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ABSTRACT. We consider the intuitionistic fuzzification of the concept of interior ideals in
a semigroup S, and investigate some properties of such ideals. For any homomorphism
f from a semigroup S to a semigroup T, if B = (up,yg) is an intuitionistic fuzzy interior
ideal of T, then the preimage f~1(B) = (f~1(ug),f~1(yz)) of Bunder f is an intuitionistic
fuzzy interior ideal of S.

2000 Mathematics Subject Classification. 20M12, 03E72, 94D05.

1. Introduction. The idea of “intuitionistic fuzzy set” was first published by
Atanassov [1, 2], as a generalization of the notion of fuzzy set. Jun et al. consid-
ered the fuzzification of interior ideals in semigroups [3]. In this paper, we intro-
duce the notion of an intuitionistic fuzzy interior ideal of a semigroup S, and then
some related properties are investigated. Characterizations of intuitionistic fuzzy
interior ideals are given. Also for any homomorphism f from a semigroup S to a
semigroup T, if B = (up,yp) is an intuitionistic fuzzy interior ideal of T, then the
preimage f~1(B) = (f~"(ug),f ' (yz)) of B under f is an intuitionistic fuzzy interior
ideal of S.

2. Preliminaries. Let X be a nonempty fixed set. An intuitionistic fuzzy set (IFS for
short) A is an object having the form

A={(x,pa(x),ya(x)) :x € X}, (2.1)

where the functions ps : X — [0,1] and y4 : X — [0,1] denote the degree of mem-
bership (namely p4(x)) and the degree of nonmembership (namely y4(x)) of each
element x € X to the set A, respectively, and 0 < 5 (x) + ya(x) <1 for all x € X (see
Atanassov [1, 2]). For the sake of simplicity, we use the symbol A = (u4,y4) for the
IFS A = {(x,pa(x),ya(x)) : x € X}.

Let S be a semigroup. By a subsemigroup of S we mean a nonempty subset A of S
such that A? < A. A subsemigroup A of a semigroup S is called an interior ideal of S if
SAS < A. Amapping f from a semigroup S to a semigroup T is called a homomorphism
if fxy)=fx)f(y) foralx,yeS.

A fuzzy set p in a semigroup S is called a fuzzy subsemigroup of S (see [3]) if
u(xy) = u(x)Au(y) forall x,y €S.

A fuzzy subsemigroup u of a semigroup S is called a fuzzy interior ideal of S (see
[3]) if u(xay) = u(a) forall a,x,y €8.
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3. Intuitionistic fuzzy interior ideals. In what follows, S denotes a semigroup
unless otherwise specified.

DEFINITION 3.1. An IFS A = (ua,ya) in S is called an intuitionistic fuzzy subsemi-
group of S if it satisfies

(IF1) pa(xy) = pa(x) Apa(y),

(IF2) ya(xy) <ya(x)Vvya(y),
forall x,y €8S.

EXAMPLE 3.2. Let S = {0,¢, f,a,b} be a set with the following Cayley table:

oo oo olo
SO O O
o T oo™

T QN0 O
O Q On O
N O © 8 o8

Then S is a semigroup (see [4]). Define an IFS A = (4, y4) in S by 4 (0) = pa(e) =
Ha(f) =1, pa(a) = pa(b) =0, ya(0) = ya(e) = ya(f) =0, and ya(a) = ya(b) = 1. By
routine calculations we know that A = (u4,y4) is an intuitionistic fuzzy subsemigroup
of S.

DEFINITION 3.3. An intuitionistic fuzzy subsemigroup A = (ua,ys) of S is called
an intuitionistic fuzzy interior ideal of S if

(IF3) pa(xay) = pala),

(IF4) ya(xay) <ya(a),
for all x,y,a €S.

EXAMPLE 3.4. The IFS A = (4, y4) in Example 3.2 is an intuitionistic fuzzy interior
ideal of S.

THEOREM 3.5. If {A;}iea Iis a family of intuitionistic fuzzy interior ideals of S, then
NA; is an intuitionistic fuzzy interior ideal of S, where NA; = (AUa;,VYa;) and Ala,
and Vy,, are defined as follows:

Ala; (x) =inf {pa, (x) | i€ A, x €S},

. (3.1)
Vya; (x) =sup {ya; (x) i €A, x €S}
PROOF. Let x,y,a €S. Then
Al (X2) = A(pa, () A pia (7)) = (Apia, (0) A (Aa, (1)),
Vya, (x¥) < V(ya, (X)) Vya, () = (Vya, (x)) VvV (Vya (), (3.2)

AUy (xXay) = Apg;(a), Vya (xay) < Vvya,(a).

Hence NA; is an intuitionistic fuzzy interior ideal of S. O
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THEOREM 3.6. Ifan IFS A = (ua,y4) in S is an intuitionistic fuzzy interior ideal of S,
then so is OA = (Ua,fla), fia = 1— la.
PROOF. It is sufficient to show that fi4 satisfies conditions (IF2) and (IF4). For any
a,x,y €S, we have
falxy) =1-palxy) <1—(ua(x) Apa(y))

3.3
=(1-pa(x)) v —pa(»)) =fa(x) Vv ia(y) 3-3)

and figa(xay) =1—-pua(xay) <1—pus(a) = fis(a). Therefore, A is an intuitionistic
fuzzy interior ideal of S. O

DEFINITION 3.7. Let A = (ua,ya) be anIFS in S and let @ € [0,1]. Then the sets
Hig:i={xeS:ualx) = «f, Yia = 1X €Siyalx) < «} (3.4)

are called a u-level x-cut and a y-level x-cut of A, respectively.

THEOREM 3.8. Ifan IFS A = (ua,y4) in S is an intuitionistic fuzzy interior ideal of S,
then the p-level o-cut p; , and y-level a-cut y3 . of A are interior ideals of S for every
o€ Im(pa) NIm(ya) < [0,1].

PROOF. lLet x € Im(ua) NIm(ys) <[0,1] and let x,y € Hi,a- Then py(x) = o and
Ua(y) = «. It follows from (IF1) that

HaA(xXY) = pa(x) Apa(Y) = o so that xy € 3 4. (3.5)
If X,y € y & then ya(x) < @ and ya(y) < , and so
ya(xy) <ya(x)vya(y) <, thatis,xy €yj,. (3.6)

Hence p3 , and y3 , are subsemigroups of S. Now let x,y € S and a € uj ,. Then
Ha(xay) =z pa(a) = aand so xay € 3 4. lf a € y3 o, then ys(xay) < ya(a) < « and
thus xay € y3 4 Therefore u} , and y3 , are interior ideals of S. O

THEOREM 3.9. Let A = (Ua,y4) be an IFS in S such that the nonempty sets uia and
yj’o( are interior ideals of S for all x € [0,1]. Then A = (ua,y4) is an intuitionistic fuzzy
interior ideal of S.

PROOF. Leto € [0,1] and suppose that uj ,(# @) and y} ,(# @) are interior ideals
of S. We must show that A = (u4,y4) satisfies conditions (IF1)-(IF4). If condition (IF1)
is false, then there exist xg, Yo € S such that pa(xoY0) < pa(xo) Apa(yo). Taking

1
&0 = 5 (Ha(x0>0) +Ha(x0) AHa(30)), 3.7)
we have pa(xoY0) < o < Ha(xo) A pa(yo). It follows that xg, o € uj_ao and xoyo ¢
M3 «,» Which is a contradiction. Hence condition (IF1) is true. The proof of other con-
ditions are similar to the case (IF1), we omit the proof. O
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THEOREM 3.10. Let M be an interior ideal of S and let A = (Ua,ya) be an IFSin S
defined by

) {0(0 ifx €M, {Bo ifx eM, 3.8)

) ya(x):= :
1 otherwise, B1 otherwise,

forall x € S and «;,B; € [0,1] such that o > &1, Bo < B1, and x;+B; <1 fori=0,1.
Then A = (1a,ya) Is an intuitionistic fuzzy interior ideal of S and p3 o, =M = y3 g, -

PROOF. Let x,y € S.If anyone of x and y does not belong to M, then

Ha(Xy) = o) = pa(x) Apa(y),

(3.9)
ya(xy) < B1=yalx)Vyay).

Other cases are trivial, and we omit the proof. Hence A = (u4,y4) is an intuitionistic
fuzzy subsemigroup of S. Now let x,y,a € S.If a ¢ M, then pa(xay) = o1 = pa(a)
and ya(xay) < B1 = ya(a). Assume that a € M. Since M is an interior ideal of S,
it follows that xay € M. Hence ps(xay) = &g = pa(a) and ys(xay) = Bo = ya(a).
Therefore A = (u4,y4) is an intuitionistic fuzzy interior ideal of S. Obviously ujao =
M =Y3 g, O

COROLLARY 3.11. Let xp be the characteristic function of an interior ideal M of S.
Then the IFS M = (xu, Xnm) s an intuitionistic fuzzy interior ideal of S.

THEOREM 3.12. IfanIFS A= (ua,ya) is an intuitionistic fuzzy interior ideal of S, then

pa(x) :=sup{axe[0,1]|x € uj 4},
. B (3.10)
ya(x):=inf{ae[0,1] | x € y3 4},

forallx €8S.

PROOF. Let ¢ :=sup{x e [0,1]|x € u} .} and let € > 0 be given. Then § — € <
for some « € [0,1] such that x € uja. It follows that 6 — € < pa(x) so that 6 < pa(x)
since ¢ is arbitrary. We now show that pa(x) < 6. Let pa(x) = B. Then x € u3 ; and so

Bel{xel0,1]]x € ujqf- (3.11)
Hence pis(x) = B <sup {x € [0,1] | x € 3 o} = 6. Therefore
pa(x) =06 =sup{ae[0,1]]x € uj o} (3.12)
Now let n =inf {& € [0,1] | x € ¥} »}. Then
inf{xe[0,1]|x€yis} <n+e foranye<0, (3.13)

and so x < n+¢ for some x € [0,1] with x € Yﬁ,a- Since y4(x) < « and ¢ is arbitrary,
it follows that y4(x) < n. To prove ya(x) = n, let ya(x) = €. Then x € yjc and thus
Ce{ae[0,1]]| x €y} Hence

inf{xe[0,1]x €ys,} <C, thatis,n=<T=ya(x). (3.14)
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Consequently,
ya(x) =n=inf {x € [0,1] | x € y3 o} (3.15)

This completes the proof. O

THEOREM 3.13. Let {Cy | « € A} be a collection of interior ideals of S such that
(i) S = UD(E/\COU
(i) B> aifandonlyif Cg C Cy forall B,x € A.
Then an IFS A = (U, ya) inS defined by

Ha(x):=sup{aeA|x € Ca},
. (3.16)
ya(x):=inf{x e A|x € Cy},

for all x € S, is an intuitionistic fuzzy interior ideal of S.

PROOF. Following Theorem 3.9, it is sufficient to show that the nonempty level
sets u3 , and y , are interior ideals of S for every « € [0,1]. In order to prove that
U3 4 (# @) is an interior ideal, we have the following two cases:

(i) x=sup{d €A |6 <«}and
(i) x #sup{d6 €A |6 < «}.
Case (i) implies that

XEUFn=XECs Vo< XENs<Cs, (3.17)

so that uia = N§<xCs, which is an interior ideal of S. For the case (ii), we claim that
Ui x = Us=aCs. If X €Us2«Cs, then x € Cs for some 6 > o It follows that pis (x) =6 > «,
so that x € p3 . This proves that Us»«Cs < i3 - Now assume that x ¢ Us»«Cs. Then
x & Cs for all 6 = «. Since « # sup{d € A | 6§ < «}, there exists € > 0 such that
(x—&,x) NA = @. Hence x ¢ Cs for all § > « — &, which means that if x € Cs then
0 < x—¢ Thus ps(x) < x—€ < &« and so x ¢ uj . Therefore u3 , € Us=aCs, and
thus p3 , = Us=«Cs which is an interior ideal of S. Next we prove that y; ,(# @) is an
interior ideal of S for all @ € [0,1]. We consider the following two cases:

(iii) B=inf{6 e A|B <6} and

(iv) B#inf{6 e A| B < 5}.
For the case (iii) we have

xeyf\‘ﬁ:)xeC(g VB<5¢>X€05<5C5, (3.18)

and hence yjyﬁ = Ng<5Cs which is an interior ideal of S. For the case (iv), there exists
& > 0 such that (B,8+¢)nA = @. We show that yj}B = Up>6Cs. If x € Up>5Cs, then
x € Cs for some B > 6. It follows that y,(x) <6 < so that x € ij. Hence Ug>5Cs <
yiﬁ. Conversely, if x ¢ Ug>sCs then x ¢ Cs for all 6 < , which implies that x ¢ Cs for
all 6 < B+¢, thatis, if x € Cs then § = B+¢. Thus ya(x) = B+¢&> B, thatis, x ¢ yfw.
Therefore y3 ; < Up=5Cs and consequently y3 s = Up=5Cs which is an interior ideal of
S. This completes the proof. O

THEOREM 3.14. An IFS A = (ua,y4) is an intuitionistic fuzzy interior ideal of S if
and only if the fuzzy sets ua and y are fuzzy interior ideals of S.
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PROOF. Let A = (u4,ya) be an intuitionistic fuzzy interior ideal of S. Then clearly
Ua is a fuzzy interior ideal of S. Let x,a,y € S. Then

Yalxy)=1-ya(xy) z1-yalx)Vvya(y)
=(1=ya))A(1=ya(»)) =ya(x) Aya(y), (3.19)
Yalxay) =1-yalxay) =1-ya(a) = yala).
Hence y4 is a fuzzy interior ideal of S.
Conversely, suppose that p, and y, are fuzzy interior ideals of S. Let a,x,y € S.
Then
1-yaxy) =yalxy) 2 ya(x) Aya(y)
=(1-yax))A(1-ya(»))
.2
— - a0V ya(y), (3.20)

1-yalxay) =yalxay) = yala) =1-ya(a),

which imply that y4(xy) < ya(x) Vya(y) and ya(xay) < ya(a). This completes the
proof. O

COROLLARY 3.15. An IFS A = (ua,y4) is an intuitionistic fuzzy interior ideal of S if
and only if OA = (ua, fia) and OA = (ya,ya) are intuitionistic fuzzy interior ideals of S.

PROOF. The proof is straightforward by Theorem 3.14. O

Let f be a map from a set X toaset Y.If A = (us,ya) and B = (ug,yp) are IFSs in
X and Y, respectively, then the preimage of B under f, denoted by f~!(B), is an IFS
in X defined by

SYB) = (fF " (us), S (ys)), where £~ (ug) = us(f). (3.21)

THEOREM 3.16. Let f : S — T be a homomorphism of semigroups. If B = (ug, yg) is an
intuitionistic fuzzy interior ideal of T, then the preimage f~1(B) = (f " (ug), f~1(yz))
of B under f is an intuitionistic fuzzy interior ideal of S.

PROOF. Assume that B = (ug,yp) is an intuitionistic fuzzy interior ideal of T and
let x,y € S. Then

M (up) (x) = pp(f (x))
= up(f(x)f(»))
= up(f (X)) Aup(f(3))
=f () A (U (3),
S ye) (xy) = ye(f(xy))
=ys(f(x)f(»))
<ys(f(X)) Vys(f ()
= () v (ye().

(3.22)
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Hence f~1(B) = (f~'(up), f'(yp)) is an intuitionistic fuzzy subsemigroup of S. For
any a,x,y € S, we have
S (up) (xay) = up(f (xay))
= pg(f ) f(a)f(y))
> pp(f(a))
= f N us(a)),

F N ys) (xay) = yp(f(xay))
=yp(fOO)f(a)f(y))
<ys(f(a))
= (ys(a)).

(3.23)

Therefore f~1(B) = (f~'(up),f ' (yg)) is an intuitionistic fuzzy interior ideal of S.
O
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