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ABSTRACT. We inquire further into the properties on fuzzy closed ideals. We give a char-
acterization of a fuzzy closed ideal using its level set, and establish some conditions for
a fuzzy set to be a fuzzy closed ideal. We describe the fuzzy closed ideal generated by a
fuzzy set, and give a characterization of a finite-valued fuzzy closed ideal. Using a t-norm
T, we introduce the notion of (imaginable) T-fuzzy subalgebras and (imaginable) T-fuzzy
closed ideals, and obtain some related results. We give relations between an imaginable
T-fuzzy subalgebra and an imaginable T-fuzzy closed ideal. We discuss the direct product
and T-product of T-fuzzy subalgebras. We show that the family of T-fuzzy closed ideals
is a completely distributive lattice.
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1. Introduction. In 1983, Hu et al. introduced the notion of a BCH-algebra which is
a generalization of a BCK/BClI-algebra (see [6, 7]). In [4], Chaudhry et al. stated ideals
and filters in BCH-algebras, and studied their properties. For further properties on
BCH-algebras, we refer to [2, 3, 5]. In [8], the first author considered the fuzzification
of ideals and filters in BCH-algebras, and then described the relation among fuzzy
subalgebras, fuzzy closed ideals and fuzzy filters in BCH-algebras. In this paper, we
inquire further into the properties on fuzzy closed ideals. We give a characterization
of a fuzzy closed ideal using its level set, and establish some conditions for a fuzzy
set to be a fuzzy closed ideal. We describe the fuzzy closed ideal generated by a fuzzy
set, and give a characterization of a finite-valued fuzzy closed ideal. Using a t-norm
T, we introduce the notion of (imaginable) T-fuzzy subalgebras and (imaginable) T-
fuzzy closed ideals, and obtain some related results. We give relations between an
imaginable T-fuzzy subalgebra and an imaginable T-fuzzy closed ideal. We discuss
the direct product and T-product of T-fuzzy subalgebras. We show that the family of
T-fuzzy closed ideals is a completely distributive lattice.

2. Preliminaries. By a BCH-algebra we mean an algebra (X, *,0) of type (2,0) sat-
isfying the following axioms:

(H1) x*xx =0,

(H2) x*y =0and y *xx =0 imply x =y,

H3) (x*xy)*xz=(x*z)*xy,
for all x,y,z € X.

In a BCH-algebra X, the following statements hold:

(P1) x %0 = x.
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(P2) x * 0 = 0 implies x = 0.

(P3) Ox(x*ky)=(0%xx)*(0xy).

A nonempty subset A of a BCH-algebra X is called a subalgebra of X if xxy € A
whenever x,y € A. A nonempty subset A of a BCH-algebra X is called a closed ideal
of X if

(i) OkxecAforall x € A,
(i) x*xy € A and y € A imply that x € A.
In what follows, let X denote a BCH-algebra unless otherwise specified. A fuzzy set
in X is a function u: X — [0,1]. Let u be a fuzzy set in X. For & € [0,1], the set
U(p;x) = {x € X | u(x) = «} is called a level set of L.
A fuzzy set y in X is called a fuzzy subalgebra of X if

u(x*y)=min{u(x),u(»)}, Vx,yeX. (2.1)

DEFINITION 2.1 (see [1]). By a t-norm T on [0,1], we mean a function T:[0,1] X
[0,1] — [0,1] satisfying the following conditions:

(T1) T(x,1)=x,

(T2) T(x,y)<T(x,z)if y <z,

(T3) T(x,y)=T(y,x),

(T4) T(x,T(y,z))=T(T(x,y),z),forall x,y,z€[0,1].

In what follows, let T denote a t-norm on [0, 1] unless otherwise specified. Denote
by A7 the set of elements « € [0,1] such that T(«x, ¢) = «, that is,

Ar:={xe€[0,1]| T(x, ) = x}. (2.2)
Note that every t-norm T has a useful property:
(P4) T(x,B) <min(«x,pB) forall o, B € [0,1].
3. Fuzzy closed ideals

DEFINITION 3.1 (see [8]). A fuzzy set u in X is called a fuzzy closed ideal of X if
(F1) p(0*xx) = u(x) for all x € X,
(F2) p(x)zmin{u(x*xy),u(y)} forall x,y € X.

THEOREM 3.2. Let D be a subset of X and let up be a fuzzy set in X defined by
o, ifxeD,
Hp(x) = (3.1)
oy ifx¢D,

for all x € X and ¢y, > x». Then up is a fuzzy closed ideal of X if and only if D is a
closed ideal of X.

PROOF. Assume that up is a fuzzy closed ideal of X. Let x € D. Then, by (F1), we
have (0% x) > pu(x) = &; and so pu(0*x) = ;. It follows that 0k x € D.Let x,y € X
be such that x %y € D and v € D. Then up (x * y) = &1 = up (), and hence

pp (x) = min {up (x * ¥),up(¥)} = 1. (3.2)

Thus up(x) = &1, that is, x € D. Therefore D is a closed ideal of X.
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Conversely, suppose that D is a closed ideal of X.Let x € X.If x € D, then O*xx € D
and thus pp (0% x) = &1 = up(x). If x ¢ D, then pup(x) = 2 < up(0*kx).Let x,y € X.
If x*xy eDand y €D, then x € D. Hence

Hp(x) = oy =min{pp(x *y),up(¥)}. (3.3)

If x*xy ¢ D and y ¢ D, then clearly up(x) = min{up(x * y),up(y)}. If exactly one
of x x y and y belong to D, then exactly one of up(x * y) and up(y) is equal to «o.
Therefore, up(x) = &; = min{up (x * v),up(y)}. Consequently, up is a fuzzy closed
ideal of X. O

Using the notion of level sets, we give a characterization of a fuzzy closed ideal.

THEOREM 3.3. A fuzzy set u in X is a fuzzy closed ideal of X if and only if the
nonempty level set U (u; ) of u is a closed ideal of X for all x € [0,1].

We then call U(u; x) a level closed ideal of u.

PROOF. Assume that uis afuzzy closedideal of X and U (u; ) # @ forall x € [0,1].
Let x € U(u;x). Then u(0xx) = pu(x) = «, and so 0 x x € U(u;x). Let x,y € X be
such that x x y e U(u;x) and v € U(u; ). Then

p(x) =min{u(x*y),u(y)} = min{e, o} = «, (3.4)

and thus x € U(u; ). Therefore U (u; ) is a closed ideal of X. Conversely, suppose
that U(u;x) # @ is a closed ideal of X. If u(0 xa) < u(a) for some a € X, then
u(0xa) < xg < pu(a) by taking g := 1/2(u(0Oxa) +pu(a)). It follows that a € U (u; xg)
and O x a ¢ U(u; xy), which is a contradiction. Hence p(0 * x) > u(x) for all x € X.
Assume that there exist x¢, Yo € X such that

p(xo) <min {u(x0* ¥0),1(>0)}- (3.5)

Taking Bo := 1/2(u(xo) +min{u(xo * ¥o),u(Y0)}), we get p(xo) < Bo < H(xo * o)
and p(xo) < Bo < u(yo). Thus xo * yo € U(u; Bo) and yo € U (u; Bo), but xo & U (1; Bo)-
This is impossible. Hence u is a fuzzy closed ideal of X. O

THEOREM 3.4. Let it be a fuzzy setin X andIm(u) = {xo, &1,...,Xn}, where &; <
whenever i > j. Let {Dy | k =0,1,2,...,n} be a family of closed ideals of X such that
(i) DocDic---cDy, =X,
(i) p(Dy) = ok, where Djf = Dg\Dy_1 andD_, = @ fork =0,1,...,n.
Then u is a fuzzy closed ideal of X.

PROOF. For any x € X there exists k € {0,1,...,n} such that x € D{. Since Dy is a
closed ideal of X, it follows that 0 % x € Dy. Thus u(0* x) > &y = u(x). To prove that
u satisfies condition (F2), we discuss the following cases: if x *y € D and y € Dy,
then x € Dy because Dy is a closed ideal of X. Hence

p(x) = o =min {p(x *y),u(y)}. (3.6)
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If xxy ¢ Dy and y ¢ D}, then the following four cases arise:
(i) x*xy e X\Dyand y € X\ Dy,

(i) x*y € Dy_1 and y € Dy,

(iii) x *y € X\ Dy and v € Dg_1,

(iv) x*y €Dy-1 and y € X\ Dy.
But, in either case, we know that p(x) = min{u(x x y),u(y)}. If x *xy € D and
¥ ¢ Df, then either v € Dy_; or y € X\ Dy. It follows that either x € Dy or x € X\ Dx.
Thus p(x) =z min{u(x * y),u(y)}. Similarly for the case x x y ¢ D} and y € D}, we
have the same result. This completes the proof. O

THEOREM 3.5. Let A be a subset of [0,1] and let {D, | A € A} be a collection of closed
ideals of X such that
(i) X =UaeaDa,
(i) o> Bifandonlyif Dy ¢ Dg for all &, € A.
Define a fuzzy set u in X by u(x) = sup{A € A | x € D)} forall x € X. Then u is a
fuzzy closed ideal of X.

PROOF. Let x € X. Then there exists «; € A such that x € Dy,. It follows that
Okxx e Do(f for some «j > «;. Hence

p(x) =supf{ox € Al ox < i} <supf{ox € Al o < &} = u(0*x). (3.7)

Let x,y € X be such that u(x * y) = m and u(y) = n, where m,n € [0,1]. Without
loss of generality we may assume that m < n. To prove u satisfies condition (F2), we
consider the following three cases:

(1°)A < m, (2°)ym <A <n, (3°)A > n. (3.8)
Case (1°) implies that x *« y € D, and v € D,. It follows that x € D, so that
u(x) =sup{A € A|x €Dy} =m=min{u(x*y),u(»)}. (3.9)

For the case (2°), we have x *x y ¢ D) and v € D). Then either x € D, or x ¢ D,. If
X € Dy, then pu(x) =n = min{u(x xy),u(y)}. If x ¢ Dy, then x € D5 — D, for some
6 <A, and so u(x) >m =min{u(x * y),u(y)}. Finally, case (3°) implies x * y ¢ D,
and y ¢ D). Thus we have that either x € D) or x ¢ D,. If x € D, then obviously
u(x) = minfu(x x y),u(y)}. If x ¢ Dy then x € D, — D, for some € < A, and thus
u(x) =m=min{u(x *y),u(y)}. This completes the proof. O

Let D be a subset of X. The least closed ideal of X containing D is called the closed
ideal generated by D, denoted by (D). Note that if C and D are subsets of X and
C € D, then (C) < (D). Let u be a fuzzy set in X. The least fuzzy closed ideal of X
containing u is called a fuzzy closed ideal of X generated by u, denoted by (u).

LEMMA 3.6. For a fuzzy set u in X, then
u(x) =sup{xe[0,1]1|x e U(u;x)}, VxeX. (3.10)

PROOF. letd:=sup{xe[0,1]|x e U(u;x)} and let € > 0 be given. Then 6 — ¢ < x
for some « € [0,1] such that x € U(u;x), and so 6 —& < pu(x). Since ¢ is arbitrary, it
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follows that p(x) > 8. Now let u(x) = B. Then x € U(u;B) and hence € {x € [0,1] |
x € U(u;x)}. Therefore

u(x) =B <sup{xe(0,1]1|xeU(u;x)} =4, (3.11)

and consequently p(x) = 8, as desired. O

THEOREM 3.7. Let u be a fuzzy set in X. Then the fuzzy set u* in X defined by
p*(x)=sup{axe[0,1]|x € (U(u;00)} (3.12)

for all x € X is the fuzzy closed ideal {u) generated by .

PROOF. We first show that u* is a fuzzy closed ideal of X. For any y € Im(u*),
let y, = y —1/n for any n € N, where N is the set of all positive integers, and let
x € U(u*;y). Then u*(x) = y, and so

sup{ax e [0,1] | x € (U(u;00)} =y > yu, (3.13)

for all n € N. Hence there exists § € [0,1] such that 8 > y, and x € (U (u;B)). It follows
that U(u; B) < U(u;yn) sothat x € (U(u; B)) < (U(u;yn)) for all n € N. Consequently,
X € Npen{U(U;yn)). On the other hand, if x € Nyuen(U (U;yn)), theny, € {x e [0,1] |
x € (U(u;x))} for any n € N. Therefore

Y= =y =sup{ace 0,11 x € (U e0) = 1 (), (3.14)
for all n € N. Since n is an arbitrary positive integer, it follows that y < u*(x) so that
x € U(u*;y). Hence U(u*;y) = Nuen(U(U;¥n)), which is a closed ideal of X. Using
Theorem 3.3, we know that p* is a fuzzy closed ideal of X. We now prove that p*
contains u. Forany x € X, let f € {&x € [0,1] | x € (U(u;x))}. Then x € U(u;B) and
so x € (U(u;B)). Thus we get B € {x e [0,1] | x € (U(u;x))}, and so

{ael0,1]1x €U0} < {ax€[0,1] | x € (U(p;00))}. (3.15)

It follows from Lemma 3.6 that

p(x) =sup{xe[0,1] | x e U(p;00}
<sup{xe[0,1] | x € {(U(u;x))} (3.16)
= u*(x).

Hence u < p*. Finally let v be a fuzzy closed ideal of X containing p and let x €
X. If p*(x) = 0, then clearly pu*(x) < v(x). Assume that u*(x) =y # 0. Then x €
Uu*;y) = Nuen{U(U;yn)), that is, x € U(u;y,) for all n € N. It follows that v(x) >
u(x) = y,=y—-1/nforall n € N so that v(x) > y = u*(x) since n is arbitrary. This
shows that u* < u, completing the proof. O

DEFINITION 3.8. A fuzzy closed ideal u of X is said to be n-valued if Im(u) is a
finite set of n elements. When no specific n is intended, we call u a finite-valued fuzzy
closed ideal.
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THEOREM 3.9. Let u be a fuzzy closed ideal of X. Then u is finite valued if and only
if there exists a finite-valued fuzzy set v in X which generates . In this case, the range
sets of u and v are identical.

PROOF. If u:X — [0,1] is a finite-valued fuzzy closed ideal of X, then we may
choose v = u. Conversely, assume that v : X — [0,1] is a finite-valued fuzzy set. Let
o1, 00,...,&, be distinct elements of v(X) such that &y > otx > -+ > &y, and let
Ci=v ) fori=1,2,...,n. Clearly, u{lei c U’leCi whenever j < k < n. Hence if
weletD; = (U{;lCi), then we have the following chain:

DicDy<c---<D,=X. (3.17)
Define a fuzzy set u: X — [0,1] as follows:

X1 ifXEDl,
p(x) = _ (3.18)
X leEDj\Dj,l.

We claim that u is a fuzzy closed ideal of X generated by v. Clearly p(0* x) > u(x)
for all x € X. Let x,y € X. Then there exist i and j in {1,2,...,n} such that x xy € D;
and y € D;. Without loss of generality, we may assume that i and j are the smallest
integers such that i = j, x x y € D;, and ¥ € D;. Since D; is a closed ideal of X, it
follows from D; < D; that x € D;. Hence u(x) = «; = min{u(x * y),u(y)}, and so
u is a fuzzy closed ideal of X. If v(x) = «; for every x € X, then x € C; and thus
x € Dj. But we have u(x) = o; = v(x). Therefore u contains v. Let 6 : X — [0,1]
be a fuzzy closed ideal of X containing v. Then U(v;«;) < U(6;«;) for every j.
Hence U (6; «;), being a closed ideal, contains the closed ideal generated by U (v; &;) =
U{:1Ci- Consequently, D; € U(6;«;). It follows that u is contained in 6 and that u is
generated by v. Finally, note that |[Im(u)| = n = |Im(v)|. This completes the proof.

O

THEOREM 3.10. Let D, 2 D, 2 - - - be a descending chain of closed ideals of X which
terminates at finite step. For a fuzzy closed ideal u of X, if a sequence of elements of
Im(u) is strictly increasing, then u is finite valued.

PROOF. Suppose that u is infinite valued. Let {,, } be a strictly increasing sequence
of elements of Im(u). Then 0 < o; < &x2 < - - - < 1. Note that U (u; t;) is a closed ideal
of Xfort=1,2,3,.... Let x e U(u;x¢) for t = 2,3,.... Then u(x) = o > x¢—1, which
implies that x € U(u;x¢—1). Hence U(u;ox¢) < U(u;x¢—1) for t = 2,3,.... Since o¢_1 €
Im(u), there exists x;—; € X such that pu(x;-1) = ot¢—1. It follows that x;—1 € U (u; x¢-1),
butx;-1 ¢ U(u; ). Thus U (u; ) € U(uU; x¢—1), and so we obtain a strictly descending
chain U(u;0¢1) 2 U(u;02) 2 -+ - of closed ideals of X which is not terminating. This
is impossible and the proof is complete. O

Now we consider the converse of Theorem 3.10.

THEOREM 3.11. Let u be a finite-valued fuzzy closed ideal of X. Then every descend-
ing chain of closed ideals of X terminates at finite step.
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PROOF. Suppose there exists a strictly descending chain Do 2 D1 2 D> 2 --- of
closed ideals of X which does not terminate at finite step. Define a fuzzy set y in X
by

if xeDy\Dys1, n=0,1,2,...,
1
plx)=4m+ (3.19)
1 if x € ny;_¢yDn,

where D stands for X. Clearly, u(0* x) > u(x) for all x € X. Let x,y € X. Assume
that x xy € Dy \Dy41 and v € Dg\Dg41 forn=0,1,2,...; k=0,1,2,.... Without loss
of generality, we may assume that n < k. Then clearly y € D,, and so x € D,, because
D, is a closed ideal of X. Hence

n .
Hx) = o =min {u(xx ), 1)} (3.20)
If x*y e ny_oDnand y € Nny_gDy, then x € Ny_yDy. Thus p(x) = 1 = min{u(x *
V),uY)}. I xxy ¢ n;;_oDy and y € N;_yDy, then there exists a positive integer k
such that x * y € Dy \ Dg.1. It follows that x € Dy so that

k .
u(x)zk—zrmn{u(x*y),u(y)}. (3.21)
+1
Finally suppose that x xy € n;,_,Dy, and y ¢ Ny_oDyn. Then v € D, \ Dy, for some
positive integer 7. It follows that x € D,, and hence

u(x)zﬁzmin{u(x*y),u(y)}. (3.22)

Consequently, we conclude that u is a fuzzy closed ideal of X and u has an infinite
number of different values. This is a contradiction, and the proof is complete. O

THEOREM 3.12. The following are equivalent:
(i) Every ascending chain of closed ideals of X terminates at finite step.
(ii) The set of values of any fuzzy closed ideal of X is a well-ordered subset of [0,1].

PROOF. (i)=(ii). Let u be a fuzzy closed ideal of X. Suppose that the set of values of
uis not awell-ordered subset of [0, 1]. Then there exists a strictly decreasing sequence
{axn} such that p(x,) = ay. It follows that

Upsor) U3 00) S U(M03) & - - (3.23)

is a strictly ascending chain of closed ideals of X. This is impossible.
(ii)=(i). Assume that there exists a strictly ascending chain

Di¢DyeD3G--- (3.24)

of closed ideals of X. Note that D := U,enDy, is a closed ideal of X. Define a fuzzy set
uin X by
if x ¢ Dy,

0
p(x) =44 (3.25)
% where k =min{n eN | x € D, }.
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We claim that yu is a fuzzy closed ideal of X. Let x € X. If x ¢ D,, then obviously
UOxx)=>0=pu(x).lf x e D,\D;,,_1 forn=2,3,...,then0xx € D,,. Hence u(0*x) >
1/m=u(x).letx,yeX.if xxy e D,\Dy_1 and v € D, \Dy,_; forn =2,3,..., then
x € Dy,. It follows that

u(x)Z%:min{u(x*y),u(y)}- (3.26)

Suppose that x x y € D,, and y € Dy, \ Dy, for all m <n. Then x € Dy, and so u(x) >
1/n=1/m+1 = u(y). Hence pu(x) = min{u(x x y),u(y)}. Similarly for the case
X%y € Dy\Dy, and y € Dy, we get u(x) = min{u(x * y),u(y)}. Therefore u is
a fuzzy closed ideal of X. Since the chain (3.24) is not terminating, y has a strictly
descending sequence of values. This contradicts that the value set of any fuzzy closed
ideal is well ordered. This completes the proof. O

4. T-fuzzy subalgebras and T-fuzzy closed ideals

DEFINITION 4.1. A fuzzy set u in X is said to satisfy imaginable property if Im(u) <
Ar.

DEFINITION 4.2. A fuzzy set uin X is called a fuzzy subalgebra of X with respect to
a t-norm T (briefly, T-fuzzy subalgebra of X) if u(x*y) > T(u(x),u(y)) forallx,y €
X. A T-fuzzy subalgebra of X is said to be imaginable if it satisfies the imaginable
property.

EXAMPLE 4.3. Let T, be a t-norm defined by T;,(«x,B) = max(x+ —1,0) for all
o, B €[0,1] andlet X = {0,a,b,c,d} be a BCH-algebra with the following Cayley table:

QA O T Q O%
L0 T8 oo
QL0 T OO
Q0O OO0 O
QU O O 8 On
[ S T N R WY

(1) Define a fuzzy set y: X — [0,1] by

4.1)

0.9 ifxe{0,d},
u(x) =
0.09 otherwise.

Then u is a T,,-fuzzy subalgebra of X, which is not imaginable.
(2) Let v be a fuzzy set in X defined by

{1 if x € {0,d},
v(x) = 4.2)
0 otherwise.

Then v is an imaginable T,,-fuzzy subalgebra of X.
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PROPOSITION 4.4. Let A be a subalgebra of X and let u be a fuzzy set in X
defined by

(64} ifX EA,
u(x):= ) (4.3)
&> otherwise,

for all x € X, where x;,x» € [0,1] with &y > 2. Then u is a Ty,-fuzzy subalgebra of
X. In particular, if &1 = 1 and «; = 0 then u is an imaginable T, -fuzzy subalgebra of
X, where T,, is the t-norm in Example 4.3.

PROOF. letx,ye X.If x € Aand y € A then

T (H(x), () = Ty (001, x1) = max

—

20(1 - 1,0)

2000 —1 if X1 =
(4.4)
0 if X1 <

N = N =

<oy =pxxy).
IfxeAand y ¢ A (or, x ¢ Aand y € A) then

T (H(X),1(3)) = Trn (@1, x2) = max (&x; + 2 —1,0)

(4.5)

o1 +o—1 ifog+o=1
0 otherwise

<o S u(xxy).
If x,y ¢ A then

Tin (u(x), () = Tin (202 = 1,0)

20(2 -1 if o =
(4.6)

|
N|—= N =

0 if0(2<

<o Spu(x*xy).
Hence u is a T),-fuzzy subalgebra of X. Assume that &; = 1 and &, = 0. Then

T (a1, 1) = max (o + 1 —1,0) = 1 = &,

4.7
T (02, 002) = max (o2 + otz —1,0) = 0 = . “.7)

Thus o, 2 € Ar,, that is, Im(u) € Ar,, and so u is imaginable. This completes the
proof. O

PROPOSITION 4.5. If u is an imaginable T-fuzzy subalgebra of X, then p(0 * x) >
u(x) forall x € X.
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PROOF. For any x € X we have

u(0%xx) =T (u0),u(x))
T (u(x *2x),pu(x))  [by (HD)]
(4.8)
T(T (u( u(x)) p(x)) by (T2) and (T3)]
= u(x), [since u satisfies the imaginable property].
This completes the proof. O

THEOREM 4.6. Let u be a T-fuzzy subalgebra of X and let «x € [0,1] be such that
T(x,x) = . Then U(u; &) is either empty or a subalgebra of X, and moreover u(0) >
u(x) forall x € X.

PROOF. let x,y € U(u;x). Then
pexy) = T(u0),u(y)) 2 T(x, &) = «, (4.9)
which implies that x * y € U (u; «). Hence U (u; ) is a subalgebra of X. Since x xx =0
for all x € X, we have u(0) = pu(x*xx) = T(u(x),u(x)) = pu(x) for all x € X. O
Since T(1,1) = 1, we have the following corollary.

COROLLARY 4.7. If u is a T-fuzzy subalgebra of X, then U (u;1) is either empty or a
subalgebra of X.

THEOREM 4.8. Let u be a T-fuzzy subalgebra of X. If there is a sequence {x,} in X
such that limy, .., T(u(xy),u(xy)) =1, then u(0) = 1.

PROOF. let x € X. Then u(0) = u(x * x) = T(u(x),u(x)). Therefore u(0) =
T(u(xn),u(xn)) for each n € N. Since 1 > p(0) > limy,_ T(U(xn),u(xn)) = 1, it fol-
lows that p(0) = 1, this completes the proof. O

Let f: X — Y be a mapping of BCH-algebras. For a fuzzy set u in Y, the inverse
image of u under f, denoted by f~1(u), is defined by f~1(u)(x) = u(f(x)) for all
x € X.

THEOREM 4.9. Let f: X — Y be a homomorphism of BCH-algebras. If u is a T-fuzzy
subalgebra of Y, then £~ (u) is a T-fuzzy subalgebra of X.

PROOF. For any x,y € X, we have

SH (xxy) =u(f(xxp)) =u(f(x)* f(»))
= T(u(f(x),u(f()) (4.10)
=T (), ).

This completes the proof. O

If pis a fuzzy set in X and f is a mapping defined on X. The fuzzy set f(u) in f(X)
defined by f(u)(y) = sup{u(x) | x € f~1(y)} for all y € £(X) is called the image of
punder f. A fuzzy set u in X is said to have sup property if, for every subset T c X,
there exists to € T such that u(tyg) = sup{u(t) |t € T}.
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THEOREM 4.10. An onto homomorphic image of a fuzzy subalgebra with sup prop-
erty is a fuzzy subalgebra.

PROOF. Let f: X — Y be an onto homomorphism of BCH-algebras and let u be a
fuzzy subalgebra of X with sup property. Given u,v € Y, let xo € f~'(u) and yg €
f~1(v) be such that

p(xo) =sup{u(t) I te fHw)}, p(yo)=sup{u(t)|te f )}, (4.11)
respectively. Then

f(u*xv)=sup{u(z) |ze fLux*xv)}
> min{u(xo),u(>0)}

(4.12)
=min{sup{ut) |t f~Hw}, supiu@) | te ftw)}}
=min {f () (u), f () (v)}.
Hence f(u) is a fuzzy subalgebra of Y. O

Theorem 4.10 can be strengthened in the following way. To do this we need the
following definition.

DEFINITION 4.11. A t-norm T on [0,1] is called a continuous t-norm if T is a con-
tinuous function from [0,1] x[0,1] to [0, 1] with respect to the usual topology.

Note that the function “min” is a continuous t-norm.

THEOREM 4.12. Let T be a continuous t-norm and let f : X — Y be an onto homo-
morphism of BCH-algebras. If u is a T-fuzzy subalgebra of X, then f(u) is a T-fuzzy
subalgebra of Y.

PROOF. Let Ay = f~1(y1), Az = f"1(y2),and A1p = f~1(y1 % y2), where y1,y, €Y.
Consider the set

Al *x Az :={x €X|x=a;*a, for some a; € Ay, a € Az}. (4.13)
If x € A; % Ay, then x = x1 % x, for some x; € A; and x» € A, and so
FO0) = fx1%x2) = f(x1) % f(x2) = 1% 2, (4.14)
thatis, x € f~1(y1 % ¥2) = A12. Thus A; % Ay < Aps. It follows that

S (1% 32) =sup {u(x) | x € £ (1% 32)} =sup {u(x) | x € A}
=sup {u(x) | x € Ay *x Ay}
(4.15)
= sup {p(x1 ¥ x2) | x1 € Ay, x2 € Az}
>sup {T(u(x1),u(x2)) | x1 € A1, x2 € Az}
Since T is continuous, for every € > 0 there exists a number 6 > 0 such that if
sup{u(xi) | x1 € A1} —x{ < 8 and sup{u(x;) | x2 € A} — x5 < 6 then

T(sup{u(x1) | x1 € A1}, sup {u(x2) | x2 € Ax}) —T(xf,x¥) <e. (4.16)
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Choose a; € A; and a; € Ay such thatsup{u(x1) | x1 € A1} —p(ar) <6 and sup{u(x2)
| x2 € A2} —u(az) < 6. Then

T(sup{u(x1) | x1 € Ar}, sup {u(x2) | x2 € Ao}) =T (u(ar),u(a2)) <. (4.17)
Consequently

S (yixy2) =sup{T(u(x1),u(x2)) | X1 € A, x2 € Az}

> T(sup {u(x1) | x1 € A}, sup {u(x2) | x2 € Az}) (4.18)
=T (), () (2)),
which shows that f(u) is a T-fuzzy subalgebra of Y. O

LEMMA 4.13 (see [1]). For all x,8,y,6 € [0,1],
T(T(x,B),T(y,8)) =T(T(x,y),T(B,5)). (4.19)

THEOREM 4.14. Let X = X; XX, be the direct product BCH-algebra of BCH-algebras
X1 and X». If yy (vesp., u2) is a T-fuzzy subalgebra of X, (vesp., X2), then p = uy X o is
a T-fuzzy subalgebra of X defined by

p(xi,x2) = (U X p2) (x1,x2) = T (u1(x1), H2(x2)), (4.20)
for all (x1,x7) € X1 X X>.
PROOF. let x = (x1,x2) and v = (y1,)2) be any elements of X = X; X X,. Then
(x1,x2) * (1,02)) = H(x1 % 1,X2 % 2)
(X1 % y1), H2 (X2 % 32))

T (u1 (x1), 11 (1)), T (2 (x2), 2 (22)))
(

Hx*y) = p(
T(
T(
T(T (p1(x1),p2(x2)), T (11 (1), 12(32)))
T(
T(

%

(4.21)

p(xy,xz2),u(x2,2))
U, 1()).

Hence u is a T-fuzzy subalgebra of X. O

We will generalize the idea to the product of n T-fuzzy subalgebras. We first need
to generalize the domain of T to 1_[?:l [0,1] as follows:

DEFINITION 4.15 (see [1]). The function T;, : []/%,[0,1] — [0,1] is defined by
Tn (01, 02,0y 0n) = T (g, Trno1 (&1, -y K1, i1y e5 O) ) (4.22)
forall 1 <i<mn,wheren =2, T, =T, and T; = id (identity).

LEMMA 4.16 (see [1]). For every &, i € [0,1] wherel <i<nandn > 2,

Tn(T(O(LBl)!T((XZ!BZ)""!T((xns»gn)) = T(Tn((XI,0(21---:“n):Tn(BlvBL---aBn))-
(4.23)
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THEOREM 4.17. Let {X;}]', be the finite collection of BCH-algebras and X = [T, Xi
the direct product BCH-algebra of {X;}. Let u; be a T-fuzzy subalgebra of X;, where
1 <i<n. Then u =[], u; defined by

RS | PATS—

i=1

(4.24)
= T (1 (x1),42(x2), ..., Hn(Xn)),
is a T-fuzzy subalgebra of the BCH-algebra X.
PROOF. let x = (x1,X2,...,Xp) and ¥ = ()1,Y2,...,Vn) be any elements of X =
[T, X;i. Then
H(X ok Y) = H(X1 % Y1,X2 % Yo,y Xn ¥ Vi)
= Tn(ﬂl(xl *yl),ﬂz(xz *yZ),sun(Xn*yn))
> T (T (1 (x1), 11 (1)), T (M2 (x2), 12(>2)) s+ os T (i (Xn) s i (V) ))

(4.25)
= T(Tn(p1(x1), K2 (x2),. s b (Xn) ), T (1 (1), 2 (372) -, i (V)
= T(“(xl!x2!"'!Xn)au(ylayZ!"'!.yn))
=T (u(x),u(y)).
Hence u is a T-fuzzy subalgebra of X. O

DEFINITION 4.18. Let u and v be fuzzy sets in X. Then the T-product of u and v,
written [u - v]r, is defined by [p-v]r(x) = T(u(x),v(x)) for all x € X.

THEOREM 4.19. Let u and v be T-fuzzy subalgebras of X. If T* is a t-norm which
dominates T, that is,

T*(T(e,B), T(y,6)) = T(T*(x,y), T*(B,5)), (4.26)

for all o, B,y,6 € [0,1], then the T*-product of u and v, [u-v]r*, is a T-fuzzy subal-
gebra of X.

PROOF. For any x,y € X we have

[u-virs(x*y)=T*(u(x*y),v(x*xy))

—~ o~

> T*(T(u(x),u(»), T(v(x),v(¥))) 4.27)
> T(T*(u(x),v(x)), T*(u(»),v(»)))
= T([p-virs (x),[u-virs ().

Hence [u - v]r+ is a T-fuzzy subalgebra of X. O

Let f: X — Y be an onto homomorphism of BCH-algebras. Let T and T* be t-
norms such that T* dominates T. If u and v are T-fuzzy subalgebras of Y, then
the T*-product of y and v, [u- v]r*, is a T-fuzzy subalgebra of Y. Since every onto
homomorphic inverse image of a T-fuzzy subalgebra is a T-fuzzy subalgebra, the
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inverse images f~1(u), f~Y(v), and f~1([u-v]r+) are T-fuzzy subalgebras of X. The
next theorem provides that the relation between f~!([u - v]r+) and the T*-product

LfFH ) - f1 (V)] of f~1(w) and f1(v).

THEOREM 4.20. Let f : X — Y be an onto homomorphism of BCH-algebras. Let T*
be a t-norm such that T* dominates T. Let u and v be T-fuzzy subalgebras of Y. If
[u - v is the T*-product of p and v and [f~1(u) - f~1(v)]r= is the T*-product of
F Y (u) and f~1(v), then

SN vIe) = [F7H - 710 ] (4.28)
PROOF. For any x € X we get
S vIr) (x) = - v (f(x))
=T*(u(f(x)),v(f(x)))
=T*(f () (), (V) (x))
=[N - ) s (),

(4.29)

This completes the proof. O

DEFINITION 4.21. A fuzzy set p in X is called a fuzzy closed ideal of X under a
t-norm T (briefly, T-fuzzy closed ideal of X) if

(F1) p(0*xx) = u(x) for all x € X,

(F3) p(x)=T(u(x*xy),u(y)) forall x,y € X.

A T-fuzzy closed ideal of X is said to be imaginable if it satisfies the imaginable
property.

EXAMPLE 4.22. Let T, be a t-norm in Example 4.3. Consider a BCH-algebra X =
{0,a,b,c} with Cayley table as follows:

O T Oflx
O T OO
(=R o NN e RSN N
o on o
o8 T aln

(1) Define a fuzzy set u: X — [0,1] by u(0) = u(c) = 0.8 and u(a) = u(b) = 0.3.
Then u is a T),-fuzzy closed ideal of X which is not imaginable.
(2) Let v be a fuzzy set in X defined by

1 if x €{0,c},
v(x) = ] (4.30)
0 otherwise.

Then v is an imaginable T,,-fuzzy closed ideal of X.

THEOREM 4.23. Every imaginable T-fuzzy subalgebra satisfying (F3) is an imagin-
able T-fuzzy closed ideal.

PROOF. Using Proposition 4.5, it is straightforward. O
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PROPOSITION 4.24. If u is an imaginable T -fuzzy closed ideal of X, then u(0) > u(x)
forall x € X.

PROOF. Using (F1), (F3), and (T2), we have
H0) = T(pu(0%xx),u(x)) = T(u(x),u(x)) = pu(x) (4.31)
for all x € X, completing the proof. O
THEOREM 4.25. Every T-fuzzy closed ideal is a T-fuzzy subalgebra.
PROOF. Let u be a T-fuzzy closed ideal of X and let x,y € X. Then
((xxy)*x),u(x)) [by (F3)]

u
p((x*x)*y),u(x)) [by (H3)

plx*xy)=T(
(
( (4.32)
(

H(Oxy),u(x)) [by (HL)]
u(x),u(y)) [by (F1), (T2), and (T3)].

Il
N 9N

\%

Hence u is a T-fuzzy subalgebra of X. O

The converse of Theorem 4.25 may not be true. For example, the T,,-fuzzy subal-
gebra u in Example 4.3(1) is not a T),-fuzzy closed ideal of X since

u(a) =0.09<0.9=Ty(u@axd),u(d)). (4.33)

We give a condition for a T-fuzzy subalgebra to be a T-fuzzy closed ideal.
THEOREM 4.26. Let u be a T-fuzzy subalgebra of X. If u satisfies the imaginable
property and the inequality
Hxxy) =p(y*x) Vx,y€X, (4.34)

then u is a T-fuzzy closed ideal of X.

PROOF. Letubeanimaginable T-fuzzy subalgebra of X which satisfies the inequal-
ity
Uxxy)<uly*xx) Vx,yeX. (4.35)

It follows from Proposition 4.5 that u(0* x) > u(x) for all x € X. Let x,y € X. Then
u(x) =pu(x*x0) = pu(0%xx) =u((y*y)*x)
(4.36)
=u((y*x)%y) =T(u(y*x),u(y) = T(ux*y),u)).
Hence u is a T-fuzzy closed ideal of X. O
PROPOSITION 4.27. Let T,, be a t-norm in Example 4.3. Let D be a closed ideal of X
and let u be a fuzzy set in X defined by

b(x) _{oq ifx €D, 4.37)

o> otherwise,

forall x € X.
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(i) If x; =1 and &2 = 0, then u is an imaginable T, -fuzzy closed ideal of X.
(i) If x1,002 € (0,1) and o1 > 2, then u is a T, -fuzzy closed ideal of X which is not
imaginable.

PROOF. ()If x e D,thenOxx € Dandsou(0xx) =1=pu(x).If x ¢ D, then clearly
u(x) =0 < u(0x*x). Now obviously if x € D, then
p(x) =1= T (p(x*y),u(y)), (4.38)

for all ¥ € X. Assume that x ¢ D. Then x xy ¢ D or y ¢ D, thatis, u(x*y) =0 or
u(y) = 0. It follows that

T ((x %), u(¥)) =0 = pu(x). (4.39)

Hence p(x) = T (u(x * y),u(y)) for all x,y € X. Clearly Im(u) < Ar,,.
(ii) Similar to (i), we know that u is a Ty,-fuzzy closed ideal of X. Taking «; = 0.7,
then
T (01, 1) = T3, (0.7,0.7) = max (0.7 +0.7 - 1,0) = 0.4 # ;. (4.40)

Hence «; ¢ Ar,, that is, Im(u) ¢ Ar,,, and so u is not imaginable. O

PROPOSITION 4.28. Let u be an imaginable T-fuzzy closed ideal of X. If u satisfies
the inequality p(x) = u(0x x) for all x € X, then it satisfies the equality u(x x y) =
u(y xx) forall x,y € X.

PROOF. Let u be an imaginable T-fuzzy closed ideal of X satisfying the inequality
u(x) = u(0*xx) for all x € X. For every x,y € X, we have

u(y*xx)=u(0*(y*x)) [byassumption]

(0% (¥ *x)) * (x*¥)),u(x*y)) [by (F3)]

((0%y) % (0%kx)) % (x*xy)),u(x*xy)) [by(P3)]
(0% )k (x%xy)) % (0*xx)),u(x*xy)) [by(H3)]
(0% (x %)) *¥) * (0%x)),u(x*y)) [by (H3)]
(((0%x) % (0% ) %) * (0% x)),u(x*y)) [by (P3)]
(((0%x) % (0% ) * (0%x)) *¥),u(x %)) [by (H3)]
(((0%x) * (0% x)) % (0% y)) % ¥),u(x*y)) [by (H3)]
(0% (0%y)) *y),u(x*y)) [by (HIL)]

0),u(x*y)) [by (H3)and (H1)]

u(
u(
u(
u(
u(
u(
u(
u(
u(
u(

(
(
(
(
(
(
(
(
(
(
(H((x k) * (x*¥)),u(x*y)) [by (HD)]
(T

>T
=T
=T
=T
=T
=T
=T
=T
T
=T
>T(T(u(x*y),u(x*y)),u(x*y)) [byProposition 4.24 and (T2)]
=pu(x

(x*7y) [since u is imaginable].
(4.41)

Similarly we have p(x * y) > u(y * x) for all x,y € X, completing the proof. O
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THEOREM 4.29. Every imaginable T-fuzzy closed ideal is a fuzzy closed ideal.

PROOF. Let u be an imaginable T-fuzzy closed ideal of X. Then
p(x) = T(u(x*xy),u(y)) VYx,yeX. (4.42)
Since u is imaginable, we have

min (u(x *y),u(y)) = T(min (u(x *y),u(y)), min (u(x *y),1(y)))
<T(u(x*y),u(y)) (4.43)
<min (u(x*y),u(y)).

It follows that p(x) = T(u(x *x y),u(y)) = min(u(x * y),u(y)) so that u is a fuzzy
closed ideal of X. O

Combining Theorems 3.3, 4.29, we have the following corollary.

COROLLARY 4.30. If u is an imaginable T-fuzzy closed ideal of X, then the nonempty
level set of u is a closed ideal of X.

Noticing that the fuzzy set y in Example 4.22(1) is a fuzzy closed ideal of X, we
know from Example 4.22(1) that there exists a t-norm such that the converse of
Theorem 4.29 may not be true.

PROPOSITION 4.31. Every imaginable T-fuzzy closed ideal is order reversing.

PROOF. Let u be an imaginable T-fuzzy closed ideal of X and let x,y € X be such
that x < y. Using (P4), (T2), Theorem 4.29, Proposition 4.24, and the definition of a
fuzzy closed ideal, we get

p(x) =min {p(x *y),u(»)} = T(u(x *),u(y))

(4.44)
=T (u0),u(y)) = T(u(y),u(y)) =uly).

This completes the proof. O

PROPOSITION 4.32. Let u be a T-fuzzy closed ideal of X, where T is a diagonal t-
normon [0,1], thatis, T(x,x) = « forallx € [0,1]. If (x*a) xb =0 foralla,b,x € X,
then p(x) = T (u(a),u(b)).

PROOF. Let a,b,x € X be such that (x*a) *xb = 0. Then

p(x) = T(u(x*a),u(a))
> T(T(u((x*a)*b),u(b)),ua))
=T(T(u(0),u(b)),u(a)) (4.45)
= T(T(u(b),u(b)),ua))
=T(u(a),u(b)),

completing the proof. O
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COROLLARY 4.33. Let u be a T-fuzzy closed ideal of X, where T is a diagonal t-norm
on[0,1.If (---((x*kaq)*xaz) x---)*ka, =0 forall x,a,a,...,a, € X, then

p(x) = Tp(u(ar),u(az),...,u(an)). (4.46)
PROOF. Using induction on n, the proof is straightforward. O

THEOREM 4.34. There exists a t-norm T such that every closed ideal of X can be
realized as a level closed ideal of a T-fuzzy closed ideal of X.

PROOF. Let D be a closed ideal of X and let i be a fuzzy set in X defined by

o if xeD,
U(x) = i 4.47)
0 otherwise,

where x € (0, 1) is fixed. It is clear that U (u; ) = D. We will prove that p is a Ty,-fuzzy
closed ideal of X, where T,, is a t-norm in Example 4.3.If x € D, then 0 xx € D and so
U(0xx) =o0=pu(x).If x ¢ D, then clearly u(x) =0 <u(0*xx).Let x,y € X.If x € D,
then p(x) = x> Ty (u(xxy),u(y)).If x ¢ D, then x xy ¢ D or y ¢ D. It follows that
U(x) =0=Ty(u(x*y),u(y)). This completes the proof. O

For a family {uy | @ € A} of fuzzy sets in X, define the join V yealy and the meet
AxeaMq as follows:

(VaeaHa) (X) =sup {pa(x) | @ €A},  (AxeaMa) (x) =inf{ua(x) | x € A}, (4.48)

for all x € X, where A is any index set.

THEOREM 4.35. The family of T-fuzzy closed ideals in X is a completely distributive
lattice with respect to meet “ A” and the join “ v ”.

PROOF. Since [0,1] is a completely distributive lattice with respect to the usual
ordering in [0, 1], it is sufficient to show that Vv yeatq and Ayea g are T-fuzzy closed
ideals of X for a family of T-fuzzy closed ideals {uy | @ € A}. For any x € X, we have

(VaeaHa) (0% x) = sup {Hx (0% x) | x € A}
> sup {p(x) | @ €A}
= (VaeaHa) (X),
. (4.49)
(Aaeaba) (0% x) =inf {ua (0% x) | x € A}
>inf {uy(x) | x € A}

= (/\zxeAMx)(X)-

Let x,y € X. Then

(VaeaHa) (x) = sup {Hu(x) | o € A}
> sup {T (Ha(x * ), Ha(Y)) | x € A}
> T(sup {pa(x * ) | € A},sup {ua(y) | @ € A})
= T((Vaeata) (X %), (Vaerta) (7)),
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(AaeaMea) (x) =inf {pa(x) | @ € A}
= inf {T (pa(x * ¥),ua(y)) | @€ A}
> T(inf {ua(x * v) | @ € A},inf {us(y) | x € A})

= T((Aaeala) (X *¥), (Aaeala) ().
(4.50)

Hence V yeally and Ageply are T-fuzzy closed ideals of X, completing the proof. [

5. Conclusions and future works. We inquired into further properties on fuzzy
closed ideals in BCH-algebras, and using a t-norm T, we introduced the notion of
(imaginable) T-fuzzy subalgebras and (imaginable) T-fuzzy closed ideals, and obtained
some related results. Moreover, we discussed the direct product and T-product of T-
fuzzy subalgebras. We finally showed that the family of T-fuzzy closed ideals is a com-
pletely distributive lattice. These ideas enable us to define the notion of (imaginable)
T-fuzzy filters in BCH-algebras, and to discuss the direct products and T-products of
T-fuzzy filters. It also gives us possible problems to discuss relations among T-fuzzy
subalgebras, T-fuzzy closed ideals and T-fuzzy filters, and to construct the normal-
izations. We may also use these ideas to introduce the notion of interval-valued fuzzy
subalgebras/closed ideals.
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This subject has been extensively studied in the past years
for one-, two-, and three-dimensional space. Additionally,
such dynamical systems can exhibit a very important and still
unexplained phenomenon, called as the Fermi acceleration
phenomenon. Basically, the phenomenon of Fermi accelera-
tion (FA) is a process in which a classical particle can acquire
unbounded energy from collisions with a heavy moving wall.
This phenomenon was originally proposed by Enrico Fermi
in 1949 as a possible explanation of the origin of the large
energies of the cosmic particles. His original model was
then modified and considered under different approaches
and using many versions. Moreover, applications of FA
have been of a large broad interest in many different fields
of science including plasma physics, astrophysics, atomic
physics, optics, and time-dependent billiard problems and
they are useful for controlling chaos in Engineering and
dynamical systems exhibiting chaos (both conservative and
dissipative chaos).

We intend to publish in this special issue papers reporting
research on time-dependent billiards. The topic includes
both conservative and dissipative dynamics. Papers dis-
cussing dynamical properties, statistical and mathematical
results, stability investigation of the phase space structure,
the phenomenon of Fermi acceleration, conditions for
having suppression of Fermi acceleration, and computational
and numerical methods for exploring these structures and
applications are welcome.

To be acceptable for publication in the special issue of
Mathematical Problems in Engineering, papers must make
significant, original, and correct contributions to one or
more of the topics above mentioned. Mathematical papers
regarding the topics above are also welcome.

Authors should follow the Mathematical Problems in
Engineering manuscript format described at http://www
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submit an electronic copy of their complete manuscript
through the journal Manuscript Tracking System at http://
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