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1. Introduction. In 1983, Hu et al. introduced the notion of a BCH-algebra which is

a generalization of a BCK/BCI-algebra (see [6, 7]). In [4], Chaudhry et al. stated ideals

and filters in BCH-algebras, and studied their properties. For further properties on

BCH-algebras, we refer to [2, 3, 5]. In [8], the first author considered the fuzzification

of ideals and filters in BCH-algebras, and then described the relation among fuzzy

subalgebras, fuzzy closed ideals and fuzzy filters in BCH-algebras. In this paper, we

inquire further into the properties on fuzzy closed ideals. We give a characterization

of a fuzzy closed ideal using its level set, and establish some conditions for a fuzzy

set to be a fuzzy closed ideal. We describe the fuzzy closed ideal generated by a fuzzy

set, and give a characterization of a finite-valued fuzzy closed ideal. Using a t-norm

T , we introduce the notion of (imaginable) T -fuzzy subalgebras and (imaginable) T -

fuzzy closed ideals, and obtain some related results. We give relations between an

imaginable T -fuzzy subalgebra and an imaginable T -fuzzy closed ideal. We discuss

the direct product and T -product of T -fuzzy subalgebras. We show that the family of

T -fuzzy closed ideals is a completely distributive lattice.

2. Preliminaries. By a BCH-algebra we mean an algebra (X,∗,0) of type (2,0) sat-

isfying the following axioms:

(H1) x∗x = 0,

(H2) x∗y = 0 and y∗x = 0 imply x =y ,

(H3) (x∗y)∗z = (x∗z)∗y ,

for all x,y,z ∈X.

In a BCH-algebra X, the following statements hold:

(P1) x∗0= x.
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(P2) x∗0= 0 implies x = 0.

(P3) 0∗(x∗y)= (0∗x)∗(0∗y).
A nonempty subset A of a BCH-algebra X is called a subalgebra of X if x∗y ∈ A

whenever x,y ∈ A. A nonempty subset A of a BCH-algebra X is called a closed ideal

of X if

(i) 0∗x ∈A for all x ∈A,

(ii) x∗y ∈A and y ∈A imply that x ∈A.

In what follows, let X denote a BCH-algebra unless otherwise specified. A fuzzy set

in X is a function µ : X → [0,1]. Let µ be a fuzzy set in X. For α ∈ [0,1], the set

U(µ;α)= {x ∈X | µ(x)≥α} is called a level set of µ.

A fuzzy set µ in X is called a fuzzy subalgebra of X if

µ(x∗y)≥min
{
µ(x),µ(y)

}
, ∀x,y ∈X. (2.1)

Definition 2.1 (see [1]). By a t-norm T on [0,1], we mean a function T : [0,1]×
[0,1]→ [0,1] satisfying the following conditions:

(T1) T(x,1)= x,

(T2) T(x,y)≤ T(x,z) if y ≤ z,

(T3) T(x,y)= T(y,x),
(T4) T(x,T(y,z))= T(T(x,y),z), for all x,y,z ∈ [0,1].
In what follows, let T denote a t-norm on [0,1] unless otherwise specified. Denote

by ∆T the set of elements α∈ [0,1] such that T(α,α)=α, that is,

∆T := {α∈ [0,1] | T(α,α)=α}. (2.2)

Note that every t-norm T has a useful property:

(P4) T(α,β)≤min(α,β) for all α,β∈ [0,1].

3. Fuzzy closed ideals

Definition 3.1 (see [8]). A fuzzy set µ in X is called a fuzzy closed ideal of X if

(F1) µ(0∗x)≥ µ(x) for all x ∈X,

(F2) µ(x)≥min{µ(x∗y),µ(y)} for all x,y ∈X.

Theorem 3.2. Let D be a subset of X and let µD be a fuzzy set in X defined by

µD(x)=



α1 if x ∈D,
α2 if x ∉D,

(3.1)

for all x ∈ X and α1 > α2. Then µD is a fuzzy closed ideal of X if and only if D is a

closed ideal of X.

Proof. Assume that µD is a fuzzy closed ideal of X. Let x ∈D. Then, by (F1), we

have µ(0∗x)≥ µ(x)=α1 and so µ(0∗x)=α1. It follows that 0∗x ∈D. Let x,y ∈X
be such that x∗y ∈D and y ∈D. Then µD(x∗y)=α1 = µD(y), and hence

µD(x)≥min
{
µD(x∗y),µD(y)

}=α1. (3.2)

Thus µD(x)=α1, that is, x ∈D. Therefore D is a closed ideal of X.
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Conversely, suppose thatD is a closed ideal of X. Let x ∈X. If x ∈D, then 0∗x ∈D
and thus µD(0∗x)=α1 = µD(x). If x ∉D, then µD(x)=α2 ≤ µD(0∗x). Let x,y ∈X.

If x∗y ∈D and y ∈D, then x ∈D. Hence

µD(x)=α1 =min
{
µD(x∗y),µD(y)

}
. (3.3)

If x∗y ∉ D and y ∉ D, then clearly µD(x) ≥ min{µD(x∗y),µD(y)}. If exactly one

of x∗y and y belong to D, then exactly one of µD(x∗y) and µD(y) is equal to α2.

Therefore, µD(x) ≥ α2 =min{µD(x∗y),µD(y)}. Consequently, µD is a fuzzy closed

ideal of X.

Using the notion of level sets, we give a characterization of a fuzzy closed ideal.

Theorem 3.3. A fuzzy set µ in X is a fuzzy closed ideal of X if and only if the

nonempty level set U(µ;α) of µ is a closed ideal of X for all α∈ [0,1].

We then call U(µ;α) a level closed ideal of µ.

Proof. Assume thatµ is a fuzzy closed ideal ofX andU(µ;α) �= ∅ for allα∈ [0,1].
Let x ∈ U(µ;α). Then µ(0∗x) ≥ µ(x) ≥ α, and so 0∗x ∈ U(µ;α). Let x,y ∈ X be

such that x∗y ∈U(µ;α) and y ∈U(µ;α). Then

µ(x)≥min
{
µ(x∗y),µ(y)}≥min{α,α} =α, (3.4)

and thus x ∈ U(µ;α). Therefore U(µ;α) is a closed ideal of X. Conversely, suppose

that U(µ;α) �= ∅ is a closed ideal of X. If µ(0∗ a) < µ(a) for some a ∈ X, then

µ(0∗a) < α0 < µ(a) by taking α0 := 1/2(µ(0∗a)+µ(a)). It follows that a∈U(µ;α0)
and 0∗a ∉ U(µ;α0), which is a contradiction. Hence µ(0∗x) ≥ µ(x) for all x ∈ X.

Assume that there exist x0,y0 ∈X such that

µ
(
x0
)
<min

{
µ
(
x0∗y0

)
,µ
(
y0
)}
. (3.5)

Taking β0 := 1/2(µ(x0)+min{µ(x0 ∗y0),µ(y0)}), we get µ(x0) < β0 < µ(x0 ∗y0)
and µ(x0) < β0 < µ(y0). Thus x0∗y0 ∈U(µ;β0) and y0 ∈U(µ;β0), but x0 ∉U(µ;β0).
This is impossible. Hence µ is a fuzzy closed ideal of X.

Theorem 3.4. Let µ be a fuzzy set in X and Im(µ)= {α0,α1, . . . ,αn}, where αi < αj
whenever i > j. Let {Dk | k= 0,1,2, . . . ,n} be a family of closed ideals of X such that

(i) D0 ⊆D1 ⊆ ··· ⊆Dn =X,

(ii) µ(D∗k )=αk, where D∗k =Dk \Dk−1 and D−1 =∅ for k= 0,1, . . . ,n.

Then µ is a fuzzy closed ideal of X.

Proof. For any x ∈X there exists k∈ {0,1, . . . ,n} such that x ∈D∗k . Since Dk is a

closed ideal of X, it follows that 0∗x ∈Dk. Thus µ(0∗x)≥αk = µ(x). To prove that

µ satisfies condition (F2), we discuss the following cases: if x∗y ∈ D∗k and y ∈ D∗k ,

then x ∈Dk because Dk is a closed ideal of X. Hence

µ(x)≥αk =min
{
µ(x∗y),µ(y)}. (3.6)
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If x∗y ∉D∗k and y ∉D∗k , then the following four cases arise:

(i) x∗y ∈X \Dk and y ∈X \Dk,
(ii) x∗y ∈Dk−1 and y ∈Dk−1,

(iii) x∗y ∈X \Dk and y ∈Dk−1,

(iv) x∗y ∈Dk−1 and y ∈X \Dk.
But, in either case, we know that µ(x) ≥ min{µ(x ∗y),µ(y)}. If x ∗y ∈ D∗k and

y ∉D∗k , then either y ∈Dk−1 or y ∈X \Dk. It follows that either x ∈Dk or x ∈X \Dk.
Thus µ(x) ≥min{µ(x∗y),µ(y)}. Similarly for the case x∗y ∉D∗k and y ∈D∗k , we

have the same result. This completes the proof.

Theorem 3.5. Let Λ be a subset of [0,1] and let {Dλ | λ∈Λ} be a collection of closed

ideals of X such that

(i) X =∪λ∈ΛDλ,
(ii) α> β if and only if Dα ⊊Dβ for all α,β∈Λ.

Define a fuzzy set µ in X by µ(x) = sup{λ ∈ Λ | x ∈ Dλ} for all x ∈ X. Then µ is a

fuzzy closed ideal of X.

Proof. Let x ∈ X. Then there exists αi ∈ Λ such that x ∈ Dαi . It follows that

0∗x ∈Dαj for some αj ≥αi. Hence

µ(x)= sup
{
αk ∈Λ |αk ≤αi

}≤ sup
{
αk ∈Λ |αk ≤αj

}= µ(0∗x). (3.7)

Let x,y ∈ X be such that µ(x∗y) =m and µ(y) = n, where m,n ∈ [0,1]. Without

loss of generality we may assume that m ≤n. To prove µ satisfies condition (F2), we

consider the following three cases:

(
1◦
)
λ≤m, (

2◦
)
m<λ≤n, (

3◦
)
λ >n. (3.8)

Case (1◦) implies that x∗y ∈Dλ and y ∈Dλ. It follows that x ∈Dλ so that

µ(x)= sup
{
λ∈Λ | x ∈Dλ

}≥m=min
{
µ(x∗y),µ(y)}. (3.9)

For the case (2◦), we have x∗y ∉ Dλ and y ∈ Dλ. Then either x ∈ Dλ or x ∉ Dλ. If

x ∈ Dλ, then µ(x) = n ≥min{µ(x∗y),µ(y)}. If x ∉ Dλ, then x ∈ Dδ−Dλ for some

δ < λ, and so µ(x) >m =min{µ(x∗y),µ(y)}. Finally, case (3◦) implies x∗y ∉ Dλ
and y ∉ Dλ. Thus we have that either x ∈ Dλ or x ∉ Dλ. If x ∈ Dλ then obviously

µ(x) ≥ min{µ(x∗y),µ(y)}. If x ∉ Dλ then x ∈ Dε −Dλ for some ε < λ, and thus

µ(x)≥m=min{µ(x∗y),µ(y)}. This completes the proof.

Let D be a subset of X. The least closed ideal of X containing D is called the closed

ideal generated by D, denoted by 〈D〉. Note that if C and D are subsets of X and

C ⊆ D, then 〈C〉 ⊆ 〈D〉. Let µ be a fuzzy set in X. The least fuzzy closed ideal of X
containing µ is called a fuzzy closed ideal of X generated by µ, denoted by 〈µ〉.

Lemma 3.6. For a fuzzy set µ in X, then

µ(x)= sup
{
α∈ [0,1] | x ∈U(µ;α)

}
, ∀x ∈X. (3.10)

Proof. Let δ := sup{α∈ [0,1] | x ∈U(µ;α)} and let ε > 0 be given. Then δ−ε < α
for some α ∈ [0,1] such that x ∈ U(µ;α), and so δ−ε < µ(x). Since ε is arbitrary, it
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follows that µ(x)≥ δ. Now let µ(x)= β. Then x ∈U(µ;β) and hence β∈ {α∈ [0,1] |
x ∈U(µ;α)}. Therefore

µ(x)= β≤ sup
{
α∈ [0,1] | x ∈U(µ;α)

}= δ, (3.11)

and consequently µ(x)= δ, as desired.

Theorem 3.7. Let µ be a fuzzy set in X. Then the fuzzy set µ∗ in X defined by

µ∗(x)= sup
{
α∈ [0,1] | x ∈ 〈U(µ;α)

〉}
(3.12)

for all x ∈X is the fuzzy closed ideal 〈µ〉 generated by µ.

Proof. We first show that µ∗ is a fuzzy closed ideal of X. For any γ ∈ Im(µ∗),
let γn = γ − 1/n for any n ∈ N, where N is the set of all positive integers, and let

x ∈U(µ∗;γ). Then µ∗(x)≥ γ, and so

sup
{
α∈ [0,1] | x ∈ 〈U(µ;α)

〉}≥ γ > γn, (3.13)

for alln∈N. Hence there existsβ∈ [0,1] such thatβ > γn andx ∈ 〈U(µ;β)〉. It follows

that U(µ;β)⊆U(µ;γn) so that x ∈ 〈U(µ;β)〉 ⊆ 〈U(µ;γn)〉 for all n∈N. Consequently,

x ∈∩n∈N〈U(µ;γn)〉. On the other hand, if x ∈∩n∈N〈U(µ;γn)〉, then γn ∈ {α∈ [0,1] |
x ∈ 〈U(µ;α)〉} for any n∈N. Therefore

γ− 1
n
= γn ≤ sup

{
α∈ [0,1] | x ∈ 〈U(µ;α)

〉}= µ∗(x), (3.14)

for all n∈N. Since n is an arbitrary positive integer, it follows that γ ≤ µ∗(x) so that

x ∈ U(µ∗;γ). Hence U(µ∗;γ) = ∩n∈N〈U(µ;γn)〉, which is a closed ideal of X. Using

Theorem 3.3, we know that µ∗ is a fuzzy closed ideal of X. We now prove that µ∗

contains µ. For any x ∈ X, let β ∈ {α ∈ [0,1] | x ∈ 〈U(µ;α)〉}. Then x ∈ U(µ;β) and

so x ∈ 〈U(µ;β)〉. Thus we get β∈ {α∈ [0,1] | x ∈ 〈U(µ;α)〉}, and so

{
α∈ [0,1] | x ∈U(µ;α)

}⊆ {α∈ [0,1] | x ∈ 〈U(µ;α)
〉}
. (3.15)

It follows from Lemma 3.6 that

µ(x)= sup
{
α∈ [0,1] | x ∈U(µ;α)

}
≤ sup

{
α∈ [0,1] | x ∈ 〈U(µ;α)

〉}
= µ∗(x).

(3.16)

Hence µ ⊆ µ∗. Finally let ν be a fuzzy closed ideal of X containing µ and let x ∈
X. If µ∗(x) = 0, then clearly µ∗(x) ≤ ν(x). Assume that µ∗(x) = γ �= 0. Then x ∈
U(µ∗;γ) = ∩n∈N〈U(µ;γn)〉, that is, x ∈ U(µ;γn) for all n ∈ N. It follows that ν(x) ≥
µ(x)≥ γn = γ−1/n for all n∈ N so that ν(x)≥ γ = µ∗(x) since n is arbitrary. This

shows that µ∗ ⊆ µ, completing the proof.

Definition 3.8. A fuzzy closed ideal µ of X is said to be n-valued if Im(µ) is a

finite set of n elements. When no specific n is intended, we call µ a finite-valued fuzzy

closed ideal.
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Theorem 3.9. Let µ be a fuzzy closed ideal of X. Then µ is finite valued if and only

if there exists a finite-valued fuzzy set ν in X which generates µ. In this case, the range

sets of µ and ν are identical.

Proof. If µ : X → [0,1] is a finite-valued fuzzy closed ideal of X, then we may

choose ν = µ. Conversely, assume that ν : X → [0,1] is a finite-valued fuzzy set. Let

α1,α2, . . . ,αn be distinct elements of ν(X) such that α1 > α2 > ··· > αn, and let

Ci = ν−1(αi) for i = 1,2, . . . ,n. Clearly, ∪ji=1Ci ⊆ ∪ki=1Ci whenever j < k ≤ n. Hence if

we let Dj = 〈∪ji=1Ci〉, then we have the following chain:

D1 ⊆D2 ⊆ ··· ⊆Dn =X. (3.17)

Define a fuzzy set µ :X → [0,1] as follows:

µ(x)=



α1 if x ∈D1,

αj if x ∈Dj \Dj−1.
(3.18)

We claim that µ is a fuzzy closed ideal of X generated by ν . Clearly µ(0∗x) ≥ µ(x)
for all x ∈X. Let x,y ∈X. Then there exist i and j in {1,2, . . . ,n} such that x∗y ∈Di
and y ∈Dj . Without loss of generality, we may assume that i and j are the smallest

integers such that i ≥ j, x∗y ∈ Di, and y ∈ Dj . Since Di is a closed ideal of X, it

follows from Dj ⊆ Di that x ∈ Di. Hence µ(x) ≥ αi = min{µ(x∗y),µ(y)}, and so

µ is a fuzzy closed ideal of X. If ν(x) = αj for every x ∈ X, then x ∈ Cj and thus

x ∈ Dj . But we have µ(x) ≥ αj = ν(x). Therefore µ contains ν . Let δ : X → [0,1]
be a fuzzy closed ideal of X containing ν . Then U(ν ;αj) ⊆ U(δ;αj) for every j.
Hence U(δ;αj), being a closed ideal, contains the closed ideal generated by U(ν ;αj)=
∪ji=1Ci. Consequently, Dj ⊆ U(δ;αj). It follows that µ is contained in δ and that µ is

generated by ν . Finally, note that | Im(µ)| = n = | Im(ν)|. This completes the proof.

Theorem 3.10. Let D1 ⊇D2 ⊇ ··· be a descending chain of closed ideals of X which

terminates at finite step. For a fuzzy closed ideal µ of X, if a sequence of elements of

Im(µ) is strictly increasing, then µ is finite valued.

Proof. Suppose that µ is infinite valued. Let {αn} be a strictly increasing sequence

of elements of Im(µ). Then 0≤α1 <α2 < ··· ≤ 1. Note that U(µ;αt) is a closed ideal

of X for t = 1,2,3, . . . . Let x ∈ U(µ;αt) for t = 2,3, . . . . Then µ(x) ≥ αt > αt−1, which

implies that x ∈ U(µ;αt−1). Hence U(µ;αt) ⊆ U(µ;αt−1) for t = 2,3, . . . . Since αt−1 ∈
Im(µ), there existsxt−1 ∈X such that µ(xt−1)=αt−1. It follows thatxt−1 ∈U(µ;αt−1),
but xt−1 ∉U(µ;αt). ThusU(µ;αt)⊊U(µ;αt−1), and so we obtain a strictly descending

chain U(µ;α1) ⊋ U(µ;α2) ⊋ ··· of closed ideals of X which is not terminating. This

is impossible and the proof is complete.

Now we consider the converse of Theorem 3.10.

Theorem 3.11. Let µ be a finite-valued fuzzy closed ideal of X. Then every descend-

ing chain of closed ideals of X terminates at finite step.
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Proof. Suppose there exists a strictly descending chain D0 ⊋ D1 ⊋ D2 ⊋ ··· of

closed ideals of X which does not terminate at finite step. Define a fuzzy set µ in X
by

µ(x)=




n
n+1

if x ∈Dn \Dn+1, n= 0,1,2, . . . ,

1 if x ∈∩∞n=0Dn,
(3.19)

where D0 stands for X. Clearly, µ(0∗x) ≥ µ(x) for all x ∈ X. Let x,y ∈ X. Assume

that x∗y ∈Dn\Dn+1 and y ∈Dk\Dk+1 for n= 0,1,2, . . . ; k= 0,1,2, . . . . Without loss

of generality, we may assume that n≤ k. Then clearly y ∈Dn, and so x ∈Dn because

Dn is a closed ideal of X. Hence

µ(x)≥ n
n+1

=min
{
µ(x∗y),µ(y)}. (3.20)

If x∗y ∈ ∩∞n=0Dn and y ∈ ∩∞n=0Dn, then x ∈ ∩∞n=0Dn. Thus µ(x) = 1 = min{µ(x∗
y),µ(y)}. If x∗y ∉ ∩∞n=0Dn and y ∈ ∩∞n=0Dn, then there exists a positive integer k
such that x∗y ∈Dk \Dk+1. It follows that x ∈Dk so that

µ(x)≥ k
k+1

=min
{
µ(x∗y),µ(y)}. (3.21)

Finally suppose that x∗y ∈ ∩∞n=0Dn and y ∉ ∩∞n=0Dn. Then y ∈ Dr \Dr+1 for some

positive integer r . It follows that x ∈Dr , and hence

µ(x)≥ r
r +1

=min
{
µ(x∗y),µ(y)}. (3.22)

Consequently, we conclude that µ is a fuzzy closed ideal of X and µ has an infinite

number of different values. This is a contradiction, and the proof is complete.

Theorem 3.12. The following are equivalent:

(i) Every ascending chain of closed ideals of X terminates at finite step.

(ii) The set of values of any fuzzy closed ideal of X is a well-ordered subset of [0,1].

Proof. (i)⇒(ii). Let µ be a fuzzy closed ideal of X. Suppose that the set of values of

µ is not a well-ordered subset of [0,1]. Then there exists a strictly decreasing sequence

{αn} such that µ(xn)=αn. It follows that

U
(
µ;α1

)
⊊U

(
µ;α2

)
⊊U

(
µ;α3

)
⊊ ··· (3.23)

is a strictly ascending chain of closed ideals of X. This is impossible.

(ii)⇒(i). Assume that there exists a strictly ascending chain

D1 ⊊D2 ⊊D3 ⊊ ··· (3.24)

of closed ideals of X. Note that D :=∪n∈NDn is a closed ideal of X. Define a fuzzy set

µ in X by

µ(x)=




0 if x ∉Dn,

1
k

where k=min
{
n∈N | x ∈Dn

}
.

(3.25)
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We claim that µ is a fuzzy closed ideal of X. Let x ∈ X. If x ∉ Dn, then obviously

µ(0∗x)≥ 0= µ(x). If x ∈Dn\Dn−1 for n= 2,3, . . . , then 0∗x ∈Dn. Hence µ(0∗x)≥
1/n= µ(x). Let x,y ∈X. If x∗y ∈Dn \Dn−1 and y ∈Dn \Dn−1 for n= 2,3, . . . , then

x ∈Dn. It follows that

µ(x)≥ 1
n
=min

{
µ(x∗y),µ(y)}. (3.26)

Suppose that x∗y ∈Dn and y ∈Dn \Dm for all m<n. Then x ∈Dn, and so µ(x)≥
1/n ≥ 1/m+1 ≥ µ(y). Hence µ(x) ≥ min{µ(x ∗y),µ(y)}. Similarly for the case

x ∗y ∈ Dn \Dm and y ∈ Dn, we get µ(x) ≥ min{µ(x ∗y),µ(y)}. Therefore µ is

a fuzzy closed ideal of X. Since the chain (3.24) is not terminating, µ has a strictly

descending sequence of values. This contradicts that the value set of any fuzzy closed

ideal is well ordered. This completes the proof.

4. T -fuzzy subalgebras and T -fuzzy closed ideals

Definition 4.1. A fuzzy set µ in X is said to satisfy imaginable property if Im(µ)⊆
∆T .

Definition 4.2. A fuzzy set µ in X is called a fuzzy subalgebra of X with respect to

a t-norm T (briefly, T -fuzzy subalgebra of X) if µ(x∗y)≥ T(µ(x),µ(y)) for all x,y ∈
X. A T -fuzzy subalgebra of X is said to be imaginable if it satisfies the imaginable

property.

Example 4.3. Let Tm be a t-norm defined by Tm(α,β) = max(α+β−1,0) for all

α,β∈ [0,1] and let X = {0,a,b,c,d} be a BCH-algebra with the following Cayley table:

∗ 0 a b c d
0 0 0 0 0 d
a a 0 0 a d
b b b 0 0 d
c c c c 0 d
d d d d d 0

(1) Define a fuzzy set µ :X → [0,1] by

µ(x)=




0.9 if x ∈ {0,d},
0.09 otherwise.

(4.1)

Then µ is a Tm-fuzzy subalgebra of X, which is not imaginable.

(2) Let ν be a fuzzy set in X defined by

ν(x)=




1 if x ∈ {0,d},
0 otherwise.

(4.2)

Then ν is an imaginable Tm-fuzzy subalgebra of X.
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Proposition 4.4. Let A be a subalgebra of X and let µ be a fuzzy set in X
defined by

µ(x) :=



α1 if x ∈A,
α2 otherwise,

(4.3)

for all x ∈ X, where α1,α2 ∈ [0,1] with α1 > α2. Then µ is a Tm-fuzzy subalgebra of

X. In particular, if α1 = 1 and α2 = 0 then µ is an imaginable Tm-fuzzy subalgebra of

X, where Tm is the t-norm in Example 4.3.

Proof. Let x,y ∈X. If x ∈A and y ∈A then

Tm
(
µ(x),µ(y)

)= Tm(α1,α1
)=max

(
2α1−1,0

)

=




2α1−1 if α1 ≥ 1
2

0 if α1 <
1
2

≤α1 = µ(x∗y).

(4.4)

If x ∈A and y ∉A (or, x ∉A and y ∈A) then

Tm
(
µ(x),µ(y)

)= Tm(α1,α2
)=max

(
α1+α2−1,0

)

=



α1+α2−1 if α1+α2 ≥ 1

0 otherwise

≤α2 ≤ µ(x∗y).

(4.5)

If x,y ∉A then

Tm
(
µ(x),µ(y)

)= Tm(2α2−1,0
)

=




2α2−1 if α2 ≥ 1
2

0 if α2 <
1
2

≤α2 ≤ µ(x∗y).

(4.6)

Hence µ is a Tm-fuzzy subalgebra of X. Assume that α1 = 1 and α2 = 0. Then

Tm
(
α1,α1

)=max
(
α1+α1−1,0

)= 1=α1,

Tm
(
α2,α2

)=max
(
α2+α2−1,0

)= 0=α2.
(4.7)

Thus α1,α2 ∈ ∆Tm , that is, Im(µ) ⊆ ∆Tm and so µ is imaginable. This completes the

proof.

Proposition 4.5. If µ is an imaginable T -fuzzy subalgebra of X, then µ(0∗x) ≥
µ(x) for all x ∈X.
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Proof. For any x ∈X we have

µ(0∗x)≥ T(µ(0),µ(x))
= T(µ(x∗x),µ(x)) [by (H1)]

≥ T(T(µ(x),µ(x)),µ(x)) [by (T2) and (T3)]

= µ(x), [since µ satisfies the imaginable property].

(4.8)

This completes the proof.

Theorem 4.6. Let µ be a T -fuzzy subalgebra of X and let α ∈ [0,1] be such that

T(α,α)=α. Then U(µ;α) is either empty or a subalgebra of X, and moreover µ(0)≥
µ(x) for all x ∈X.

Proof. Let x,y ∈U(µ;α). Then

µ(x∗y)≥ T(µ(x),µ(y))≥ T(α,α)=α, (4.9)

which implies that x∗y ∈U(µ;α). Hence U(µ;α) is a subalgebra of X. Since x∗x = 0

for all x ∈X, we have µ(0)= µ(x∗x)≥ T(µ(x),µ(x))= µ(x) for all x ∈X.

Since T(1,1)= 1, we have the following corollary.

Corollary 4.7. If µ is a T -fuzzy subalgebra of X, then U(µ;1) is either empty or a

subalgebra of X.

Theorem 4.8. Let µ be a T -fuzzy subalgebra of X. If there is a sequence {xn} in X
such that limn→∞T(µ(xn),µ(xn))= 1, then µ(0)= 1.

Proof. Let x ∈ X. Then µ(0) = µ(x ∗ x) ≥ T(µ(x),µ(x)). Therefore µ(0) ≥
T(µ(xn),µ(xn)) for each n ∈ N. Since 1 ≥ µ(0) ≥ limn→∞T(µ(xn),µ(xn)) = 1, it fol-

lows that µ(0)= 1, this completes the proof.

Let f : X → Y be a mapping of BCH-algebras. For a fuzzy set µ in Y , the inverse

image of µ under f , denoted by f−1(µ), is defined by f−1(µ)(x) = µ(f(x)) for all

x ∈X.

Theorem 4.9. Let f :X → Y be a homomorphism of BCH-algebras. If µ is a T -fuzzy

subalgebra of Y , then f−1(µ) is a T -fuzzy subalgebra of X.

Proof. For any x,y ∈X, we have

f−1(µ)(x∗y)= µ(f(x∗y))= µ(f(x)∗f(y))
≥ T(µ(f(x)),µ(f(y)))
= T(f−1(µ)(x),f−1(µ)(y)

)
.

(4.10)

This completes the proof.

If µ is a fuzzy set in X and f is a mapping defined on X. The fuzzy set f(µ) in f(X)
defined by f(µ)(y)= sup{µ(x) | x ∈ f−1(y)} for all y ∈ f(X) is called the image of

µ under f . A fuzzy set µ in X is said to have sup property if, for every subset T ⊆ X,

there exists t0 ∈ T such that µ(t0)= sup{µ(t) | t ∈ T}.
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Theorem 4.10. An onto homomorphic image of a fuzzy subalgebra with sup prop-

erty is a fuzzy subalgebra.

Proof. Let f : X → Y be an onto homomorphism of BCH-algebras and let µ be a

fuzzy subalgebra of X with sup property. Given u,v ∈ Y , let x0 ∈ f−1(u) and y0 ∈
f−1(v) be such that

µ
(
x0
)= sup

{
µ(t) | t ∈ f−1(u)

}
, µ

(
y0
)= sup

{
µ(t) | t ∈ f−1(v)

}
, (4.11)

respectively. Then

f(µ)(u∗v)= sup
{
µ(z) | z ∈ f−1(u∗v)}

≥min
{
µ
(
x0
)
,µ
(
y0
)}

=min
{

sup
{
µ(t) | t ∈ f−1(u)

}
, sup

{
µ(t) | t ∈ f−1(v)

}}
=min

{
f(µ)(u),f (µ)(v)

}
.

(4.12)

Hence f(µ) is a fuzzy subalgebra of Y .

Theorem 4.10 can be strengthened in the following way. To do this we need the

following definition.

Definition 4.11. A t-norm T on [0,1] is called a continuous t-norm if T is a con-

tinuous function from [0,1]×[0,1] to [0,1] with respect to the usual topology.

Note that the function “min” is a continuous t-norm.

Theorem 4.12. Let T be a continuous t-norm and let f : X → Y be an onto homo-

morphism of BCH-algebras. If µ is a T -fuzzy subalgebra of X, then f(µ) is a T -fuzzy

subalgebra of Y .

Proof. Let A1 = f−1(y1), A2 = f−1(y2), and A12 = f−1(y1∗y2), where y1,y2 ∈ Y .

Consider the set

A1∗A2 := {x ∈X | x = a1∗a2 for some a1 ∈A1, a2 ∈A2
}
. (4.13)

If x ∈A1∗A2, then x = x1∗x2 for some x1 ∈A1 and x2 ∈A2 and so

f(x)= f (x1∗x2
)= f (x1

)∗f (x2
)=y1∗y2, (4.14)

that is, x ∈ f−1(y1∗y2)=A12. Thus A1∗A2 ⊆A12. It follows that

f(µ)
(
y1∗y2

)= sup
{
µ(x) | x ∈ f−1(y1∗y2

)}= sup
{
µ(x) | x ∈A12

}
≥ sup

{
µ(x) | x ∈A1∗A2

}
≥ sup

{
µ
(
x1∗x2

) | x1 ∈A1,x2 ∈A2
}

≥ sup
{
T
(
µ
(
x1
)
,µ
(
x2
)) | x1 ∈A1, x2 ∈A2

}
.

(4.15)

Since T is continuous, for every ε > 0 there exists a number δ > 0 such that if

sup{µ(x1) | x1 ∈A1}−x∗1 ≤ δ and sup{µ(x2) | x2 ∈A2}−x∗2 ≤ δ then

T
(
sup

{
µ
(
x1
) | x1 ∈A1

}
,sup

{
µ
(
x2
) | x2 ∈A2

})−T(x∗1 ,x∗2 )≤ ε. (4.16)
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Choosea1 ∈A1 anda2 ∈A2 such that sup{µ(x1) | x1 ∈A1}−µ(a1)≤δ and sup{µ(x2)
| x2 ∈A2}−µ(a2)≤ δ. Then

T
(
sup

{
µ
(
x1
) | x1 ∈A1

}
, sup

{
µ
(
x2
) | x2 ∈A2

})−T(µ(a1
)
,µ
(
a2
))≤ ε. (4.17)

Consequently

f(µ)
(
y1∗y2

)≥ sup
{
T
(
µ
(
x1
)
,µ
(
x2
)) | x1 ∈A1,x2 ∈A2

}
≥ T(sup

{
µ
(
x1
) | x1 ∈A1

}
, sup

{
µ
(
x2
) | x2 ∈A2

})
= T(f(µ)(y1

)
,f (µ)

(
y2
))
,

(4.18)

which shows that f(µ) is a T -fuzzy subalgebra of Y .

Lemma 4.13 (see [1]). For all α,β,γ,δ∈ [0,1],

T
(
T(α,β),T(γ,δ)

)= T(T(α,γ),T(β,δ)). (4.19)

Theorem 4.14. Let X =X1×X2 be the direct product BCH-algebra of BCH-algebras

X1 and X2. If µ1 (resp., µ2) is a T -fuzzy subalgebra of X1 (resp., X2), then µ = µ1×µ2 is

a T -fuzzy subalgebra of X defined by

µ
(
x1,x2

)= (µ1×µ2
)(
x1,x2

)= T(µ1
(
x1
)
,µ2
(
x2
))
, (4.20)

for all (x1,x2)∈X1×X2.

Proof. Let x = (x1,x2) and y = (y1,y2) be any elements of X =X1×X2. Then

µ(x∗y)= µ((x1,x2
)∗(y1,y2

))= µ(x1∗y1,x2∗y2
)

= T(µ1
(
x1∗y1

)
,µ2
(
x2∗y2

))
≥ T(T(µ1

(
x1
)
,µ1
(
y1
))
,T
(
µ2
(
x2
)
,µ2
(
y2
)))

= T(T(µ1
(
x1
)
,µ2
(
x2
))
,T
(
µ1
(
y1
)
,µ2
(
y2
)))

= T(µ(x1,x2
)
,µ
(
x2,y2

))
= T(µ(x),µ(y)).

(4.21)

Hence µ is a T -fuzzy subalgebra of X.

We will generalize the idea to the product of n T -fuzzy subalgebras. We first need

to generalize the domain of T to
∏n
i=1[0,1] as follows:

Definition 4.15 (see [1]). The function Tn :
∏n
i=1[0,1]→ [0,1] is defined by

Tn
(
α1,α2, . . . ,αn

)= T(αi,Tn−1
(
α1, . . . ,αi−1,αi+1, . . . ,αn

))
, (4.22)

for all 1≤ i≤n, where n≥ 2, T2 = T , and T1 = id (identity).

Lemma 4.16 (see [1]). For every αi,βi ∈ [0,1] where 1≤ i≤n and n≥ 2,

Tn
(
T
(
α1,β1

)
,T
(
α2,β2

)
, . . . ,T

(
αn,βn

))= T(Tn(α1,α2, . . . ,αn
)
,Tn

(
β1,β2, . . . ,βn

))
.

(4.23)
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Theorem 4.17. Let {Xi}ni=1 be the finite collection of BCH-algebras and X =∏n
i=1Xi

the direct product BCH-algebra of {Xi}. Let µi be a T -fuzzy subalgebra of Xi, where

1≤ i≤n. Then µ =∏n
i=1µi defined by

µ
(
x1,x2, . . . ,xn

)=
( n∏
i=1

µi

)(
x1,x2, . . . ,xn

)

= Tn
(
µ1
(
x1
)
,µ2
(
x2
)
, . . . ,µn

(
xn
))
,

(4.24)

is a T -fuzzy subalgebra of the BCH-algebra X.

Proof. Let x = (x1,x2, . . . ,xn) and y = (y1,y2, . . . ,yn) be any elements of X =∏n
i=1Xi. Then

µ(x∗y)= µ(x1∗y1,x2∗y2, . . . ,xn∗yn
)

= Tn
(
µ1
(
x1∗y1

)
,µ2
(
x2∗y2

)
, . . . ,µn

(
xn∗yn

))
≥ Tn

(
T
(
µ1
(
x1
)
,µ1
(
y1
))
,T
(
µ2
(
x2
)
,µ2
(
y2
))
, . . . ,T

(
µn
(
xn
)
,µn

(
yn
)))

= T(Tn(µ1
(
x1
)
,µ2
(
x2
)
, . . . ,µn

(
xn
))
,Tn

(
µ1
(
y1
)
,µ2
(
y2
)
, . . . ,µn

(
yn
)))

= T(µ(x1,x2, . . . ,xn
)
,µ
(
y1,y2, . . . ,yn

))
= T(µ(x),µ(y)).

(4.25)

Hence µ is a T -fuzzy subalgebra of X.

Definition 4.18. Let µ and ν be fuzzy sets in X. Then the T -product of µ and ν ,

written [µ ·ν]T , is defined by [µ ·ν]T (x)= T(µ(x),ν(x)) for all x ∈X.

Theorem 4.19. Let µ and ν be T -fuzzy subalgebras of X. If T∗ is a t-norm which

dominates T , that is,

T∗
(
T(α,β),T(γ,δ)

)≥ T(T∗(α,γ),T∗(β,δ)), (4.26)

for all α,β,γ,δ ∈ [0,1], then the T∗-product of µ and ν , [µ ·ν]T∗ , is a T -fuzzy subal-

gebra of X.

Proof. For any x,y ∈X we have

[µ ·ν]T∗(x∗y)= T∗
(
µ(x∗y),ν(x∗y))

≥ T∗(T(µ(x),µ(y)),T(ν(x),ν(y)))
≥ T(T∗(µ(x),ν(x)),T∗(µ(y),ν(y)))
= T([µ ·ν]T∗(x),[µ ·ν]T∗(y)).

(4.27)

Hence [µ ·ν]T∗ is a T -fuzzy subalgebra of X.

Let f : X → Y be an onto homomorphism of BCH-algebras. Let T and T∗ be t-
norms such that T∗ dominates T . If µ and ν are T -fuzzy subalgebras of Y , then

the T∗-product of µ and ν , [µ ·ν]T∗ , is a T -fuzzy subalgebra of Y . Since every onto

homomorphic inverse image of a T -fuzzy subalgebra is a T -fuzzy subalgebra, the
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inverse images f−1(µ), f−1(ν), and f−1([µ ·ν]T∗) are T -fuzzy subalgebras of X. The

next theorem provides that the relation between f−1([µ ·ν]T∗) and the T∗-product

[f−1(µ)·f−1(ν)]T∗ of f−1(µ) and f−1(ν).

Theorem 4.20. Let f : X → Y be an onto homomorphism of BCH-algebras. Let T∗

be a t-norm such that T∗ dominates T . Let µ and ν be T -fuzzy subalgebras of Y . If

[µ ·ν]T∗ is the T∗-product of µ and ν and [f−1(µ) ·f−1(ν)]T∗ is the T∗-product of

f−1(µ) and f−1(ν), then

f−1([µ ·ν]T∗)= [f−1(µ)·f−1(ν)
]
T∗ . (4.28)

Proof. For any x ∈X we get

f−1([µ ·ν]T∗)(x)= [µ ·ν]T∗(f(x))
= T∗(µ(f(x)),ν(f(x)))
= T∗(f−1(µ)(x),f−1(ν)(x)

)
= [f−1(µ)·f−1(ν)

]
T∗(x),

(4.29)

This completes the proof.

Definition 4.21. A fuzzy set µ in X is called a fuzzy closed ideal of X under a

t-norm T (briefly, T -fuzzy closed ideal of X) if

(F1) µ(0∗x)≥ µ(x) for all x ∈X,

(F3) µ(x)≥ T(µ(x∗y),µ(y)) for all x,y ∈X.

A T -fuzzy closed ideal of X is said to be imaginable if it satisfies the imaginable

property.

Example 4.22. Let Tm be a t-norm in Example 4.3. Consider a BCH-algebra X =
{0,a,b,c} with Cayley table as follows:

∗ 0 a b c
0 0 c 0 c
a a 0 c b
b b c 0 a
c c 0 c 0

(1) Define a fuzzy set µ : X → [0,1] by µ(0) = µ(c) = 0.8 and µ(a) = µ(b) = 0.3.

Then µ is a Tm-fuzzy closed ideal of X which is not imaginable.

(2) Let ν be a fuzzy set in X defined by

ν(x)=

1 if x ∈ {0,c},

0 otherwise.
(4.30)

Then ν is an imaginable Tm-fuzzy closed ideal of X.

Theorem 4.23. Every imaginable T -fuzzy subalgebra satisfying (F3) is an imagin-

able T -fuzzy closed ideal.

Proof. Using Proposition 4.5, it is straightforward.
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Proposition 4.24. If µ is an imaginable T -fuzzy closed ideal of X, then µ(0)≥ µ(x)
for all x ∈X.

Proof. Using (F1), (F3), and (T2), we have

µ(0)≥ T(µ(0∗x),µ(x))≥ T(µ(x),µ(x))= µ(x) (4.31)

for all x ∈X, completing the proof.

Theorem 4.25. Every T -fuzzy closed ideal is a T -fuzzy subalgebra.

Proof. Let µ be a T -fuzzy closed ideal of X and let x,y ∈X. Then

µ(x∗y)≥ T(µ((x∗y)∗x),µ(x)) [by (F3)]

= T(µ((x∗x)∗y),µ(x)) [by (H3)]

= T(µ(0∗y),µ(x)) [by (H1)]

≥ T(µ(x),µ(y)) [by (F1), (T2), and (T3)].

(4.32)

Hence µ is a T -fuzzy subalgebra of X.

The converse of Theorem 4.25 may not be true. For example, the Tm-fuzzy subal-

gebra µ in Example 4.3(1) is not a Tm-fuzzy closed ideal of X since

µ(a)= 0.09< 0.9= Tm
(
µ(a∗d),µ(d)). (4.33)

We give a condition for a T -fuzzy subalgebra to be a T -fuzzy closed ideal.

Theorem 4.26. Let µ be a T -fuzzy subalgebra of X. If µ satisfies the imaginable

property and the inequality

µ(x∗y)≤ µ(y∗x) ∀x,y ∈X, (4.34)

then µ is a T -fuzzy closed ideal of X.

Proof. Let µ be an imaginable T -fuzzy subalgebra ofX which satisfies the inequal-

ity

µ(x∗y)≤ µ(y∗x) ∀x,y ∈X. (4.35)

It follows from Proposition 4.5 that µ(0∗x)≥ µ(x) for all x ∈X. Let x,y ∈X. Then

µ(x)= µ(x∗0)≥ µ(0∗x)= µ((y∗y)∗x)
= µ((y∗x)∗y)≥ T(µ(y∗x),µ(y))≥ T(µ(x∗y),µ(y)). (4.36)

Hence µ is a T -fuzzy closed ideal of X.

Proposition 4.27. Let Tm be a t-norm in Example 4.3. Let D be a closed ideal of X
and let µ be a fuzzy set in X defined by

µ(x)=

α1 if x ∈D,
α2 otherwise,

(4.37)

for all x ∈X.
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(i) If α1 = 1 and α2 = 0, then µ is an imaginable Tm-fuzzy closed ideal of X.

(ii) If α1,α2 ∈ (0,1) and α1 >α2, then µ is a Tm-fuzzy closed ideal of X which is not

imaginable.

Proof. (i) If x ∈D, then 0∗x ∈D and so µ(0∗x)= 1= µ(x). If x ∉D, then clearly

µ(x)= 0≤ µ(0∗x). Now obviously if x ∈D, then

µ(x)= 1≥ Tm
(
µ(x∗y),µ(y)), (4.38)

for all y ∈ X. Assume that x ∉ D. Then x∗y ∉ D or y ∉ D, that is, µ(x∗y) = 0 or

µ(y)= 0. It follows that

Tm
(
µ(x∗y),µ(y))= 0= µ(x). (4.39)

Hence µ(x)≥ Tm(µ(x∗y),µ(y)) for all x,y ∈X. Clearly Im(µ)⊆∆Tm .

(ii) Similar to (i), we know that µ is a Tm-fuzzy closed ideal of X. Taking α1 = 0.7,

then

Tm
(
α1,α1

)= Tm(0.7,0.7)=max(0.7+0.7−1,0)= 0.4 �=α1. (4.40)

Hence α1 ∉∆Tm , that is, Im(µ)�∆Tm , and so µ is not imaginable.

Proposition 4.28. Let µ be an imaginable T -fuzzy closed ideal of X. If µ satisfies

the inequality µ(x) ≥ µ(0∗x) for all x ∈ X, then it satisfies the equality µ(x∗y) =
µ(y∗x) for all x,y ∈X.

Proof. Let µ be an imaginable T -fuzzy closed ideal of X satisfying the inequality

µ(x)≥ µ(0∗x) for all x ∈X. For every x,y ∈X, we have

µ(y∗x)≥ µ(0∗(y∗x)) [by assumption]

≥ T(µ((0∗(y∗x))∗(x∗y)),µ(x∗y)) [by (F3)]

= T(µ(((0∗y)∗(0∗x))∗(x∗y)),µ(x∗y)) [by (P3)]

= T(µ(((0∗y)∗(x∗y))∗(0∗x)),µ(x∗y)) [by (H3)]

= T(µ(((0∗(x∗y))∗y)∗(0∗x)),µ(x∗y)) [by (H3)]

= T(µ((((0∗x)∗(0∗y))∗y)∗(0∗x)),µ(x∗y)) [by (P3)]

= T(µ((((0∗x)∗(0∗y))∗(0∗x))∗y),µ(x∗y)) [by (H3)]

= T(µ((((0∗x)∗(0∗x))∗(0∗y))∗y),µ(x∗y)) [by (H3)]

= T(µ((0∗(0∗y))∗y),µ(x∗y)) [by (H1)]

= T(µ(0),µ(x∗y)) [by (H3) and (H1)]

= T(µ((x∗y)∗(x∗y)),µ(x∗y)) [by (H1)]

≥ T(T(µ(x∗y),µ(x∗y)),µ(x∗y)) [by Proposition 4.24 and (T2)]

= µ(x∗y) [since µ is imaginable].

(4.41)

Similarly we have µ(x∗y)≥ µ(y∗x) for all x,y ∈X, completing the proof.
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Theorem 4.29. Every imaginable T -fuzzy closed ideal is a fuzzy closed ideal.

Proof. Let µ be an imaginable T -fuzzy closed ideal of X. Then

µ(x)≥ T(µ(x∗y),µ(y)) ∀x,y ∈X. (4.42)

Since µ is imaginable, we have

min
(
µ(x∗y),µ(y))= T(min

(
µ(x∗y),µ(y)),min

(
µ(x∗y),µ(y)))

≤ T(µ(x∗y),µ(y))
≤min

(
µ(x∗y),µ(y)).

(4.43)

It follows that µ(x) ≥ T(µ(x∗y),µ(y)) = min(µ(x∗y),µ(y)) so that µ is a fuzzy

closed ideal of X.

Combining Theorems 3.3, 4.29, we have the following corollary.

Corollary 4.30. If µ is an imaginable T -fuzzy closed ideal of X, then the nonempty

level set of µ is a closed ideal of X.

Noticing that the fuzzy set µ in Example 4.22(1) is a fuzzy closed ideal of X, we

know from Example 4.22(1) that there exists a t-norm such that the converse of

Theorem 4.29 may not be true.

Proposition 4.31. Every imaginable T -fuzzy closed ideal is order reversing.

Proof. Let µ be an imaginable T -fuzzy closed ideal of X and let x,y ∈X be such

that x ≤ y . Using (P4), (T2), Theorem 4.29, Proposition 4.24, and the definition of a

fuzzy closed ideal, we get

µ(x)≥min
{
µ(x∗y),µ(y)}≥ T(µ(x∗y),µ(y))

= T(µ(0),µ(y))≥ T(µ(y),µ(y))= µ(y). (4.44)

This completes the proof.

Proposition 4.32. Let µ be a T -fuzzy closed ideal of X, where T is a diagonal t-
norm on [0,1], that is, T(α,α)=α for all α∈ [0,1]. If (x∗a)∗b = 0 for all a,b,x ∈X,

then µ(x)≥ T(µ(a),µ(b)).

Proof. Let a,b,x ∈X be such that (x∗a)∗b = 0. Then

µ(x)≥ T(µ(x∗a),µ(a))
≥ T(T(µ((x∗a)∗b),µ(b)),µ(a))
= T(T(µ(0),µ(b)),µ(a))
≥ T(T(µ(b),µ(b)),µ(a))
= T(µ(a),µ(b)),

(4.45)

completing the proof.
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Corollary 4.33. Let µ be a T -fuzzy closed ideal of X, where T is a diagonal t-norm

on [0,1]. If (···((x∗a1)∗a2)∗···)∗an = 0 for all x,a1,a2, . . . ,an ∈X, then

µ(x)≥ Tn
(
µ
(
a1
)
,µ
(
a2
)
, . . . ,µ

(
an
))
. (4.46)

Proof. Using induction on n, the proof is straightforward.

Theorem 4.34. There exists a t-norm T such that every closed ideal of X can be

realized as a level closed ideal of a T -fuzzy closed ideal of X.

Proof. Let D be a closed ideal of X and let µ be a fuzzy set in X defined by

µ(x)=

α if x ∈D,

0 otherwise,
(4.47)

where α∈ (0,1) is fixed. It is clear that U(µ;α)=D. We will prove that µ is a Tm-fuzzy

closed ideal of X, where Tm is a t-norm in Example 4.3. If x ∈D, then 0∗x ∈D and so

µ(0∗x)=α= µ(x). If x ∉D, then clearly µ(x)= 0≤ µ(0∗x). Let x,y ∈X. If x ∈D,

then µ(x)=α≥ Tm(µ(x∗y),µ(y)). If x ∉D, then x∗y ∉D or y ∉D. It follows that

µ(x)= 0= Tm(µ(x∗y),µ(y)). This completes the proof.

For a family {µα | α ∈ Λ} of fuzzy sets in X, define the join ∨α∈Λµα and the meet

∧α∈Λµα as follows:

(∨α∈Λµα)(x)= sup
{
µα(x) |α∈Λ

}
,

(∧α∈Λµα)(x)= inf
{
µα(x) |α∈Λ

}
, (4.48)

for all x ∈X, where Λ is any index set.

Theorem 4.35. The family of T -fuzzy closed ideals in X is a completely distributive

lattice with respect to meet “ ∧” and the join “ ∨”.

Proof. Since [0,1] is a completely distributive lattice with respect to the usual

ordering in [0,1], it is sufficient to show that ∨α∈Λµα and ∧α∈Λµα are T -fuzzy closed

ideals of X for a family of T -fuzzy closed ideals {µα |α∈Λ}. For any x ∈X, we have
(∨α∈Λµα)(0∗x)= sup

{
µα(0∗x) |α∈Λ

}
≥ sup

{
µα(x) |α∈Λ

}
= (∨α∈Λµα)(x),(∧α∈Λµα)(0∗x)= inf

{
µα(0∗x) |α∈Λ

}
≥ inf

{
µα(x) |α∈Λ

}
= (∧α∈Λµα)(x).

(4.49)

Let x,y ∈X. Then

(∨α∈Λµα)(x)= sup
{
µα(x) |α∈Λ

}
≥ sup

{
T
(
µα(x∗y),µα(y)

) |α∈Λ}
≥ T(sup

{
µα(x∗y) |α∈Λ

}
,sup

{
µα(y) |α∈Λ

})
= T((∨α∈Λµα)(x∗y),(∨α∈Λµα)(y)),
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(∧α∈Λµα)(x)= inf
{
µα(x) |α∈Λ

}
≥ inf

{
T
(
µα(x∗y),µα(y)

) |α∈Λ}
≥ T( inf

{
µα(x∗y) |α∈Λ

}
, inf

{
µα(y) |α∈Λ

})
= T((∧α∈Λµα)(x∗y),(∧α∈Λµα)(y)).

(4.50)

Hence ∨α∈Λµα and ∧α∈Λµα are T -fuzzy closed ideals of X, completing the proof.

5. Conclusions and future works. We inquired into further properties on fuzzy

closed ideals in BCH-algebras, and using a t-norm T , we introduced the notion of

(imaginable) T -fuzzy subalgebras and (imaginable) T -fuzzy closed ideals, and obtained

some related results. Moreover, we discussed the direct product and T -product of T -

fuzzy subalgebras. We finally showed that the family of T -fuzzy closed ideals is a com-

pletely distributive lattice. These ideas enable us to define the notion of (imaginable)

T -fuzzy filters in BCH-algebras, and to discuss the direct products and T -products of

T -fuzzy filters. It also gives us possible problems to discuss relations among T -fuzzy

subalgebras, T -fuzzy closed ideals and T -fuzzy filters, and to construct the normal-

izations. We may also use these ideas to introduce the notion of interval-valued fuzzy

subalgebras/closed ideals.
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