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ABSTRACT. We construct and study finitely generated graded subalgebras of the Lie algebra
of a smooth manifold.
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1. Introduction. Let M be a smooth manifold of dimension n > 1. Embed M in R™
for some m > n so that the resulting point set forms an analytic manifold with no
boundary. That this is possible follows from Whitney [1]. Let (M) be the Lie algebra
of smooth vector fields on M that smoothly go to zero at infinity if M is not compact.

We will look at two types of finitely generated graded subalgebras of ¥(M). In one
type we look at the Lie algebra generated by n analytic vector fields that span the
tangent space at some point of M and such that no subset generates a finite dimen-
sional Lie algebra. It is shown that this is a graded Lie algebra and that the graded
subalgebras of two manifolds are isomorphic if and only if the manifolds are diffeo-
morphic. The other type is constructed from an atlas of the manifold satisfying some
conditions.

2. Graded subalgebras with dim M number of generators. Without loss of gen-
erality, we set n = 2 in this section. Choose two analytic vector fields X; € ¥(M)
that span the tangent space for some point of M and such that m is infinite dimen-
sional where m = m(X;,X>) = (X1, X») is the Lie algebra generated by the X;. We have
m=>p_; m(X1,X2) where my = mi(X1,X>2) is the span over R of the set

10 X[+ (X X )] 1] 2 = 1,2] 2.1)
For a smooth atlas of M define a topology on ¥(M) by the metric

1 Jv-—wlk
2k1+lv—wl’

plv,w)=>

k=0

v,weLM), (2.2)

where ||v —w]||k is the supremum on M of partial derivatives of order less than k + 1
of components of v —w. Construct Xj, #, and p(-,-) for a smooth manifold M in the
same way that X;, m, and p(-,-) were instead for M. Assume there is a Lie algebra
epimorphism & :m — m.

LEMMA 2.1. The completion m of m in the p>(-,-) = p(-,-)+p(®(-),®(-)) topology
isF(M).
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PROOF. Define

o AMEL !
Mg = > g adt(x) (ad' (X2) ([X1,X2]) (2.3)
kl=0 T

which can be shown to converge for all A, € in the p, topology. Define

V=<=ZakA,\k§k: Zai<oo]»c9(M). (2.4)
k=1 k=1
Let L be a nonzero element of ¥(M) and D a countable dense subset of M. Consider
it = (LYo, 2 AL, (p0, A0 (po),...) €1 2.5)
2i-1= Pi 5 oNE pi 1306 Pi)s--- 2, .
vai = (LO (), 222, (p1). LA? () el €D (2.6)
2i = Pi 5 oNE pi 130G pPi)s-.- 2, Pi , .

where for example L® (p;) is the second component of L(p;) is a coordinate neigh-
bourhood of p; and I, is the Hilbert space of elements (a;,dz,...) so that >;_; a% < o
with inner product (-,-). Let W be the span of the set of v. Since m (X1, X>) is infinite
dimensional there are Ay, & so that the map that maps (a;,a»,as,...) to (az,as,...) is
injective on W. It will be injective on W, the completion of W in the (-, -) topology. If,
say, LM p; = 0 then (0, 1/2Af\11)§1 (pr), 1/3A)(\12)§2 (px),...) is not an element of W. There
is then a nonzero (a,a;,a»,...) € > with a # 0 so that

aL(pi) +a1Ax g (pi) +a2Ay,e, (pi) +---=0, Vp;,eD. 2.7)

Since D is dense this equation holds for all p € M hence L € V. O
THEOREM 2.2. Ifm and i are isomorphic then M and M are diffeomorphic.

PROOF. Let ® be anisomorphism of m and . Let m have the topology p» and # the
topology p2(-,-) = p(-,-) +p(®~1(-),®"1(-)). The Lie bracket and ® are continuous
in this topology.

Let A,B be the closure of open sets of M. By Lemma 2.1, there are vector fields
E,F € with supports A, B, respectively. Let A, B be the supports of ®(E), ®(F),
respectively. If AnB # @ then there are E, F so that [E,F] # 0 hence [®(E),®(F)] #0
consequently AnB # @ and vice versa.

Let pg € M and let A; be the closure of open sets of M and let E; € m have support
A; and ®(E;) support A;. It follows from the previous paragraph that if A;;; C A;
then A;,; C A;. The A; can be chosen so the diameters of A;, A; approach zero and
{po} =N Ai. Let {po} = N3, A;. Let {B;, B;} be another such sequence so that {po} =
N;>,B; and suppose {p1} = nf‘;lfs’i. Now the sequence of sets {A; N B, A; N B;} satisfy
the same conditions so we must have that py = p,. We thus have a well-defined map
T:M — M so that T(pg) = Po which on using the previous argument but with &1 is
a bijection.

Choose a coordinate neighborhood (x,y) of po. Using e*2dX1) (X,), let A(x,) be
the value of A required to move the integral curve of X, passing through p, along
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X1 so that it intersects the point (x,y). If X;(po) = 0 there is then a Z; € m so that
X1(po) + Z1(po) # 0. Now use Lemma 2.1 with ® restricted to (X; + Z1,X>). The map
7 will remain unchanged. Similarly, using e$2d4(X2) (X}) we can construct E(x,y).

Let B be the closure of a neighborhood of py then by Lemma 2.1 there is a sequence
Z{%) € V that converges to a smooth vector field with support B. Consider a coordinate
system so that Ayg(x,y) = Ag(x +A,¥), po = (0,0) so Z,{l(')) constructed by replacing
Aj g, BY Ayag in Z(()Q will converge to a smooth vector field with support B — (A,0)
for sufficiently small B. Let d)(Zéf))) have support B. For a coordinate neighborhood
(%,3) of po = T(po) = (0,0) such that Ayg(%,7) = Ag(X +A,7) we have &(Z\)) will
converge to a smooth vector field with support B — (A,0). Using also a coordinate
system so that Oxg(x,)) = Oxro(x,y + &) where ©,¢ is constructed by interchanging
X1 and X» in Ajg and on choosing smaller and smaller B we can conclude that T maps
the point (x,y) to (X,¥) so that

Alx,y) =A%,7), Ex,) =E&%,), 2.8)

where for example using eMad(@(XD) (§(X5)), A(%, %) is the value of A required to move
the integral curve of ®(X») passing through p, along ®(X;) until it intersects the
point (X,7). Now A(x,y), 5\(5(,5/), E(x,y), g(ic,j/) are smooth functions so by taking
derivatives of (2.8) it follows that T is a diffeomorphism. O

It follows from Theorem 2.2 that an automorphism of m induces a diffeomorphism
of M.

Define Vy(X1,X2) = Zle my (X1,X>2). The dimension of Vy(X;,X>?) is locally maxi-
mal if there is € > 0 such that for analytic vector fields Y; on M so that p(X;,Y;) <€
we have dim VN(Yl,Yz) < dim VN(Xl,Xg).

Let {vq,vgk} be a set of smooth vector fields on M and let || - || be a norm on the
span of this set. We also require that as k — o, [[vgx —vg4ll = 0.

LEMMA 2.3. Ifvy,v2,...,v; are linearly independent then there is an N such that for
k> N, vik,Vok,..., Vix are linearly independent.

PROOF. Assume there are t — « so that for each t we can find ay; so that
l
atVig+asivot+---+apvy =0, z ait =1. (2.9)
k=1

There is a subsequence {ays} and ay such that |ays —ax| < 1/s, k =1,2,...,1. Taking
the limit as s — o« we have a;v; +a>v2 + - - - + a;v; = 0 with not all the ay zero which
contradicts the linear independence of the set {vy,v,,...,v;}. O

Let (F1,F>) be a free Lie algebra so dim Vy (X1,X?) < dim Vy (F1,F>) < . Since the
dimension of Vy(X1,X>) is bounded for all analytic X;, X» there are by Lemma 2.3
analytic X; so that the dimension of Vy(X1,X>) is locally maximal. In fact it can be
shown that there is a Lie algebra m(X;, X>) with analytic X; so that the dimension of
VN()?l,Xz) is locally maximal for all N.

THEOREM 2.4. The Lie algebram(X,,X,) is a graded Lie algebra.
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PROOF. Let Y; be the projection of e‘Vz(a/axp), p = 1,2,...,m onto the tangent
space at each point of M. Choose two of the projections say Y1, Y> so that they span
the tangent space at some point of M. For € > 0 there is an embedding and coordinates
on M so that

=l

Yj(xl,xz)fe*f |l <e Vix?+x3) <1, j=1,2. (2.10)
J

0

Now by argument of Theorem 3.1 we have that m(e*VZ(a/axl ),e*’z(a/axz )) is a graded
Lie algebra. By Lemma 2.3 with a sufficiently small € we have

Vn(Y1,Y2) =my (Y1, Y2)oma (Y, Y2) @ - - - @my (Y1, Y2). (2.11)
Define E;(t) = tY; + (1 -t)X; and assume
By (E1 (£),E2(t)) +Bo(E1(t),E2(t)) + - - + BN (E1 (), E2(t)) =0 (2.12)
with B, (E1(1),E2(1)) # 0 for some p < N where By (E; (£),E»(t)) is
iy (1) Byt (E1 (8),E2 (£)) + - - -+ ag, (8) By, (E1 (1), Ea (1)) (2.13)
and Byq (E1(t),E2>(t)) is
[Ej, (£),[Ej, (£),[ ..., [Ejp_, (), Eji ()] ] - - - 1] € mi (Eq (1), E2 (1)), (2.14)

where the j; depend on k and gq. Since the dimension of Vn(X1,X5) is locally maximal
we have that there is a ¢; < 1 so that for t € (£1,1], (2.12) holds. The a4 (t) will
then be polynomials in t. By (2.11) and Lemma 2.3 there is a ty > 0 so that for t €
[0,t0) we must have B, (E1(t),E2(t)) = 0. Now B, (E;(t),E>(t)) is analytic in t so
MBp(E1(1),E2(1)) = 0 which is a contradiction hence

VN(Xl,XZ) =m (}A(l,f(z) dmp ()?1,)?2) D--- @mN(Yl,Xg). (215)
O

THEOREM 2.5. The Lie algebras m(X,,X>) and m(X,,X>) are isomorphic.

PROOF. Let € > 0 be such that for all analytic Y; so that p(Y;,X;) < € we have that
dim Vy(Y1,Y2) = dim Vy(X1,X>). Let Z; — X; € @F_,m (X1, X>) so that p(Z;,X;) <e.
Assume B(Z1,7Z») = 0 where

%(21,22):%1(21,22)+"'+%N(Z1,Zz) (216)

and %k(ZI,Zg) = ax1 Bi1 (Z1,Z2)+ -+ + aklkBklk (Z1,2>). The dimension of VN(Zl,Zz)
will be locally maximal so by argument of Theorem 2.4 we have that B,(Z;,Z;) =0
for all p < N. Now B,(Z1,7Z2) = Bp(X1,X2) + Wys1 = 0 where W, is an element
of eaf:wlmk(f(l,f(z) hence B, (X1,X>) = 0 for all p < N consequently B(X;,X>) = 0.
This holds for all such %. Since the dimension of Vy(X1,X>) is locally maximal we
have %B(Z,,Z») = 0 if and only if #(X;,X>) = 0.

Define E;(t) = tX; + (1 - t)X;. Using Lemma 2.3 there is a o > 0 such that for
te[0,ty), p(EA,-(t),)A(j) <e€and B(E;(t),E>(t)) is a basis element of Vy (E; (t),E»(t)) if
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and only if B(X1, X») is a basis element of Vi (X1, X>). Using Lemma 2.1 withm = # and
® = id we can conclude that B(E; (t),E>(t)) = 0forall to € [0,ty). Now B(E; (t),E>(t))
is analytic in t so when t = 1 we have % (X1, X,) = 0. This holds for all N and all such
% so we can conclude there is an epimorphism

d:m(X, X)) —m(X, Xo). (2.17)

It can be shown that there are W; € m so that Wj, ®(W;) are analytic and the dimen-
sion of Vi (®(Wy),®(W>)) is locally maximal for all N and consequently ® restricted
to (Wy,W>) is an isomorphism. By Lemma 2.1 the completion of (W;,W,) in the p;
topology is $(M) so ® restricted to m(X;,X>) is an isomorphism. O

It follows from Theorems 2.4 and 2.5 that m(X;, X>) is a graded Lie algebra.

By Lemma 2.3, Theorem 2.5, and the argument presented in the first paragraph of
Theorem 2.4, it can be shown that if B(X;, X>) is a basis element of m(X;, X>) then the
bracke’[B(e‘Vz(a/axl),e‘V2 (0/0x>)) is abasis element ofm(e"2 (a/axl),e‘r2 (0/0x7))
and vice versa. It can also be shown that the dimension of mk(e‘yz(a /0x1), e‘TZ(a/sz )
grows polynomially with k hence m(X;,X>) is not a free Lie algebra.

THEOREM 2.6. The Lie algebrasm(X1,X») and (X, X,) are isomorphic if and only
if M and M are diffeomorphic.

PROOF. In Theorem 2.2 we showed that if m(X;,X») and #m(X;,X>) are isomorphic
then M and M are diffeomorphic.

Let o be a diffeomorphism of M and M. By the paragraph preceding this theorem
we have that B; (X1,X?),...,B;(X1,X>) are basis elements of Vy (X1, X>) if and only if
B1(X1,X5),...,B;(X1,X>) are basis elements of Vy (X1, X>). As in Theorem 2.5 we must
have B (o1 (X1),0:1(X2)) = 0 hence B(X;,X;) = 0. This holds for all N and % so we
then have an epimorphism m(X;,X>) — (X, X>). Similarly, there is an epimorphism
(X1, Xo) - m(X1,X2) so m(X;,Xo) and % (X;,X,) are isomorphic. O

As a possible application we can look at diffeomorphism classes of S*. Let P =
{T:(01,02,03,04) :i=1,...,8} be a set of polynomials in sin 6;, cos;, j =1,2,3,4 so
that P defines a homeomorphism of $* into a subset Sf) of R8. Let m(P) be the Lie
algebra with kth grade my (P) constructed by projecting 0/0x;, i = 1,2,...,8 onto the
tangent space of Sp and choose four such projections so that they span the tangent
space for some point of S3. We can construct a finite dimensional graded Lie algebra

m(P)
@Zo: N (P)
for some positive integer N. If we can find two polynomial sets P;, P>, and an N so that

m(P1,N) and m(P,,N) are not isomorphic then we have at least two diffeomorphism
classes of S4.

m(P,N) = (2.18)

3. Graded subalgebras constructed from atlases. Let {(Uy, ¢ ) : @ € I} be an atlas
of M such that

(1) Uy is a neighborhood of O, where the O, are disjoint open connected subsets
of M, the union of the closure of all the O is M.
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(2) ¢« : Uy — R™ are onto.

(3) puopy' are analytic.

(4) For o,B €1, ay €I can be found such that U, nU, = & and UgnU, # .

(5) For any set {0, &2,..., 04} such that if U = Uy, NUw, N+ - - N Uy, + @ then U is
connected and is a proper subset of Uy, N« +-NUy_; NUw;,; N+ - Uy, for all i.

Without loss of generality, in this section we consider manifolds so that |[I| < oo.
Define

m=(Xep:xel, peN={1,2,...,n}) CFM) (3.1)

to be the Lie algebra generated by X, where Xy, is zero outside U and for points
of Uy the push forward by ¢« of Xy is e’ (0/0x,) som = > my; where my is the
span over R of the set

{[XBIJI AXpojor [ [ X vie s X )] 11 Bi €1, jim € N}- (3.2)

If all the ¢y o d)lgl are rational functions it can be shown that the dimension of my
grows polynomially with k.

THEOREM 3.1. The Lie algebram is a graded Lie algebra.

PROOF. Consider for example an equation

al[X}’Ijl’ [Xyjo [ - - [X}’k—ljk—l’X}’kjk]] -]

3.3)
toe +al[X01i1’[X<Tzi2v [ e [Xo'm—lim—l'XUmim]] e ]] =0

We can write a component of (3.3) in the coordinates of Ug as
ar[PiiFiy+ -+ Pir Fi Je ™ 4ot ay[PuFp + - - - + Pig Firy Jle™ 7" =0, (3.4)

where P;;(x1,...,X,) is a polynomial and F;;(x1,...0c,x,) is made of factors of partial
derivatives of components of Xy, & # B. q; is the number of times the factors of the
form Xp, appear in the ith term of (3.3). Since the X4,, & # B are analytic for some
point on the boundary of Ug we must have q; = q;. Consequently writing equations like
(3.3) in the coordinates of Uy for each y € I and using condition 5 on the atlas allows
us to conclude, m = &7 ;my and [m;,m;] C m;,; follows using properties of the Lie
bracket. O

Construct {(Ug, bz) : & € I}, Xap, 1, p(+,-) for a smooth manifold M in the same
way that {(Ux, Pu) : x € I}, Xap, m, p(-,-) were for M. Assume there is a Lie algebra
isomorphism ® : m — m. We can take ¢ so that ®(m;) = m;. We now show this implies
M and M are diffeomorphic.

LEMMA 3.2. There is a bijection B : I — I such that for all p € N, the support of
®(Xup) is the closure of Ug(x)-

PROOF. Write ®(Xyp) = Zg, + -+ + Z&,, Where Zg, € 1y and supp Zg, = [:]&I.. As-
sume m > 1. There is a Zs;, say Zg,, so that supp®~'(Zs,) D Ux. By condition 4
on the atlas there is a U; such that Us, N Uy = @ and Ug,, N Uy # @. We can then
find a Xy, so that [®(Xap),[X54, Zan 1] # 0, hence =1 ([Xy4, Z4,, 1) has support on



GRADED SUBALGEBRAS OF THE LIE ALGEBRA ... 147

Uy. It can be checked that the bracket of an element of m; with an element of m, is
not zero if they have common support. The intersection of U, and the supports of
& 1(Zy,) and @1 ([Xy4, Za,, )) is then not empty so [ (Zx, ), ([ Xy4, Zam )] # O
hence [Z,,[Xyq, Zam 1] # 0 which is a contradiction since Uy, N Uy = @ so m = 1. Use
the argument as just presented on ®(Xyp + X«q) to conclude that supp®(X«p) = IZJ&I,
for each p € N. Define B: I — I by B(x) = &;. If supp®(Xg,p,) = supp®(Xg,p,) then
by letting Zp(g,) = ®(Xg, p, + Xp,p,) and using a similar argument as just presented on
®~1(Zp(p,)) allows us to conclude that B is bijective. O

THEOREM 3.3. Ifm and v are isomorphic then M and M are diffeomorphic.

PROOF. We can write L € (M) as L = > ye; L« Where Ly € (M) has support, a
compact subset of Uy. By Lemmas 3.2 and 2.1 we have that L, is in the completion of
(Xap 1 p € N) in the p, topology. Now use the argument of Theorem 2.2. O

We now look at how the graded Lie algebras constructed from different atlases sat-
isfying the five conditions differ. Let {(Uy, b «), ([75,435) :x € I\{B}} be an atlas of M
satisfying the five conditions on an atlas and require also that UgnU, # & if and only if
Uﬂ NUy # @ forall y € I. Define Xﬁn to be the push forward of Xg, by (f)ﬁl o ¢g. Define

= (Xap, Xpp : x €1\{B}, p €N) (3.5)

with kth grade #.
We can in fact choose Uz and ¢4 so that the dimension of >}, iy is locally maxi-
mum for all N.

THEOREM 3.4. There is an epimorphism# — m mapping Xgp to Xg, and Xup 10 Xop

for o + B.

PROOF. Without loss of generality, we can let n = 1 and define X, = X4;. Define a

diffeomorphism
X

1-x2°

Write dggl opp in the 6o ¢g coordinates of Up as x — X = x+T(x) and x =X +S5(X). Let

0°l:(-1,1) — R, X — (3.6)

N
TN (x) = e—l/(1-¢-5)2—>c2 Z bl(N)Xl, 5§>0 (3.7)
=0

be such that as N — oo, T™™) converges uniformly to T on [—1,1]. Define )?EN) and MmN
by replacing T (x) by TN (x) in the definition of XB and m. Consider for example an
equation of the form

ay XY Xy [+ Xy X101 58
- '+a£N)[Xvn[ A;;N)a[' T [)A(l(sN)aXvk]] t ]] =0.

By the argument of Theorem 3.1, each term will contain the same number of factors
of the form X;"'. We can write Xg — Xp in the 0o ¢4 coordinates of Ug as

72 (1-x2)?% d e LS/ A-GerSDP (1 - (x +S(x))°)* d

e—[x/(l—x2 AN .
1+x2 dx 1+S(x) 1+ (x+S(x))* dx

(3.9
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With this in mind, we can write (3.8) in the 6 o ¢pg coordinates of Up after clearing
denominators and exponentials as

[ (P + @V )E 4 (P + Q) EEY ]+
+afN)[( <N>+Q<N>) FM g (fi?+Ql ) ]20’

where the Fff\] ) (x) are made of factors of derivatives of the component of X4, & # B.

(3.10)

Pi(JN )(x) is a polynomial and Qx\] ) is a polynomial in x, S™, and derivatives of SN,
Each term of Q{}” contains a SN or a derivative of S™) as a factor. Since S is
analyticon (-1-9,1+9), (3.10) holds for all points of (-1—-6,1+ 6). On the boundary
of (-1-5,1+5),S™ and all its derivatives are zero hence for all points of (-1,1)

N) [ p(N) (N) (N) (N) (N[ pN) p(N)
|:P11 Fll +...+P1T1F1T]:|+ +(}ll [Pll F +PlTl Tl]=0. (3.11)
Equation (3.8) then holds when X EN ) is replaced by X g- There is then an epimorphism
MmN - m taking XéN) to Xp and Xy to X for o # B. Now let N — o and use the local
maximality of the dimension of >y, iy, for all N. O

Let( = (Lap : x €I, p € N) be a graded Lie algebra with kth grade i constructed as
was m and such that the dimension of ZQ’:I () is locally maximum for all N. We can use
Theorem 3.4 to show that there is an € > 0 such that for all such { with p(ia,,,Xap) <€
for all @ € I,p € N we have an epimorphism (—m

REFERENCES
[1] H. Whitney, Differentiable manifolds, Ann. of Math. II. Ser. 37 (1936), 645-680.
Zbl 015.32001.

KARL DE PAEPE: BOX 1174, VIRDEN MB RoMm 2CO, CANADA
E-mail address: k.depaepe@utoronto.ca


http://www.emis.de/cgi-bin/MATH-item?015.32001
mailto:k.depaepe@utoronto.ca

Advances in Difference Equations

Special Issue on

Boundary Value Problems on Time Scales

Call for Papers

The study of dynamic equations on a time scale goes back
to its founder Stefan Hilger (1988), and is a new area of
still fairly theoretical exploration in mathematics. Motivating
the subject is the notion that dynamic equations on time
scales can build bridges between continuous and discrete
mathematics; moreover, it often revels the reasons for the
discrepancies between two theories.

In recent years, the study of dynamic equations has led
to several important applications, for example, in the study
of insect population models, neural network, heat transfer,
and epidemic models. This special issue will contain new
researches and survey articles on Boundary Value Problems
on Time Scales. In particular, it will focus on the following
topics:

e Existence, uniqueness, and multiplicity of solutions
e Comparison principles

e Variational methods

e Mathematical models

e Biological and medical applications

e Numerical and simulation applications

Before submission authors should carefully read over the
journal’s Author Guidelines, which are located at http://www
.hindawi.com/journals/ade/guidelines.html. Authors should
follow the Advances in Difference Equations manuscript
format described at the journal site http://www.hindawi
.com/journals/ade/. Articles published in this Special Issue
shall be subject to a reduced Article Processing Charge of
€200 per article. Prospective authors should submit an elec-
tronic copy of their complete manuscript through the journal
Manuscript Tracking System at http://mts.hindawi.com/
according to the following timetable:

Manuscript Due April 1, 2009

First Round of Reviews | July 1, 2009

Publication Date

October 1, 2009

Lead Guest Editor

Alberto Cabada, Departamento de Andlise Matematica,
Universidade de Santiago de Compostela, 15782 Santiago de
Compostela, Spain; alberto.cabada@usc.es

Guest Editor

Victoria Otero-Espinar, Departamento de Andlise
Matemadtica, Universidade de Santiago de Compostela,
15782 Santiago de Compostela, Spain;
mvictoria.otero@usc.es

Hindawi Publishing Corporation

http://www.hindawi.com



http://www.hindawi.com/journals/ade/guidelines.html
http://www.hindawi.com/journals/ade/guidelines.html
http://www.hindawi.com/journals/ade/
http://www.hindawi.com/journals/ade/
http://mts.hindawi.com/
mailto:alberto.cabada@usc.es
mailto:mvictoria.otero@usc.es

	1Call for Papers4pt
	Lead Guest Editor
	Guest Editor

