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ON THE EXTENDED HARDY’S INEQUALITY
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Abstract. We generalize a strengthened version of Hardy’s inequality and give a new
simpler proof.
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In the recent paper [4], Hardy’s inequality was generalized. In this note, the results

given in [4] are further generalized and a new much simpler proof is given. The fol-

lowing Hardy’s inequality is well known [1, Theorem 349].

Theorem 1 (Hardy’s inequality). Let λn > 0, An =
∑n
k=1λk, an ≥ 0 (n ∈ N),

0<
∑∞
n=1λnan <+∞, then

∞∑
n=1

λn
(
aλ1

1 a
λ2
2 ···aλnn

)1/An < e
∞∑
n=1

λnan. (1)

Recently, [4] gave an improvement of Theorem 1, and the following result was

proved.

Theorem 2. Let 0< λn+1 ≤ λn,An =
∑n
k=1λk, an ≥ 0 (n∈N), 0<

∑∞
n=1λnan <+∞,

then

∞∑
n=1

λn+1
(
aλ1

1 a
λ2
2 ···aλnn

)1/An < e
∞∑
n=1

(
1− λn

2(An+λn)
)
λnan. (2)

In this note, we will prove the following theorem.

Theorem 3. Let 0 < λn+1 ≤ λn, An =
∑n
k=1λk, an ≥ 0 (n ∈ N), 0 <

∑∞
n=1λnan <

+∞, then

∞∑
n=1

λn+1
(
aλ1

1 a
λ2
2 ···aλnn

)1/An < e
∞∑
n=1

(
1+ 5λn

5An+λn

)−1/2
λnan. (3)

To prove Theorem 3, we introduce some lemmas.

Lemma 4. For x > 0, then

e
(

1− 1
2x+1

)
<
(

1+ 1
x

)x
< e
(

1+ 5
5x+1

)−1/2
. (4)
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Proof. (i) Define f(x) as

f(x)= x ln
(

1+ 1
x

)
+ 1

2
ln
(

1+ 5
5x+1

)
, x ∈ (0, +∞). (5)

It is obvious that when x > 0, the inequality

(
1+ 1

x

)x
< e
(

1+ 5
5x+1

)−1/2
(6)

is equivalent to f(x) < 1. It is easy to see that

f ′(x)=− 1
x+1

+ ln
(

1+ 1
x

)
− 25

2(5x+6)(5x+1)
(7)

and for x ∈ (0,+∞), it can be shown that

f ′′(x)= 1
(x+1)2

− 1
x(x+1)

+ 25
2(5x+1)2

− 25
2(5x+6)2

= −125x3−50x2+35x−72
2x(x+1)2(5x+1)2(5x+6)2

< 0.
(8)

Hence f ′(x) is decreasing on (0,+∞). Then for any x ∈ (0, +∞), we have f ′(x) >
limx→+∞f ′(x)= 0, thus, f(x) is increasing on (0,+∞), and f(x) < limx→+∞f(x)= 1

for x ∈ (0,+∞). The inequality (6) is valid.

(ii) Define g(x) as

g(x)= x ln
(

1+ 1
x

)
− ln

(
1− 1

2x+1

)
, x ∈ (0,+∞). (9)

When x > 0, the inequality

e
(

1− 1
2x+1

)
<
(

1+ 1
x

)x
(10)

is equivalent to g(x) > 1. For x ∈ (0,+∞), it can be shown that

g′(x)=− 1
x+1

+ ln
(

1+ 1
x

)
− 1
x(2x+1)

,

g′′(x)= 5x2+5x+1
x2(x+1)2(2x+1)2

> 0.
(11)

Hence, g′(x) is increasing on (0,+∞). Then for any x ∈ (0, +∞), we have g′(x) <
limx→+∞g′(x)= 0, therefore, g(x) is decreasing on (0,+∞) and g(x) > limx→+∞g(x)
= 1 for x ∈ (0,+∞). Inequality (10) is valid.

By virtue of (6) and (10), inequalities (4) are valid. This proves Lemma 4.

Remark 5. By a direct calculation, we have

(
1+ 5

5x+1

)−1/2
< 1− 1

2(x+19/20)
(x > 0). (12)
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Then by (4) and (12), we have

e
(

1− 1
2x+1

)
<
(

1+ 1
x

)x
< e
[

1− 1
2(x+19/20)

]
(x > 0). (13)

Inequality (13) is equivalent to

e
2(x+19/20)

< e−
(

1+ 1
x

)x
<

e
2x+1

(x > 0). (14)

Thus, [1, Lemma 2] is contained in Lemma 4. Inequalities (4) and (14) are the new

inequalities on the constant e (cf. [3, Theorem 3.8.26]; and [2, page 358]).

Lemma 6 (see [1, Theorem 9]). Let gm > 0, αm ≥ 0 (m = 1,2, . . . ,n),
∑n
m=1gm = 1,

then

αg1
1 α

g2
2 ···αgnn ≤

n∑
m=1

gmαm. (15)

Proof of Theorem 3. Setting cm > 0, gm = λm/An, αm = cmam (m= 1,2, . . . ,n),
by Lemma 6, we have

(
c1a1

)λ1/A1
(
c2a2

)λ2/A2 ···(cnan)λn/An ≤ 1
An

n∑
m=1

λmcmam. (16)

Then we find that

∞∑
n=1

λn+1
(
aλ1

1 a
λ2
2 ···aλnn

)1/An =
∞∑
n=1

λn+1

(
c1a1

)λ1/A1
(
c2a2

)λ2/A2 ···(cnan)λn/An(
cλ1

1 c
λ2
2 ···cλnn

)1/An

≤
∞∑
n=1

[
λn+1(

cλ1
1 c

λ2
2 ···cλnn

)1/An

]
1
An

n∑
m=1

cmλmam

=
∞∑
m=1

λmamcm
∞∑

n=m

λn+1

An
(
cλ1

1 c
λ2
2 ···cλnn

)1/An .

(17)

Define cm = ((Am+1)/Am)Am/λmAm (m = 1,2, . . .) and A0 = 0. Because 0 < λn+1 ≤
λn (n= 1,2, . . .), we have

cλmm = (Am+1)Am

AAm−1
m

;
(
cλ1

1 c
λ2
2 ···cλnn

)1/An =An+1 (n∈N);

cm
∞∑

n=m

λn+1

An
(
cλ1

1 c
λ2
2 ···cλnn

)1/An =
(
Am+1

Am

)Am/λm
Am

∞∑
n=m

λn+1

AnAn+1

=
(

1+ λm+1

Am

)Am/λm
Am

∞∑
n=m

(
1
An

− 1
An+1

)

≤
(

1+ λm
Am

)Am/λm
.

(18)
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Then by (4) and (17), we obtain that

∞∑
n=1

λn+1
(
aλ1

1 a
λ2
2 ···aλnn

)1/An ≤
∞∑
m=1

(
1+ λm

Am

)Am/λm
λmam

≤ e
∞∑
m=1

(
1+ 5λm

5Am+λm

)−1/2
λmam.

(19)

Hence inequality (3) is valid, and Theorem 3 is proved.

Remark 7. With inequality (12), Theorem 3 is obviously an improvement and an

extension of [4, Theorem 1].

Setting λn ≡ 1, (3) changes into

∞∑
n=1

(
a1a2 ···an

)1/n < e
∞∑
n=1

(
1+ 5

5n+1

)−1/2
an. (20)

By inequality (12), we have

∞∑
n=1

(
a1a2 ···an

)1/n < e
∞∑
n=1

[
1− 1

2(n+19/20)

]
an. (21)

Thus, inequalities (20) and (21) are obviously an improvement and extension of [5,

Theorem 3.1].
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