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Abstract. We introduce a new notion, called a Q-algebra, which is a generalization of
the idea of BCH/BCI /BCK -algebras and we generalize some theorems discussed in BCI -
algebras. Moreover, we introduce the notion of “quadratic”Q-algebra, and show that every
quadratic Q-algebra (X;∗,e), e ∈ X, has a product of the form x∗y = x−y +e, where
x,y ∈X when X is a field with |X| ≥ 3.
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1. Introduction. Imai and Iséki introduced two classes of abstract algebras: BCK -

algebras and BCI -algebras (see [4, 5]). It is known that the class of BCK -algebras is a

proper subclass of the class of BCI -algebras. In [2, 3] Hu and Li introduced a wide class

of abstract algebras: BCH -algebras. They have shown that the class of BCI -algebras

is a proper subclass of the class of BCH -algebras. Neggers and Kim (see [8]) intro-

duced the notion of d-algebras, that is, (I) x∗x = e; (IX) e∗x = e; (VI) x∗y = e and

y∗x = e imply x = y , which is another useful generalization of BCK -algebras, after

which they investigated several relations between d-algebras and BCK -algebras, as

well as other relations between d-algebras and oriented digraphs. At the same time,

Jun, Roh, and Kim [6] introduced a new notion, called a BH -algebra, that is, (I)x∗x = e;
(II) x∗e = x; (VI) x∗y = e and y∗x = e imply x = y , which is a generalization of

BCH/BCI /BCK -algebras, and they showed that there is a maximal ideal in bounded

BH -algebras. We introduce a new notion, called a Q-algebra, which is a generalization

of BCH/BCI /BCK -algebras and generalize some theorems from the theory of BCI -

algebras. Moreover, we introduce the notion of “quadratic” Q-algebra, and obtain the

result that every quadratic Q-algebra (X;∗,e), e∈X, is of the form x∗y = x−y+e,
where x,y ∈ X and X is a field with |X| ≥ 3, that is, the product is linear in a spe-

cial way.

2. Q-algebras. A Q-algebra is a nonempty set X with a constant 0 and a binary

operation “∗” satisfying axioms:

(I) x∗x = 0,

(II) x∗0= x,

(III) (x∗y)∗z = (x∗z)∗y for all x,y,z ∈X.

For brevity we also call X a Q-algebra. In X we can define a binary relation ≤ by

x ≤ y if and only if x ∗y = 0. Recently, Ahn and Kim [1] introduced the notion

of QS-algebras. A Q-algebra X is said to be a QS-algebra if it satisfies the additional

relation:

(IV) (x∗y)∗(x∗z)= z∗y , for any x,y,z ∈X.
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Example 2.1. Let Z be the set of all integers and let nZ := {nz | z ∈ Z} where

n∈ Z. Then (Z;−,0) and (nZ;−,0) are Q-algebras, where “−” is the usual subtraction

of integers.

Example 2.2. Let X := {0,1,2,3} be a set with the following table:

∗ 0 1 2 3

0 0 0 0 0

1 1 0 0 0

2 2 0 0 0

3 3 3 3 0

Then (X;∗,0) is a Q-algebra, which is not a BCH/BCI /BCK -algebra.

Neggers and Kim [7] introduced the related notion of B-algebra, that is, algebras

(X;∗,0) which satisfy (I) x∗x = 0; (II) x∗0= x; (V) (x∗y)∗z = x∗(z∗(0∗y)), for

any x,y,z ∈ X. It is easy to see that B-algebras and Q-algebras are different notions.

For example, Example 2.2 is a Q-algebra, but not a B-algebra, since (3∗2)∗1 = 0 �=
3 = 3∗(1∗(0∗2)). Consider the following example. Let X := {0,1,2,3,4,5} be a set

with the following table:

∗ 0 1 2 3 4 5

0 0 2 1 3 4 5

1 1 0 2 4 5 3

2 2 1 0 5 3 4

3 3 4 5 0 2 1

4 4 5 3 1 0 2

5 5 3 4 2 1 0

Then (X;∗,0) is a B-algebra (see [7]), but not a Q-algebra, since (5∗3)∗4 = 3 �= 4 =
(5∗4)∗3.

Proposition 2.3. If (X;∗,0) is a Q-algebra, then

(VII) (x∗(x∗y))∗y = 0, for any x,y ∈X.

Proof. By (I) and (III), (x∗(x∗y))∗y = (x∗y)∗(x∗y)= 0.

We now investigate some relations between Q-algebras and BCH -algebras (also

BCK/BCI -algebras). The following theorems are easily proven, and we omit their

proofs.

Theorem 2.4. Every BCH-algebra X is a Q-algebra. Every Q-algebra X satisfying

condition (VI) is a BCH-algebra.

Theorem 2.5. Every Q-algebra satisfying condition (IV) and (VI) is a BCI-algebra.
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Theorem 2.6. Every Q-algebra X satisfying conditions (V), (VI), and

(VIII) (x∗y)∗x = 0 for any x,y ∈X, is a BCK-algebra.

Theorem 2.7. Every Q-algebra X satisfying x∗(x∗y)= x∗y for all x,y,z ∈ X,

is a trivial algebra.

Proof. Putting x = y in the equation x∗(x∗y) = x∗y , we obtain x∗0 = 0. By

(II) x = 0. Hence X is a trivial algebra.

The following example shows that a Q-algebra may not satisfy the associative law.

Example 2.8. (a) Let X := {0,1,2} with the table as follows:

∗ 0 1 2

0 0 2 1

1 1 0 2

2 2 1 0

Then X is a Q-algebra, but associativity does not hold, since (0∗ 1)∗ 2 = 0 ≠ 1 =
0∗(1∗2).

(b) Let Z andR be the set of all integers and real numbers, respectively. Then (Z;−,0)
and (R;÷,1) are nonassociativeQ-algebras where “−” is the usual subtraction and “÷”

is the usual division.

Theorem 2.9. Every Q-algebra (X;∗,0) satisfying the associative law is a group

under the operation “∗”.

Proof. Putting x =y = z in the associative law (x∗y)∗z = x∗(y∗z) and using

(I) and (II), we obtain 0∗x = x∗0 = x. This means that 0 is the zero element of X.

By (I), every element x of X has as its inverse the element x itself. Therefore (X;∗) is

a group.

3. The G-part of Q-algebras. In this section, we investigate the properties of the

G-part in Q-algebras.

Lemma 3.1. If (X;∗,0) is aQ-algebra and a∗b = a∗c, a,b,c ∈X, then 0∗b = 0∗c.

Proof. By (I) and (II) (a∗b)∗a= (a∗a)∗b = 0∗b and (a∗c)∗a= (a∗a)∗c =
0∗c. Since a∗b = a∗c, 0∗b = 0∗c.

Definition 3.2. Let (X;∗,0) be a Q-algebra. For any nonempty subset S of X,

we define

G(S) := {x ∈ S | 0∗x = x}. (3.1)

In particular, if S =X then we say that G(X) is the G-part of X.

Corollary 3.3. A left cancellation law holds in G(X).

Proof. Let a,b,c ∈ G(X) with a∗b = a∗ c. By Lemma 3.1, 0∗b = 0∗ c. Since

b,c ∈G(X), we obtain b = c.
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Proposition 3.4. Let (X;∗,0) be aQ-algebra. Then x ∈G(X) if and only if 0∗x ∈
G(X).

Proof. If x ∈G(X), then 0∗x = x and 0∗(0∗x)= 0∗x. Hence 0∗x ∈G(X).
Conversely, if 0∗x ∈ G(x), then 0∗(0∗x) = 0∗x. By applying Corollary 3.3, we

obtain 0∗x = x. Therefore x ∈G(X).

For any Q-algebra (X;∗,0), the set

B(X) := {x ∈X | 0∗x = 0
}

(3.2)

is called the p-radical of X. If B(X) = {0}, then we say that X is a p-semisimple

Q-algebra. The following property is obvious.

(IX) G(X)∩B(X)= {0}.

Proposition 3.5. If (X;∗,0) is a Q-algebra and x,y ∈X, then

y ∈ B(X)⇐⇒ (x∗y)∗x = 0. (3.3)

Proof. By (I) and (III) (x∗y)∗x = (x∗x)∗y = 0∗y = 0 if and only if y ∈ B(X).

Definition 3.6. Let (X;∗,0) be a Q-algebra and I(≠∅)⊆X. The set I is called an

ideal of X if for any x,y,z ∈X,

(1) 0∈ I,
(2) x∗y ∈ I and y ∈ I imply x ∈ I.
Obviously, {0} and X are ideals of X. We call {0} and X the zero ideal and the trivial

ideal of X, respectively. An ideal I is said to be proper if I ≠X.

In Example 2.2 the set I := {0,1,2} is an ideal of X.

Proposition 3.7. Let (X;∗,0) be a Q-algebra. Then B(X) is an ideal of X.

Proof. Since (0∗0)∗0 = 0, by Proposition 3.5, 0 ∈ B(X). Let x∗y ∈ B(X) and

y ∈ B(X). Then by Proposition 3.5, ((x∗y)∗x)∗(x∗y)= 0. By (III), ((x∗y)∗(x∗
y))∗x = 0∗x = 0. Hence x ∈ B(X). Therefore B(X) is an ideal of X.

Proposition 3.8. If S is a subalgebra of aQ-algebra (X;∗,0), thenG(X)∩S =G(S).

Proof. It is obvious that G(X)∩S ⊆G(S). If x ∈G(S), then 0∗x = x and x ∈ S ⊆
X. Then x ∈G(X) and so x ∈G(X)∩S, which proves the proposition.

Theorem 3.9. Let (X;∗,0) be a Q-algebra. If G(X)=X, then X is p-semisimple.

Proof. Assume that G(X) = X. By (X), {0} = G(X)∩ B(X) = X ∩ B(X) = B(X).
Hence X is p-semisimple.

Theorem 3.10. If (X;∗,0) is a Q-algebra of order 3, then |G(X)| ≠ 3, that is,

G(X)≠X.

Proof. For the sake of convenience, let X = {0,a,b} be a Q-algebra. Assume that

|G(X)| = 3, that is, G(X)= X. Then 0∗0= 0, 0∗a= a, and 0∗b = b. From x∗x = 0

and x ∗ 0 = x, it follows that a∗a = 0, b∗ b = 0, a∗ 0 = a, and b∗ 0 = b. Now

let a∗b = 0. Then 0, a, and b are candidates of the computation. If b∗a = 0, then
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a∗b = 0= b∗a and so (a∗b)∗a= (b∗a)∗a. By (III), (a∗a)∗b = (b∗a)∗a. Hence

0∗b = 0∗a. By the cancellation law in G(X), b = a, a contradiction. If b∗a= a, then

a= b∗a= (0∗b)∗a= (0∗a)∗b = a∗b = 0, a contradiction. For the case b∗a= b,

we have b = b∗a= (0∗b)∗a= (0∗a)∗b = a∗b = 0, which is also a contradiction.

Next, if a∗b = a, then (a∗(a∗b))∗b = (a∗a)∗b = 0∗b = b ≠ 0. This leads to the

conclusion that Proposition 2.3 does not hold, a contradiction. Finally, let a∗b = b.

If b∗a = 0, then b = a∗b = (0∗a)∗b = (0∗b)∗a = b∗a = 0, a contradiction. If

b∗a= a, b = a∗b = (0∗a)∗b = (0∗b)∗a= b∗a= 0, a contradiction. For the case

b∗a = b, we have a = 0∗a = (b∗b)∗a = (b∗a)∗b = b∗b = 0, which is again a

contradiction. This completes the proof.

Proposition 3.11. If (X;∗,0) is a Q-algebra of order 2, then in every case the

G-part G(X) of X is an ideal of X.

Proof. Let |X| = 2. Then either G(X)= {0} or G(X)=X. In either case, G(X) is an

ideal of X.

Theorem 3.12. Let (X;∗,0) be a Q-algebra of order 3. Then G(X) is an ideal of X
if and only if |G(X)| = 1.

Proof. Let X := {0,a,b} be a Q-algebra. If |G(X)| = 1, then G(X) = {0} is the

trivial ideal of X.

Conversely, assume that G(X) is an ideal of X. By Theorem 3.10, we know that

either |G(X)| = 1 or |G(X)| = 2. Suppose that |G(X)| = 2. Then either G(X) = {0,a}
or G(X) = {0,b}. If G(X) = {0,a}, then b∗a ∉ G(X) because G(X) is an ideal of X.

Hence b∗a = b. Then a = 0∗a = (b∗b)∗a = (b∗a)∗b = b∗b = 0, which is a

contradiction. Similarly, G(X)= {0,b} leads to a contradiction. Therefore |G(X)|≠ 2

and so |G(X)| = 1.

Definition 3.13. An ideal I of a Q-algebra (X;∗,0) is said to be implicative if

(x∗y)∗z ∈ I and y∗z ∈ I, then x∗z ∈ I, for any x,y,z ∈X.

Theorem 3.14. Let (X;∗,0) be a Q-algebra and let I be an implicative ideal of X.

Then I contains the G-part G(X) of X.

Proof. If x ∈ G(X), then (0∗x)∗x = x∗x = 0 ∈ I and x∗x = 0 ∈ I. Since I is

implicative, it follows that x = 0∗x ∈ I. Hence G(X)⊆ I.

Definition 3.15. Let X and Y be Q-algebras. A mapping f : X → Y is called a

homomorphism if

f(x∗y)= f(x)∗f(y), ∀x,y ∈X. (3.4)

A homomorphism f is called a monomorphism (resp., epimorphism) if it is injec-

tive (resp., surjective). A bijective homomorphism is called an isomorphism. Two Q-

algebras X and Y are said to be isomorphic, written by X 
 Y , if there exists an iso-

morphism f : X → Y . For any homomorphism f : X → Y , the set {x ∈ X | f(x) = 0}
is called the kernel of f , denoted by Ker(f ) and the set {f(x) | x ∈ X} is called the

image of f , denoted by Im(f ). We denote by Hom(X,Y) the set of all homomorphisms

of Q-algebras from X to Y .
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Proposition 3.16. Suppose that f :X →X′ is a homomorphism ofQ-algebras. Then

(1) f(0)= 0′,
(2) f is isotone, that is, if x∗y = 0, x,y ∈X, then f(x)∗f(y)= 0′.

Proof. Since f(0) = f(0∗0) = f(0)∗f(0) = 0′, (1) holds. If x,y ∈ X and x ≤ y ,

that is, x∗y = 0, then by (1), f(x)∗f(y)= f(x∗y)= f(0)= 0′. Hence f(x)≤ f(y),
proving (2).

Theorem 3.17. Let (X;∗,0) and (X;∗′,0′) be Q-algebras and let B be an ideal of

Y . Then for any f ∈Hom(X,Y), f−1(B) is an ideal of X.

Proof. By Proposition 3.16(1), 0 ∈ f−1(B). Assume that x∗y ∈ f−1(B) and y ∈
f−1(B). Then f(x)∗f(y) = f(x∗y) ∈ B. It follows from the fact that B is an ideal

of Y that f(x) ∈ B, that is, x ∈ f−1(B). This means that f−1(B) is an ideal of X. The

proof is complete.

Since {0′} is an ideal of X′, Ker(f ) = f−1({0′}) for any f ∈ Hom(X,Y). Hence we

obtain the following corollary.

Corollary 3.18. The kernel Ker(f ) is an ideal of X.

4. The quadraticQ-algebras. Let X be a field with |X| ≥ 3. An algebra (X;∗) is said

to be quadratic if x∗y is defined by x∗y := a1x2+a2xy+a3y2+a4x+a5y+a6,

wherea1, . . . ,a6 ∈X, for anyx,y ∈X. A quadratic algebra (X;∗) is said to be quadratic

Q-algebra (resp., QS-algebra) if it satisfies conditions (I), (II), and (III) (resp., (IV)).

Theorem 4.1. LetX be a field with |X| ≥ 3. Then every quadraticQ-algebra (X;∗,e),
e∈X, has the form x∗y = x−y+e where x,y ∈X.

Proof. Define

x∗y :=Ax2+Bxy+Cy2+Dx+Ey+F. (4.1)

Consider (I).

e= x∗x = (A+B+C)x2+(D+E)x+F. (4.2)

Let x := 0 in (4.2). Then we obtain F = e. Hence (4.1) turns out to be

x∗y =Ax2+Bxy+Cy2+Dx+Ey+e. (4.3)

If y := x in (4.3), then

e= x∗x = (A+B+C)x2+(D+E)x+e, (4.4)

for any x ∈ X, and hence we obtain A+B+C = 0 = D+E, that is, E = −D and B =
−A−C . Hence (4.3) turns out to be

x∗y = (x−y)(Ax−Cy+D)+e. (4.5)

Let y := e in (4.5). Then by (II) we have

x = x∗e= (x−e)(Ax−Ce+D)+e, (4.6)
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that is, (Ax−Ce+D−1)(x−e) = 0. Since X is a field, either x−e = 0 or Ax−Ce+
D−1 = 0. Since |X| ≥ 3, we have Ax−Ce+D−1 = 0, for any x �= e in X. This means

that A= 0,1−D+Ce= 0. Thus (4.5) turns out to be

x∗y = (x−y)+C(x−y)(e−y)+e. (4.7)

To satisfy condition (III) we consider (x∗y)∗z and (x∗z)∗y .

(x∗y)∗z = (x∗y−z)+C(x∗y−z)(e−z)+e
= (x−y−z)+C(x−y)(e−z)+2e

+C[(x−y)+C(x−y)(e−y)+(e−z)](e−z)
= (x−y−z)+C(x−y)(2e−y−z)+2e

+C2(x−y)(e−y)(e−z)+C(e−z)2.

(4.8)

Interchange y with z in (4.8). Then

(x∗z)∗y = (x−z−y)+C(x−z)(2e−z−y)+2e

+C2(x−z)(e−z)(e−y)+C(e−y)2.
(4.9)

By (4.8) and (4.9) we obtain

0= (x∗y)∗z−(x∗z)∗y = C2(e−y)(e−z)(z−y). (4.10)

Since X is a field with |X| ≥ 3, we obtain C = 0. This means that every quadratic

Q-algebra (X;∗,e), has the form x∗y = x−y + e where x,y ∈ X, completing the

proof.

Example 4.2. Let R be the set of all real numbers. Define x∗y := x−y+√2. Then

(R;∗,√2) is a quadratic Q-algebra.

Example 4.3. Let � := GF(pn) be a Galois field. Define x∗y := x−y +e, e ∈ �.

Then (�;∗,e) is a quadratic Q-algebra.

Theorem 4.4. Let X be a field with |X| ≥ 3. Then every quadratic Q-algebra on X
is a (quadratic) QS-algebra.

Proof. Let (X;∗,e) be a quadratic Q-algebra. Then x ∗y = x −y + e for any

x,y ∈X, and hence

(x∗y)∗(x∗z)= (x−y+e)∗(x−z+e)
= (x−y+e)−(x−z+e)+e
= z−y+e= z∗y,

(4.11)

completing the proof.

Remark 4.5. Usually a nonquadratic Q-algebra need not be a QS-algebra. See the

following example.
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Example 4.6. Consider the Q-algebra (X;∗,0) in Example 2.2. This algebra is not

a QS-algebra, since (3∗1)∗(3∗2)= 3 �= 0= 2∗1.

Corollary 4.7. Let X be a field with |X| ≥ 3. Then every quadratic Q-algebra on

X is a BCI-algebra.

Proof. It is an immediate consequences of Theorems 2.5 and 4.4.

Theorem 4.8. LetX be a field with |X| ≥ 3. Then every quadraticQ-algebra (X;∗,e)
is p-semisimple. Furthermore, if char(X) �= 2, then G(X)= B(X).

Proof. Notice that B(X) = {x ∈ X | e∗x = e} = {x ∈ X | e−x+ e = e} = {x ∈
X | e−x = 0} = {e}, that is, (X;∗,e) is p-semisimple. Also, if char(X) �= 2, then 2 is

invertible in X and G(X) = {x ∈ X | e∗x = x} = {x ∈ X | e−x+e = x} = {x ∈ X |
2e = 2x} = {x ∈ X | e = x} = {e}. Of course, if char(X) = 2, then 2e = 2x = 0 for all

x ∈X, whence G(X)=X.

This shows that there is a large class of examples of p-semisimple QS-algebras

obtained as quadratic Q-algebras.

Theorem 4.9. Let X be a field with |X| ≥ 3. Then every quadratic Q-algebra on X
is isomorphic to every other such algebra defined on X.

Proof. Let x ∗y := x −y + e1 and x ∗′ y := x −y + e2, where e1,e2 ∈ X. Let

π(x) := x + (e2 − e1), for all x ∈ X. Then π(x ∗y) = [(x −y)+ e1]+ (e2 − e1) =
(x−y)+e2 = (x+(e2−e1))+(y+(e2−e1))+e2 =π(x)∗′π(y), whence the fact that

π−1(x)= x+(e1−e2) yields the conclusion that π is an isomorphism of Q-algebras.

Theorem 4.10. Let X be a field with |X| ≥ 3. Then every quadratic Q-algebra

(X;∗,e) determines the abelian group (X,+) via the definition x+y = x∗(e−y).

Proof. Note that x∗(e−y)= x−(e−y)+e= x+y returns the additive operation

of the field X, which is an abelian group.

Not every quadratic Q-algebra (X;∗,e), e ∈ X, on a field X with |X| ≥ 3 need be a

BCK -algebra, since ((x∗y)∗(x∗z))∗(z∗y)= e+(y−z) �= e in general.

Problem 4.11. Construct a cubic Q-algebra which is not quadratic. Verify that

among such cubic Q-algebras there are examples which are not QS-algebras. Fur-

thermore, the question whether there are non-p-semisimple cubic Q-algebras is also

of interest.
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