly, if we take the cyclic k-
module My, we obtain the cyclic homology of the k-category A (see [6]): #C,(A) =
HRn (Meya). Following [3, 4], the dihedral (reflexive) homology of the dihedral (reflex-
ive) module M can be considered as derived functor

Dy (M) = Torkl AP (k@ - M -) (3T (M) = Torkl 2RI (k. M- )), (2.10)

where k? (k%) is a trivial dihedral (reflexive) k-module, k[AD]°P (k[AR]°P) is the alge-
bra associated with the dihedral (reflexive) category.

Note that (see [3]) the dihedral (reflexive) homology is considered as the hyperho-
mology of the group Z/2 with coefficients in Tsygan bicomplex (simplicial (Hochschild)
complex). The relations between the cyclic and the dihedral homology and also the
reflexive and the dihedral homology of pre-additive category are given by the following
assertions.

THEOREM 2.4. Let k be a commutative ring and let A be a k-category with an invo-
lution. Then there exist the following exact sequences

s HD(A) — HCn (A) — THDp(A) — HDp1(A) — - -,

(2.11)
e -Hx%gtn(A) - -HX%QDYL(A) - _a%@n—Z(A) - +a%%n—l(A) .
PROOF. The proof follows from [3]. O
COROLLARY 2.5. Let 1/2 € k. Then there exists the natural isomorphism
HCr(A) = “HD, (A) © T%FDy, (A). (2.12)

Note that we can define the reflexive cohomology and the dihedral cohomology of
a pre-additive category in the same manner.

3. The dihedral homology of free product algebras. In this section, we study the
product of the algebras associated with a pre-additive k-category, where k has char-
acteristic zero. Let A, B, and C be arbitrary involutive algebras. The free product of
the algebras A and B with respect to algebra C is denoted by A * B. Following [1], the
algebra A ’f B is C-bimodule. For the algebras A, B, and C,

Tor¢ (A, A) = Tor§ (A, B) = Tor{ (B, A) = Tor¢ (B,B) = 0. (3.1
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Consider also the following diagram of algebras and homomorphisms between them:

Ji iz
A=—=(C——=B, Jroiy =Ide = jooio. 3.2)
11 J2

Following [3], let R# and R® be the free involutive resolution of the algebras A and B
over the homomorphisms i; and i, respectively. Consequently, we get the following
diagram:

it i
RA<—C——RE. (3.3)
Consider the diagrams
i i5
RA<—-C RBE<~—-C (3.4)
P
A B

Clearly, they are commutative. If we define the homomorphisms j{! and j5 as follows:

Iy :B
RAL, RB, RSB 2 C, where jit = jiom?, j§ = joom?, (3.5)

we get the diagram

A B
J1 3

RA%A;C%B;RB, (3.6)
) J2

where ji' o i = Id¢, j&oi5 = Idc, since ji'oif = (j1omA) 0if = j1oiy = Ide, j5oif =
(jo o) 0i8 = jp 0iy = Id.. Suppose that R* = ker j;!, R® = ker j&. Then R* fRB is a
C-module given by

RA%RE = C+R xR+ (RY@RP) + (RE@RY) + (R4 @RP@RA) + - - (3.7)
C c C [ c [
We define an involution on R# * RB as follows:

(Po%mql e 'annQYH—l)*
(3.8)
=pradnpn--aips, pi€RY 0<i<n+1,q;€R?, 0<i<n.

REMARKS. (i) The differential on R4 fRB is defined by Leibniz formula for differ-

ential graded algebras [5].
(i) The chain complex R4 is a free C-biomodule resolution of the C-biomodule A.
(i) A+C=A=H-(R) =H-(R*®C)=H-(R*) +C, that is, H - (R4) = A, where
H is a hyperhomology of R“. From (3.1), (i), (i), and (iii), we have

Tor§ (A, A) = Tor§ (A, B) = Tor§ (B,A) = Tor§ (B,B) = 0. (3.9
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From (3.7) and (3.9), we have A * B=H-(RA §RB) (see [1]). Consider the following
diagram:

i ’giz
i (3.10)

LEMMA 3.1. The diagram (3.10) is commutative.

PROOF. The proof follows from the fact that the differential graded algebra R4 fRB
is an involutive resolution of the algebra A ’f B over the inclusion i, i'f ir. O

Consider the complex T™ (C;RA §>RB) =C ® ) ((RA @RB) ®---®(RY®RB)). We
c®cO

act on the complex by means of an automorphism €y,, as follows:

Yul(po®do) ®- - ® (pn®an) = (1) Ve(pieal)e(p;ea; o - (pieq); (3.11)

where p; € R, q; € RE,0<i<n, £ =degpo > degp;+ 3 degq;, v =a(x-1)/2,
x=>1",degp;+degq;, « = =1. Consider the chain complex homomorphism

(n) CRA B
" T (C,R fR ) . (RA*RB)
Im (1—tn) +Im(1=yn)  C+RA+RE+[RA%RE,RA%RE|+Im (1—yy,)’
Cc c
(3.12)
such that
H(((po®ao) ®- - ® (Pn®dn)) mod (Im (1 —ty) +Im(1- yn)))
(3.13)

= (poqo - * - Pndn) mod (C+RA+RB+ [RAfRB,RAfRB] +Im(1—fr)>.

In the following lemma, we explain the existence of the homomorphism yu and prove
that it is an isomorphism.

LEMMA 3.2. A chain complex homomorphism p is an isomorphism.

PROOF. Clearly, in R# fRB, there exists a subcomplex C + R4 + R2 (but in T™ (C;
RA QC3>RB ) there is not), and we can factorize R4 fRB by this subcomplex. The elements
inRA cchB can be compared by modulo with the commutant of the algebra R# >§RB with
elements in RA @RB since £oa+ (—1)"(a®P - (—1)dega)degD pggq) = (-1)"ae P,
where

0, if (dega) - (deg<¥) is even,
m= ) ) (3.14)
1, if (dega)-(deg¥) is odd, a € R4, £ € RE.
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Note that the elements in R4 QCDRB ® R4 or in RB QCDRA QCDRB can also be compared by
modulo with the commutant of the algebra R4 fRB with elements in R4 §>RB , at the

same time;

pap’ —(pap’ — (—1)4EP-0-deer’p'pg) = (—1)desv deer’ (p'p)q, p,p’ € R4, q € RE.
(3.15)
In the complex T™ (C;RA gRB)/Im(l —tn) +Im(1 —€y,), we have the following:

(Po®ad0)®- - ® (Pn®dn) = (1) (Pn®qn) ® (P0®q0) ® - - ® (Pn-1®qn-1), (3.16)

where s = deg(p, ®4,) X/, deg(pi ®q;) and (po®qo) ® -+ ® (Pr ®qn) = (-1)/*Ve
(ps®ay) ® (phed, i) ® - (pf ®qf); £ = degpo - 3y degpi + X}, degq;,
v=a(x-1)/2, x= Zlnzl degp; +deggq;. Clearly, the same relation holds in the com-
plex: (R4 fRB)/C+RA +RB +[RA fRB,RA fRB] +Im(1 —€r) since

(PodoP1d1 - Prn-1an-1) (Pnan) = (=1)% (pnan) (Podop1a1 - - - Pn-1dn-1), (3.17)

where s = deg(pnqn) Z?:’ll deg(piqi), and since deg(p,q»n) = deg(pn®4qn), s = s’ and

Podop1d1 - - Pudn = (V)Y aip) - -afpialpe
(3.18)
=D piay) (phan-1) -+ - (p3af) (piag).

This gives the required isomorphism. It is easily seen that the differentials in the
complexes ®%_,T™ (C;R* §>RB)/Im(1 —tn) +Im(1-¢y,) and (RA >§RB)/C+RA +RB+
[RA fRB,RA >C1<RB] +Im(1 — ¢r) coincide. Using the condition Tor$(4,B) = 0, i > 0,
we find that R4 @RB is a free C-module resolution of the algebra R ® R. Then by
considering the isomorphism u, we get

A B - _
%< RT¥R >= 2.(C,AB)

C+RA+RB+[RA*RB,RA*RB]+Im(1—€r) Im(lf ® f;?n)
c c n=0

, (3.19)

where €, is an automorphism on the graded K-module H - (Z/(n+1);T™ (C;RA ®
R?)) is induced by the automorphism €y, on the complex T™ (C;R* ngB). From the
isomorphism u, we get the following isomorphism:

9@,(C L1 A) @3 (C 2 By o] —(GASE)
Im(l— ®0€}7n)
2

RA % RE (3.20)
= | |
C+RA+RE+[RA%RE,RA % RP | +1m (1<)
®HD; (C -2 A) & HD; (C -2 B). O
LEMMA 3.3. The right-hand side of relation (3.20) is isomorphic to the group

i1%ip

€HD; (C — AfB).
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PROOEF. Since
RA%RB
C

(C+[RAx%RE,RA%RE|+1m (1-cr))
(R*5R?)

S C+ [RAfRB,RA fRB] +Im(1—€r) +RA+RB

’ S( [RA,RA] +II?r:1(1 —crRA) } +{ [RE,RF] +frf1(1 —ereB) } 3.21)

3 RA%R?E
C+[RA%RE,RA%RE | +Im (1 —r) + R4 +RE

RA RE
+{C+[RA,RA]+Im(1—€rRA)}+{C+[RB,RB]+Im(1—€rRB)}’
we have
i1 %io 2, (C,A®B) i i
9@ (C 2 AxB) =1 —2 0= b €69, (C L A) 99 (C - B). (3.22)
¢ Im(l— eaoeyn) 0
n=

LEMMA 3.4. The following isomorphism holds:

0
<9%; (A% B) ®HD; (C) = “HD;(A) ©HC; (B) © — (C"f}f’B) (3.23)
¢ m(1- & <yy)
n=0
PROOF. This follows from the fact that
Hp; (A) = HD; (C - A) & HD(C),
9, (B) = HD; (C —2 B) @ HD(C), (3.24)

i1 %1
112

<% (AxB) = e%gbi(c A>Cl<B) ®HD(C).
Note that the last three relations are obtained from the long exact sequence of rel-
ative dihedral homology of algebras [5]. Following [3] (also, see [4]), the automor-
phisms t,, and €y, give the representation of the dihedral group %,,, on the complex
T(”)(C;RA§RE), where (t,,)"*! = (y,)% =1d, €y, t? = t;'€yy. Then if char(k) = 0, we
get the following isomorphism:
Q - -
1(C'—fi®3) = & W (Dp1;T™ (GRY & RP)). (3.25)
m(1- & cyy) "0 c
n=0
From Lemma 3.3 and relation (3.20), we get
<5 (A B) ®9%;(C)
c
w _ _ (3.26)
= “%%;(A) @ “H%;(B) & ( & H- (Dp1;T™ (C:RA®RE))). O
n=0 c

So, we have proved the following theorem.
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THEOREM 3.5. Consider the following diagram of involutive algebras associated with
a pre-additive K -category:

J1 i2
A=—=C=—=B, wherejioiy=1Idc=j>oi>. (3.27)
11 J2
If
Tor¢ (A,A) = Tor¢ (A, B) = Tor¢ (B,A) = Tor¢(B,B) =0, i>0, (3.28)
then we have
<% (A% B) @%%;(C)
(3.29)

= “UDi(A) @ WD (B) @ ( & - (Dner; T (R ORE))).

Let A be a k-category with an involution, and let Mod A be the category of right
A-modules and P(A) be full subcategory in Mod A, consisting of the finite projective
modules. Consider the category My (k) with objects, the k-categories with involution
and morphisms f : A — B are k-factors F : Mod A — Mod B, such that for every X €
P(A), f(X) € P(B), f commutes with an involution. We call these morphisms, Morita-
morphisms. Evidently, if f is an equivalence, then f is a Morita-morphism. Following
[7] (also, see [8]), the cyclic (co)homology of k-category Morita equivalence. Using this
fact and considering the deep results of [3], the following fact follows.

THEOREM 3.6. The reflexive cohomolgy and the dihedral (co)homology of the k-
category A with involution are invariant under Morita equivalence.
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