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ABSTRACT. The authors consider the mth order nonlinear difference equations of the form
Dmyn+anf(Yom)) =ei, where m>=1,ne N ={0,1,2,...}, u;'l >0fori=1,2,....m-1,
a™ =1, Doyn = Yn, Diyn = a4bAD;_1yn, i = 1,2,....,m, c(n) — © as n — o, and
f R — R is continuous with uf(u) > 0 for u # 0. They give sufficient conditions to
ensure that all bounded nonoscillatory solutions tend to zero as n — o without assuming
that 35 _o1/al, = 00, i=1,2,...,m~—1, {qn} is positive, or e, = 0 as is often required. If
{qn} is positive, they prove another such result for all nonoscillatory solutions.

2000 Mathematics Subject Classification. 39A10.

1. Introduction. Consider the mth order nonlinear difference equation

Dm_Vn"‘an(_Vo‘(n)) = &y, (1.1)

where m > 1, n € N = {0,1,2,...}, {qn}, {en}, and {a}}, {a2}, ..., {a"!} are real
sequences, al, >0 fori=1,2,....m—-1landalln €N, a®™ =1, Doyy = Vn, Diyn =
albAD;_1yy fori=1,2,...,m, {o(n)} is a sequence of positive integers with o (n) —
o as n — o, and f: R — R is continuous with uf (1) > 0 for u # 0. Throughout, we
will assume that

> pioi(s )
pmy = > P g e, pem) = 1, 1.2)
s=n+1 @s
satisfies
lim pi(n) =0 fori=1,2,...,m-1. (1.3)

Note that condition (1.3) is satisfied if

9]

Zii<oo foreachi=1,2,...,m—1. (1.4)

n=N an

By a solution of (1.1) we mean a nontrivial real sequence {y,} defined for n >
Ny —minyeno(n), Ng € N, and satisfying (1.1) for n > Ny. Such a solution is said
to be oscillatory if for every N € N there exist ny,n, € N with n, > n; > N and
Y Yn, < 0, and it is said to be nonoscillatory otherwise.

An important problem in the study of oscillation theory of difference equations
is to determine sufficient conditions for all nonoscillatory solutions or all bounded
nonoscillatory solutions to converge to zero as n — oo. This problem has received a
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good deal of attention in the literature, and for recent results of this type, we refer the
reader to the monographs of Agarwal [1], Agarwal and Wong [2] as well as the papers
of Cheng et al. [3], Graef et al. [4], Graef and Spikes [5, 6], Szmanda [7], Thandapani and
Lalli [8], Thandapani and Pandian [9], and Zhang [10]. Most of these results, however,
are obtained under the assumptions that >, _y1/al = o, i=1,2,...,m -1, and/or
en = 0. It is these last two restrictions that provide the motivation for our work here.
That is, we do not require that either of these conditions hold in our results below.

Our results are of two types. First, if the sequence {g,} is allowed to oscillate,
we provide sufficient conditions for all bounded nonoscillatory solutions of (1.1) to
converge to zero as n — . Second, in the case where {g,} is a nonnegative sequence,
we give sufficient conditions for all nonoscillatory solutions of (1.1) to approach zero
as n — oo, Examples to illustrate our results are also included.

2. Asymptotic decay of nonoscillatory solutions. We begin with a lemma that will
be used in the proofs of our main results.

LEMMA 2.1. Consider the difference equation

Ap(n)u Ap(n)
pn) " pn)

Ay — ¢Pn =0, (2.1)

where {¢p,} and {p(n)} are real sequences defined for n > N, for some N € N,
p(n)>0, Ap(n) <0, yllizrt}op(n) =0. 2.2)

Let {u,} be the solution of (2.1) defined for n > N and satisfying ux = 0. Then
lim ¢, = co(—c0) implies lim uy, = oo (-o0). (2.3)

PROOF. The solution {u,} of (2.1) is given by

n-1
Ap(s)
—-p(n) Z p(s)p(s+1)¢ , n=N. (2.4)
If limy, .o ¢y, = 0 (—00), then clearly
n-1
lim > Api(s)qbs = —00(00). (2.5)

n—oo

wp)pls+1)

Hence, by Stolz’s theorem [1],

lim w0, = lim A(=3N (Ap(9)[p(s)p (s +1)) )

= lim ¢y, = co(—00), (2.
e A(1/p(n)) lim ¢ (), (2.6

and this completes the proof of the lemma. O

In our results that follow, we will make use of the notation g;; = max{gq,,0} and
d, = max{—qn,0}.
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THEOREM 2.2. Assume that

> pm-1(M)gy; = , (2.7)

n=N

Z m l(n)q; < ool
N (2.8)

> pmo1(n)|en]| < .
n=N

Then all bounded nonoscillatory solutions of (1.1) tend to zero as n — .

PROOF. let {y,} be a bounded nonoscillatory solution of (1.1). Without loss of
generality, we may assume that y, > 0 and ys#) > 0 for n > N; for some N; € N.
Define

Go(n) =yn,  Gi(n) =ahAGi_1(n), i=12,...m-1, (2.9)
and observe that
Gi(n)=D;y, fori=1,2,....m—1, AGy-1(n) = Dy yn. (2.10)

Next, we define the family of sequences

n
wm) = > pmr1(8)AGmk1(s), k=0,1,...,m-1, (2.11)
s=Nj1+1

for n > Ny +1.
A summation by parts yields

U1 (M) = D Pk ()AGm-k(S) = pm-k(N+1) Gk (n+1)
s=N1+1

sonpal as

S
k(N DG Ny 41+ S EmEa S

m— 1
,%Auk(") +Aur(n) +ur(n) 72pm_k(N1 + I)Gm—k(Nl + 1)
- ‘%A”k(") +Uk(n) = 2pm-k (N1 +1) Gk (N1 +1).

(2.12)

This shows that each sequence {uy(n)}, k = 0,1,...,m—1, satisfies the difference
equation
Pm-k(N)

Apm_p () A1k W) — () + Pre(n) =0, (2.13)

which can be written in the form

Apm—k(n)uk(n) N Apm-_r(n)

m—k (1) Pm-k(N) $u(m) =0, @19

Aug(n) -
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where ¢r(n) = ug_1 (M) +2pm_k (N1 + 1)Gp_x (N7 + 1). Since ug(N7) = 0 by (2.11)
and since p;,, k(1) > 0, Apm_k(n) <0, and lim,, . pim_k (1) = 0 by (1.3), we can ap-
ply Lemma 2.1 to (2.14) to conclude that lim,, .. Ug_1 (1) = co (or —oo) which in turn
implies that lim,_ . ux(n) = o (or —o).

Multiplying (1.1) by py-1(n) and summing from N7 + 1 to n, we have

> Pma(DAGH () + D pma(9)a f (Vo)

s=N1+1 s=Nj+1
n n (2.15)
= > pma®e+ D pmaa(9)as f(Vors)-
s=N1+1 s=N1+1
We consider the following two cases:
> P (Mg f(Vom) = (2.16)
n=N1+1
or
>, P (Mg f(Vom) < . (2.17)
n=Np+1

Suppose (2.16) holds. In view of (2.8) and the boundedness of {7y}, the right-hand side
of (2.15) tends to a finite limit as 1 — co. From (2.15), we see that lim,, . Ug(n) = —oo.
Hence, applying Lemma 2.1 to (2.14) with k = 1, we have lim, .. ©;(n) = —c. Again
applying Lemma 2.1 to (2.14), this time with k = 2, we see that lim,,.. U2 (n) = — 0.
Repeating this procedure, we can conclude that limy, .. ;-1 (1) = —oo, which implies
that lim,,_.« v, = —oco. This, however, contradicts the assumption that {y,} is positive,
and thus (2.16) cannot hold.

Next, letting n — o in (2.15) and using (2.17), we see that limy, . uo(n) is finite.
From (2.13), with k = 1, we have

Pm-1(n)

Apmil(n)Aul(n) =ui(n)-¢pi(n) (2.18)
or
) ~ & Apmals)
ul(n) B pm—l(Nl) (ul(Nl) pm*l(Nl)S:Z]:\jl pm—l(S)pm—l(5+ 1) d)l (S)) (2-19)

Taking the limit as n — co and using (1.3), we obtain

n-1

. . Apm-1(5)

limu;(n) =-1limpyu_1(n s). 2.20

lim w1 (n) = = lim pyn-1 )S:le OIS TRALS (2.20)
This limit must be finite since lim;,_ 11 (1) = —co implies limy, .y, = —oc0, which

contradicts the positivity of {y,}, and lim;,_.. u; (1) = c implies limy_ Y, = o,
which contradicts the boundedness of {y,}. Continuing in this way, lim;, .« U1 (1)
is finite. Therefore, lim,,_ . ', exists as a finite number. On the other hand, in view of
(2.7) and (2.17), it is easy to verify that

liyllllinfyg(n) = lirrp_infyn =0. (2.21)

Thus, it follows that lim, .. ¥, =0, and this completes the proof of the theorem. O
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ExXAMPLE 2.3. Consider the difference equation

AmAmAM(+1)Ayn))) + Yyn = yin nx1, (2.22)
where y is a positive integer. We have p;(n) = p»(n) = p3(n) =1/(n+1) and we see
that all conditions of Theorem 2.2 are satisfied. Hence, all bounded nonoscillatory
solutions of (2.22) tend to zero as n — . In fact, {yv,} = {1/n} is a solution of (2.22)
having this property.

In the following theorem, we show that the conclusion of Theorem 2.2 still holds if
the roles of the sequences {q;,} and {g;;} are interchanged.

THEOREM 2.4. All bounded nonoscillatory solutions of (1.1) tend to zero asn —  if
the following conditions are satisfied:

Me

Pm-1(N)q;; < o0, (2.23)
n=N

> pmo1(M)gy, = o, (2.24)
n=N

> pm-1(n)|en| < oo. (2.25)

n=N

PROOF. Let {y,} be a bounded nonoscillatory solution of (1.1), say, v, > 0 and
Yom) > 0 for n > Ny > Ny. Define G;(n) and ug(n) as in (2.9) and (2.11). Assume that

> P (MW anf (Vom) = . (2.26)

n=Nj+1

Letting m — oo in (2.15) and using (2.23), (2.25), and the boundedness of {y,}, we
obtain lim,_. uo(n) = c. Applying Lemma 2.1 to (2.14) with k = 1, we see that
lim,, . u1(n) = co. Repeated applications of this argument yield lim,;, . o U,—1 (1) = o0,
which implies that lim,, .. ¥, = . This contradicts the boundedness of {y,}, and so
we must have .

> Pma(M)Anf(Yom) < . (2.27)

n=Nj+1

The remainder of the proof is similar to the proof of Theorem 2.2 and will be
omitted. O

EXAMPLE 2.5. Consider the equation

1
T 4n-3°

A2 Ayy,) -2My3 = n=0. (2.28)

It is easy to verify that the hypotheses of Theorem 2.4 are satisfied with p;(n) =
p>(n) = p3(n) = 1/2"+1, It follows that all bounded nonoscillatory solutions of (2.28)
approach zero as n — . One such solution is {y,} = {1/2"}.

As an example where {g,} is oscillatory, we have the following example.
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EXAMPLE 2.6. Consider the equation

2n2

[1+D"*] [T+ (=D™]
= > — o2 , nx=1.
Observe that gq;; = 2", g, = —1/n?, and p;(n) = p2(n) = p3(n) = 1/2"1. All the
hypotheses of Theorem 2.2 are satisfied so all bounded nonoscillatory solutions of
(2.29) approach zero as n — . Here, {y,} = {1/2"} is such a solution. Clearly, a

simple modification of this equation will yield an example of Theorem 2.4.

_1)n+l
A3 (271 Ayy) + {2"1[1 e [H(l)]}yn
(2.29)

In our final result, we examine (1.1) in the case where {g,} is positive and establish
conditions under which all nonoscillatory solutions are bounded and tend to zero as

n — oo,

THEOREM 2.7. Assume that condition (1.4) holds, {q,} is positive, liminf,, ., f (u) >0,
and limsup,,_._. f(u) <0.If

> Pm-1(N)gn = oo, (2.30)
n=N
S Jen| < oo, (2.31)
n=N

then all nonoscillatory solutions of (1.1) tend to zero as n — .

PROOF. Let {y,} be a nonoscillatory solution of (1.1), say, v, > 0 and yYgsmn) > 0
for n = N7 = Ny. Define G;(n) and ui(n) as in (2.9) and (2.11). We will first show that
{>yn} is bounded above. From (1.1), we obtain

n-1 n-1
Gm-1(n) =Gm-1(N1) + > dsf Vo) = . es. (2.32)
s=Np s=N1

Since the first sum in (2.32) is positive, and by (2.31), the second sum is bounded,
there exists a constant K;,_1 such that

Gm-1(n) =a™ 'AGp_2(n) <Ky forn=Nj. (2.33)

Dividing the last inequality by a*~! and summing from N; to n— 1, we obtain

n-1
1
Gm-2(N) =Gm-2(N1) <Km-1 > —m1 forn=Ny, (2.34)

s=N; &S
which, in view of (1.4), implies there exists a constant K,,, _» such that
Gm—2(n) =am2AGm-3(n) <Kpm—» forn=Nj. (2.35)

Repeatedly applying the above argument, we obtain constants K;,_3,...,K1,Kp such
that
Gm,g(’l’l) =< Km,3, cany G1 (’I’l) =< Kl, Go(?’l) =< Ko for n = Nl. (236)

It follows that {y,} is bounded from above.
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Now, we argue as in the proof of Theorem 2.2 using
n n n
> pm-1(DAGu () + D pmaa (DA Vo) = D, pmo1(S)es  (2.37)
s=N1+1 s=Nj+1 s=Nj+1

in place of (2.15). Noting that (2.31) implies the right-hand side of (2.37) tends to a
finite limit as n — o, we claim that

n
S Pma1()aAsf (Vo) < . (2.38)
s=N1+1
If this was not the case, we could use Lemma 2.1 to obtain lim, .. ux(n) = —o for

k =0,1,...,m -1, and contradict the boundedness of {y,}. Next, using (2.37) and
(2.38) we can show that lim,,_. ux(n) is finite for each k = 0,1,...,m — 1. Thus,
lim,, . Vy exists and is finite. On the other hand, from (2.30) and (2.38), we see that
liminf,, . y;, = 0. Hence, {y,} tends to zero as n — o, and this completes the proof of
the theorem. O

We conclude this paper with some examples of Theorem 2.7.

EXAMPLE 2.8. Consider the equation

1
AQRMAQRMA(2™MAYR))) + 8"y = g0 "= 0, (2.39)
where k is a positive integer. In this case, p;(n) = 1/2", p>(n) = (1/3)(1/4™), and
p3(n)=(1/21)(1/8"). Since all conditions of Theorem 2.7 are satisfied, every nonoscil-
latory solution of (2.39) tends to zero as n — oo, and {y, } = {1/2"} is such a solution.

EXAMPLE 2.9. Consider the equation

n

A(n(n+1)A((n+2)(n+3)A(n(n+1)Ayn)))+n4y1§n:m’

n=1, (2.40)

where k is a positive integer. All the hypotheses of Theorem 2.7 are satisfied with
pi(m)=1/(n+1),p2(n)=1/2(n+1)(n+2),and p3(n) =1/6(n+1)(n+2)(n+3), so
every nonoscillatory solution of (2.40) tends to zero as n — «. Here, { v, } = {1/n(n+1)}
is a solution of (2.40).
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