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Abstract. Evans, Pulham, and Sheenan computed the number of complete 4-subgraphs
of Paley graphs by counting the number of edges of the subgraph containing only those
nodes x for which x and x−1 are quadratic residues. Here we obtain formulae for the
number of edges of generalizations of these subgraphs using Gaussian hypergeometric
series and elliptic curves. Such formulae are simple in several infinite families, including
those studied by Evans, Pulham, and Sheenan.
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1. Preliminaries. Let G(p) be a graph with p vertices, and let G(p)c denote its

complement, the graph where xy is an edge if and only if xy is not an edge of G(p).
If p ≡ 1 (mod 4) is prime, then let P(p) denote the Paley graph whose vertices are

in GF(p), the finite field with p elements. This is the graph where xy is an edge if

and only if x−y is a quadratic residue modulo p. Motivated by a conjecture of Erdös,

which turned out to be false, Evans, Pulham, and Sheenan [2] computed k4(P(p))+
k4(P(p)c), where km(G) denotes the number of completem-subgraphs of G. Counting

the number of edges of G∗(p), the subgraph of P(p) containing only those nodes x
for which x and x−1 are both quadratic residues, was the main obstacle in obtaining

their result. They showed [2, Proposition 4] that if p = 4y2+x2, then the number of

edges in G∗(p) is

p2−22p+4x2+81
64

. (1.1)

We compute the number of edges of G(i,t,p), natural generalizations of G∗(p).
Throughoutp is an odd prime, andGF(p) is the finite field withp elements. Further-

more let GF(p)× denote the nonzero elements of GF(p), and let GF(p)×2
denote the

nonzero squares. For convenience we let φ(·) denote the Legendre symbol (·/p) ex-

tended to GF(p) under the convention that φ(0) := 0. If n is an integer, then ordp(n)
is the power of p dividing n and ordp(a/b) := ordp(a)−ordp(b).

Definition 1.1. Let 1≤ i≤ 8 be an integer. If p is an odd prime and t a nonzero

integer, then the generalized Paley graph G(i,t,p) is the directed graph whose edge

set E(i,t,p) is

E(i,t,p) := {x �→y | (x,y)∈GF(p)×2×GF(p)×2
, φ(1−x)= (−1)�(i−1)/4�,

φ(1−y)= (−1)�(i−1)/2�, φ(x−ty)= (−1)i−1}, (1.2)

where �·� denotes the greatest integer function.
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The reader should note that edges can be loops, and also that the index i simply

keeps track of the eight nontrivial combinations of signs for φ(1−x), φ(1−y), and

φ(x−ty). If p ≡ 1 (mod 4), then since φ(x−y)=φ(y−x) the graph G(1,1,p) is a

double cover of G∗(p).
We recall the definition of a Gaussian hypergeometric series as defined in [3]. Extend

all characters χ of GF(p)× to GF(p) by setting χ(0) := 0. If A and B are two characters

of GF(p), then
(
A
B

)
is defined by the normalized Jacobi sum

(
A
B

)
:= B(−1)

p
J(A,B̄)= B(−1)

p

∑
x∈GF(p)

A(x)B̄(1−x). (1.3)

Definition 1.2. Given characters A0,A1, . . .An, and B1,B2, . . .Bn of GF(p), let

n+1Fn
(A0, A1, . . .An

B1, . . .Bn
| t
)

(1.4)

be the Gaussian hypergeometric series defined by

n+1Fn
(A0, A1, . . .An

B1, . . .Bn
| t
)

:= p
p−1

∑
χ

(
Aoχ
χ

)(
A1χ
B1χ

)
···

(
Anχ
Bnχ

)
χ(t), (1.5)

where the summation is over all the characters χ of GF(p).

Although the Gaussian hypergeometric series depend on the prime p, we suppress

its dependence in the notation under the assumption that the prime will be clear from

context.

For our purposes it will be important to evaluate

2F1(t) := 2F1

(φ φ
ε
| t
)
, 3F2(t) := 3F2

(φ φ φ
ε ε

| t
)
, (1.6)

where ε is the identity (i.e., ε(x)= 1 for x �= 0). In [3] it was shown that

2F1(t)= φ(−1)
p

∑
x∈GF(p)

φ(x)φ(1−x)φ(1−tx), (1.7)

3F2(t)= φ(−1)
p2

∑
x,y∈GF(p)

φ(x)φ(y)φ(1−x)φ(1−y)φ(x−ty). (1.8)

A useful alternative for computing these two Gaussian hypergeometric series was

given in [4], where it was shown that they may also be expressed in terms of the

number of points on special elliptic curves over GF(p). Define elliptic curves 2E1(t)
and 3E2(t) by

2E1(t) :y2 = x(x−1)(x−t),
3E2(t) :y2 = x3−t2x2+(4t3−t4)x+t6−4t5.

(1.9)

Denote the number of points on 2E1(t) and 3E2(t) over GF(p) by

2N1(t,p) :=
∣∣{(x,y)∈GF(p)×GF(p) |y2 = x(x−1)(x−t)}∣∣,

3N2(t,p) :=
∣∣{(x,y)∈GF(p)×GF(p) |y2=x3−t2x2+(4t3−t4)x+t6−4t5}∣∣. (1.10)
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Now define the Frobenius traces, 2a1(t,p) and 3a2(t,p) by

2a1(t,p) := p− 2N1(t,p),

3a2(t,p) := p− 3N2(t,p).
(1.11)

In this notation, the following two theorems were proved in [4].

Theorem 1.3. If t ∈Q−{0,1} and p is an odd prime for which ordp(t(t−1))= 0,

then

2F1(t)=−φ(−1) 2a1(t,p)
p

. (1.12)

Theorem 1.4. If δ∈Q−{0,4} and p is an odd prime for which ordp(δ(δ−4))= 0,

then

3F2

(
4

4−δ
)
= φ

(
δ2−4δ

)(
3a2(δ,p)2−p

)
p2

. (1.13)

2. Main theorems. Here we compute the number of edges of the graphs G(i,t,p)
when t �≡ 0 (mod P). Without loss of generality, we assume that 1≤ t ≤ p−1, although

for aesthetic reasons we write t =−1 rather than t = p−1.

Lemma 2.1. If p is an odd prime and t �≡ 0 (mod p), then

(i)
∑
x∈GF(p)φ(x2−t)=−1,

(ii) |{x ∈GF(p) |φ(x2−t)= 1}| = (p−2−φ(t))/2,

(iii) |{x ∈GF(p) |φ(t−x2)= 1}| = (p−1−φ(t)−φ(−1))/2,

(iv) |{x ∈GF(p) |φ(1−x2/t)= 1}| = (p−1−φ(t)−φ(−t))/2.

Proof. (i) By Euler’s criterion thatφ(x)≡ x(p−1)/2 (mod p) for all x ∈GF(p), and

the Binomial theorem we obtain

∑
x∈GF(p)

φ
(
x2−t)≡ ∑

x∈GF(p)

(
x2−t)(p−1)/2 (mod p)

≡
∑

x∈GF(p)

(p−1)/2∑
r=0

(
(p−1)/2

r

)
x2r(−1)(p−1)/2−r (mod p).

(2.1)

Since
∑xk
x∈GF(p) ≡ 0 (mod p) for 0< k< p−1, the above sum is

≡
∑

x∈GF(p)
(−t)(p−1)/2+xp−1 ≡−1 (mod p). (2.2)

Furthermore, this sum is odd because
∑
x∈GF(p)φ(x2−t)=φ(−t)+2

∑ (p−1)/2
x=1 φ(x2−t).

Therefore since |∑x∈GF(p)φ(x2−t)|<p, one easily concludes that the sum is −1.

(ii) Define S+ and S− by

S± :=
∣∣{x ∈GF(p) |φ(x2−t)=±1

}∣∣. (2.3)

By (i), S+−S− = −1. This and the equation S++S− = p−(1+φ(t)) determine S+.

(iii) and (iv) are also easy exercises.
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Lemma 2.2. Suppose p is an odd prime and t �≡ 0, 1 (mod p). If γ±,±(t,p) is defined

by

γ±±(t,p) :=
∣∣∣∣
{
x ∈GF(p)× |φ(1−x2)=±1, φ

(
1− x

2

t

)
=±1

}∣∣∣∣, (2.4)

then

γ++(t,p)= 1
4

(
p+φ(−t)p 2F1(t)−φ(−1)−2φ(t)

−φ(−t)−2φ
(
t2−t)−φ(1−t)−φ(t−t2)−7

)
,

γ+−(t,p)= 1
4

(
p−φ(−t)p 2F1(t)−φ(−1)−φ(1−t)

−φ(t−t2)+φ(−t)+2φ
(
t2−t)−3

)
,

γ−+(t,p)= 1
4

(
p−φ(−t)p 2F1(t)+φ(−1)+φ(1−t)

+φ(t−t2)−φ(−t)−2φ
(
t2−t)−3

)
,

γ−−(t,p)= 1
4

(
p+φ(−t)p 2F1(t)+φ(−1)+φ(1−t)

+φ(t−t2)+φ(−t)+2φ
(
t2−t)−2φ(t)−3

)
.

(2.5)

Proof. These formulae follow from four key relations. Since t �≡ 0,1 (mod p), it

is clear that

γ++(t,p)+γ−−(t,p)+γ+−(t,p)+γ−+(t,p)

=
∣∣∣∣
{
x ∈GF(p)× |φ(1−x2) �= 0, φ

(
1− x

2

t

)
�= 0

}∣∣∣∣
= p−4−φ(t).

(2.6)

Similarly it is easy to see that

γ++(t,p)+γ−−(t,p)−γ+−(t,p)−γ−+(t,p)

=
∑

x∈GF(p)×
φ
(
1−x2)φ(1− x

2

t

)

=−1+
∑

x∈GF(p)
φ
(
1−x2)φ(1− x

2

t

)
.

(2.7)

Since x2 represents each nonzero quadratic residue twice, replacing x2 by x in the

above expression and then multiplying the summand by the weight (1 + φ(x))
leads to

−1+
∑

x∈GF(p)
φ(1−x)φ

(
1− x

t

)(
1+φ(x))

=−1+
∑

x∈GF(p)
φ(1−x)φ

(
1− x

t

)
+

∑
x∈GF(p)

φ(1−x)φ
(

1− x
t

)
φ(x).

(2.8)
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This now reduces by Lemma 2.1 and (1.7) to be

=φ(−t)p 2F1(t)−1−φ(t). (2.9)

Now consider

γ++(t,p)+γ+−(t,p)=
∣∣∣∣
{
x ∈GF(p)× |φ(1−x2)= 1, φ

(
1− x

2

t

)
�= 0

}∣∣∣∣
=
∣∣{x ∈GF(p)× |φ(1−x2)= 1

}∣∣
−
∣∣∣∣
{
x ∈GF(p)× |φ(1−x2)= 1, φ

(
1− x

2

t

)
= 0

}∣∣∣∣.
(2.10)

The first term is known by Lemma 2.1, and the second is 2(1+φ(t)/2)(1+φ(1−t)/2)
since it is 2 if t and 1−t are both quadratic residues and 0 otherwise. This leads to

γ++(t,p)+γ+−(t,p)=
(
p−2−φ(−1)

2
−1
)
−2
(

1+φ(t)
2

)(
1+φ(1−t)

2

)

= 1
2

(
p−φ(−1)−φ(t)−φ(1−t)−φ(t−t2)−5

)
.

(2.11)

Similarly we obtain

γ++(t,p)+γ−+(t,p)= 1
2

(
p−φ(t)−φ(−t)−2φ

(
t2−t)−5

)
. (2.12)

Solving (2.6), (2.9), (2.11), and (2.12) for γ++(t,p), γ+−(t,p), γ−+(t,p), and γ++(t,p)
produces the result.

Theorem 2.3 depends on auxiliary constants determined by the values of φ(−1),
φ(t), and φ(1−t). These constants are defined in Tables A.1, A.2, A.3, A.4, A.5, A.6,

A.7, and A.8 in the appendix.

Theorem 2.3. If p is an odd prime, and 2≤ t ≤ p−1, then

∣∣E(i,t,p)∣∣
= p

2+p2 ·�(i,t,p)· 3F2(t)+p ·_2F1(t)·�(i,t,p)+p ·�(i,t,p)+�(i,t,p)
32

.
(2.13)

Proof. Define α(i,t,p) by

α(i,t,p) :=
∣∣{(x,y)∈GF(p)××GF(p)× |φ(1−x2)= (−1)�(i−1)/4�,

φ
(
1−y2)= (−1)�(i−1)/2�, φ

(
x2−ty2)= (−1)i−1}∣∣. (2.14)

Thus α(i,t,p) = 4|E(i,t,p)|. The α(i,t,p) will be determined by solving eight
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equations. First,

α(1, t,p)−α(2, t,p)−α(3, t,p)+α(4, t,p)

−α(5, t,p)+α(6, t,p)+α(7, t,p)−α(8, t,p)

=
∑

x,y∈GF(p)×
φ
(
1−x2)φ(1−y2)φ(x2−ty2)

=
∑

x,y∈GF(p)
φ
((

1−x2)(1−y2)(x2−ty2))

−
∑

x,y∈GF(p), xy=0

φ
((

1−x2)(1−y2)(x2−ty2))

=
∑

x,y∈GF(p)
φ
(
(1−x)(1−y)(x−ty))(1+φ(x))(1+φ(y))

+1+φ(−1)+φ(t)+φ(−t).

(2.15)

The above sum involves the four simpler sums

A :=
∑

x,y∈GF(p)
φ
(
(1−x)(1−y)(x−ty)),

B :=
∑

x,y∈GF(p)
φ
(
(1−x)(1−y)(x−ty)x),

C :=
∑

x,y∈GF(p)
φ
(
(1−x)(1−y)(x−ty)y),

D :=
∑

x,y∈GF(p)
φ
(
(1−x)(1−y)(x−ty)xy).

(2.16)

By Lemma 2.1, A and B are given by

A=
∑

1/t �=y∈GF(p)
φ(1−y)

∑
x∈GF(p)

φ
(
(1−x)(x−ty))

+φ
(

1− 1
t

) ∑
x∈GF(p)

φ
(
(1−x)(x−1)

)

=φ
(

1
t
−1
)
+(p−1)φ

(
1
t
−1
)

=φ
(

1
t
−1
)
p,

B =
∑

1/t �=y∈GF(p)
φ
(
y−y2) ∑

x∈GF(p)
φ
(
(1−x)(x−ty))

+φ
(

1
t
− 1
t2

) ∑
x∈GF(p)

φ
(
(1−x)(x−1)

)

=
∑

1/t �=y∈GF(p)
φ
(
y−y2)(−φ(−1)

)+(p−1)φ(1−t)

= 1+φ(1−t)+(p−1)φ(1−t)

=φ(1−t)p+1.

(2.17)
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Similarly C can easily be shown to be C = φ(−t)+φ(1− t)p. By (1.8), D is a simple

multiple of 3F2(t), which combined with the formulae for A, B, and C leads to

α(1, t,p)−α(2, t,p)−α(3, t,p)+α(4, t,p)−α(5, t,p)
+α(6, t,p)+α(7, t,p)−α(8, t,p)

=φ(−1) 3F2(t)p2+φ(1−t)2p

+φ(t−t2)p+2+2φ(−t)+φ(−1)+φ(t).

(2.18)

Each α(i,t,p) can be expressed in terms of φ(−1), φ(t), φ(1−t), 2F1(t), and 3F2(t).
Determining these expressions is no more than solving simple systems of equations.

For brevity, we only consider the case where (φ(−1),φ(t),φ(1−t))= (1,−1,−1). The

solution in this case determines the entries in Table A.5. In the remaining cases, the

tables are determined in exactly the same way.

We first derive an equation for α(1, t,p)+α(3, t,p) in the following way:

α(1, t,p)+α(3, t,p)

=
∣∣{(x,y)∈GF(p)××GF(p)× |φ(1−x2)=1, φ

(
1−y2) �= 0, φ

(
x2−ty2)= 1

}∣∣
=
∣∣{(x,y)∈GF(p)××GF(p)× |φ(1−x2)= 1, φ

(
x2−ty2)= 1

}∣∣
−2
∣∣∣∣
{
x ∈GF(p) |φ(1−x2)= 1, φ

(
1− x

2

t

)
=φ(−t)=−1

}∣∣∣∣
=
∣∣{x ∈GF(p)× |φ(1−x2)=1

}∣∣·∣∣{y ∈GF(p)× |φ(1−ty2)= 1
}∣∣−2γ+−(t,p)

=
(
p−5

2

)(
p−1

2

)
− p−7+p 2F1(t)

2
.

(2.19)

The following equations are determined in a similar way,

α(1, t,p)+α(2, t,p)=
(
p−5

2

)2

,

α(3, t,p)+α(4, t,p)=
(
p−5

2

)(
p−1

2

)
,

α(5, t,p)+α(6, t,p)=
(
p−1

2

)(
p−5

2

)
,

α(7, t,p)+α(8, t,p)=
(
p−1

2

)2

− p+1−p 2F1(t)
2

,

α(1, t,p)+α(5, t,p)=
(
p−5

2

)(
p−1

2

)
− p−3+p 2F1(t)

2
,

α(3, t,p)+α(7, t,p)=
(
p−1

2

)2

− p−1−p 2F1(t)
2

.

(2.20)

The solution to the system (2.18), (2.19), and (2.20) for α(i,t,p) for 1 ≤ i ≤ 8 yields

the entries in Table A.5.

As an immediate consequence of (1.11), Theorems 1.3 and 1.4 we obtain the follow-

ing result.
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Corollary 2.4. Ifp is an odd prime, 2≤t≤p−1, and δ :≡ (4t−4)/t (mod p), then

∣∣E(i,t,p)∣∣= p2

32

(
φ(1−t)�(i,t,p)+1

)

+ p
32

(−φ(−1)�(i,t,p)+�(i,t,p)

−2φ(1−t)�(i,t,p) 3N2(δ,p)−φ(1−t)�(i,t,p)
)

+ 1
32

(
φ(1−t)�(i,t,p) 3N2(δ,p)2

+φ(−1)�(i,t,p) 2N1(t,p)+�(i,t,p)
)
.

(2.21)

Example 2.5. Consider the graph G(7,4,13). By Corollary 2.4 we find that δ ≡ 3

(mod 13), and by (1.9) we are lead to consider the GF(13) points of the curves

2E1(4) :y2 = x3−5x2+4x, 3E2(3) :y2 = x3−9x2+27x−243. (2.22)

Both curves have 2N1(4,13)= 3N2(3,13)= 15 points over GF(13), and so by Corollary

2.4 (using Table A.1 since φ(−1)=φ(4)=φ(−3)= 1) we find that |E(7,4,13)| = 4. It

is easy to verify that this is indeed true, since the edge set is

E(7,4,13)= {3 �→ 3,9 �→ 3,9 �→ 9,12 �→ 12}. (2.23)

If t ≡−1 (mod p), then formulae like (1.1) follow from evaluations proved in [4]

2F1(−1)=




0, if p ≡ 3 (mod4);
2x(−1)(x+y+1)/2

p
, if p ≡ 1 (mod4), x2+y2 = p, x odd.

3F2(−1)=



−φ(2)

p
, if p ≡ 5,7 (mod8);

φ(2)
(
4x2−p)
p2

, if p ≡ 1,3 (mod8), x2+2y2 = p.

(2.24)

Corollary 2.6. Let p be prime, and define integers u, v , x, and y by

p = x2+y2, if p ≡ 1 (mod4) with x odd,

p =u2+2v2, if p ≡ 1,3 (mod8).
(2.25)

If p ≡ 1 (mod 8), then

∣∣E(i,−1,p)
∣∣= 1

32
·




p2−12p−12x(−1)(x+y+1)/2+4u2+91, if i= 1;

p2−12p+4x(−1)(x+y+1)/2−4u2+19, if i= 1,3 or 5;

p2−4p+4x(−1)(x+y+1)/2+4u2+3, if i= 4,6 or 7;

p2−4p−12x(−1)(x+y+1)/2−4u2−5, if i= 8.

(2.26)
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If p ≡ 3 (mod 8), then

∣∣E(i,−1,p)
∣∣= 1

32
·




p2−10p+4u2+17, if i= 1 or 7;

p2−2p−4u2+1, if i= 2 or 8;

p2−6p−4u2+13, if i= 3 or 5;

p2−6p+4u2+5, if i= 4 or 6.

(2.27)

If p ≡ 5 (mod 8), then

∣∣E(i,−1,p)
∣∣= 1

32
·



p2−16p−12x(−1)(x+y+1)/2+67, if i= 1;

p2−8p+4x(−1)(x+y+1)/2+11, if 2≤ i≤ 7;

p2−12x(−1)(x+y+1)/2+19, if i= 8.

(2.28)

If p ≡ 7 (mod 8), then

∣∣E(i,−1,p)
∣∣= 1

32
·




p2−6p+25, if i= 1 or 7;

p2−6p−7, if i= 2 or 8;

p2−10p+21, if i= 3 or 5;

p2−2p−3, if i= 4 or 6.

(2.29)

Even though the only t for which 2F1(t) and 3F2(t) are known to simultaneously

have explicit evaluations are t = 0 and ±1, we can still obtain simple formulae using

the fact that �(i,t,p) is often zero in Tables A.3, A.5, A.7, and A.8. If p > 3 is prime,

then the following formulae were obtained in [4]:

3F2(−8)=



− 1
p
, if p ≡ 3 (mod4);

4x2−p
p2

, if p ≡ 1 (mod4), x2+y2 = p, x odd.

3F2

(−1
8

)
=



−φ(2)

p
, if p ≡ 3 (mod4);

φ(2)
(
4x2−P)
p2

, if p ≡ 1 (mod4), x2+y2 = p, x odd.

(2.30)

Now as an immediate consequence we obtain the following result.

Corollary 2.7. Suppose that p ≡ 5 or 7 (mod 8) is prime, and that t ≡−8 or −1/8
(mod p). If p ≡ 5 (mod 8) and t ≡−8 (mod p), then

∣∣E(i,t,p)∣∣= 1
32
·

p

2−6p−4x2+9, if i= 3 or 5;

p2−6p+4x2+1, if i= 4 or 6.
(2.31)

If p ≡ 5 (mod 8) and t ≡−1/8 (mod p), then

∣∣E(i,t,p)∣∣= 1
32
·

p

2−6p+4x2+9, if i= 3 or 5;

p2−6p−4x2+1, if i= 4 or 6.
(2.32)
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If p ≡ 7 (mod 8) and t ≡−8 or −1/8, then

∣∣E(i,t,p)∣∣= 1
32
·

p

2−6p+25, if i= 1 or 7;

p2−6p−7, if i= 2 or 8.
(2.33)

Example 2.8. Consider the graph G(8,−1,17). Since 17 = 12 + 42 = 32 + 2 · 22,

Corollary 2.6 with x = 1, y = 4, u = 3, and v = 2 also shows |E(8,−1,17)| = 6. It

is easy to check that the 6 edges are

E(8,−1,17)= {4 �→ 8, 8 �→ 4, 15 �→ 13,15 �→ 8, 13 �→ 15, 8 �→ 15}. (2.34)

Example 2.9. Consider the graph G(2,15,23). Since 23 ≡ 7 (mod 8) and 15 ≡ −8

(mod 23), Corollary 2.7 implies that |E(2,−8,23)| = 12. It is easy to check that these

12 edges are

E(2,15,23)= {16 �→ 8, 16 �→ 12, 18 �→ 6, 18 �→ 12, 16 �→ 18, 12 �→ 6,

12 �→ 8, 8 �→ 6, 8 �→ 18, 8 �→ 16, 6 �→ 12, 6 �→ 16}. (2.35)

Now we state the result when t = 1. Since the proof in this case follows the same type

of argument leading to Theorem 2.3, we omit it for brevity.

Theorem 2.10. If p is an odd prime, then the number of edges of G(i,1,p) is

∣∣E(i,1,p)∣∣= 1
32
·




p2+p2φ(−1) 3F2(1)−15p−φ(−1)5p+φ(−1)30+51, if i=1;

p2−p2φ(−1) 3F2(1)−9p+φ(−1)p−φ(−1)6+15, if i=2,5 or 8;

p2−p2φ(−1) 3F2(1)−5p−φ(−1)3p+φ(−1)6+3, if i=3;

p2+p2φ(−1) 3F2(1)−7p+φ(−1)3p−φ(−1)10+11, if i=4 or 7;

p2+p2φ(−1) 3F2(1)−3p−φ(−1)p+φ(−1)2−1, if i=6.
(2.36)

Since Evans (see [1]) proved that 3F2(1) = (4x2−2p)p2 if p = x2+y2 where x is

odd, and is zero otherwise, we obtain the following corollary.

Corollary 2.11. If p = x2+y2 is prime where x is odd, then

∣∣E(i,1,p)∣∣= 1
32
·



p2−22p+4x2+81, if i= 1;

p2−6p−4x2+9, if i= 2,3,5, or 8;

p2−6p+4x2+1, if i= 4,6, or 7.

(2.37)

If p ≡ 3 (mod 4) is prime, then

∣∣E(i,1,p)∣∣= 1
32
·

p

2−10p+21, if i= 1,2,4,5,7, or 8;

p2−2p−3, if i= 3 or 6.
(2.38)

Since E(1,1,p) is a double cover of G∗(p) when p ≡ 1 (mod 4), the formula for

|E(1,1,p)| in the above corollary is equivalent to (1.1).
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Appendix

Table A.1.

(
φ(−1),φ(t),φ(1−t))= (1,1,1).

i �(i,t,p) �(i,t,p) �(i,t,p) �(i,t,p)
1 1 −6 −11 91

2 −1 2 −13 19

3 −1 2 −13 19

4 1 2 −3 3

5 −1 2 −13 19

6 1 2 −3 3

7 1 2 −3 3

8 −1 −6 −5 −5

Table A.2.

(
φ(−1),φ(t),φ(1−t))= (−1,1,1).

i �(i,t,p) �(i,t,p) �(i,t,p) �(i,t,p)
1 −1 2 −5 27

2 1 2 −11 19

3 1 −6 −11 19

4 −1 2 −5 27

5 1 2 −11 19

6 −1 −6 −5 −5

7 −1 2 −5 27

8 1 2 −11 19

Table A.3.

(
φ(−1),φ(t),φ(1−t))= (1,−1,1).

i �(i,t,p) �(i,t,p) �(i,t,p) �(i,t,p)
1 1 −4 −9 29

2 −1 4 −11 21

3 −1 0 −7 9

4 1 0 −5 1

5 −1 0 −7 9

6 1 0 −5 1

7 1 4 −1 5

8 −1 −4 −3 −3



122 LAWRENCE SZE

Table A.4.

(
φ(−1),φ(t),φ(1−t))= (1,1,−1).

i �(i,t,p) �(i,t,p) �(i,t,p) �(i,t,p)
1 1 −6 −17 67

2 −1 2 −7 11

3 −1 2 −7 11

4 1 2 −9 11

5 −1 2 −7 11

6 1 2 −9 11

7 1 2 −9 11

8 −1 −6 1 19

Table A.5.

(
φ(−1),φ(t),φ(1−t))= (1,−1,−1).

i �(i,t,p) �(i,t,p) �(i,t,p) �(i,t,p)
1 1 −4 −11 21

2 −1 4 −9 29

3 −1 0 −5 1

4 1 0 −7 9

5 −1 0 −5 1

6 1 0 −7 9

7 1 4 −3 −3

8 −1 −4 −1 5

Table A.6.

(
φ(−1),φ(t),φ(1−t))= (−1,1,−1).

i �(i,t,p) �(i,t,p) �(i,t,p) �(i,t,p)
1 −1 2 −11 19

2 1 2 −5 27

3 1 −6 −5 −5

4 −1 2 −11 19

5 1 2 −5 27

6 −1 −6 −11 19

7 −1 2 −11 19

8 1 2 −5 27
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Table A.7.

(
φ(−1),φ(t),φ(1−t))= (−1,−1,1).

i �(i,t,p) �(i,t,p) �(i,t,p) �(i,t,p)
1 −1 0 −7 25

2 1 0 −5 −7

3 1 −4 −9 21

4 −1 4 −3 −3

5 1 4 −9 21

6 −1 −4 −3 −3

7 −1 0 −7 25

8 1 0 −5 −7

Table A.8.

(
φ(−1),φ(t),φ(1−t))= (−1,−1,−1).

i �(i,t,p) �(i,t,p) �(i,t,p) �(i,t,p)
1 −1 0 −9 17

2 1 0 −3 1

3 1 −4 −7 13

4 −1 4 −5 5

5 1 4 −7 13

6 −1 −4 −5 5

7 −1 0 −9 17

8 1 0 −3 1
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