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ABSTRACT. The aim of this paper is to treat the analytical solution of the truncated interar-
rival hyperexponential machine interference queue: H>/M/1/m+Y/m+Y in case of two
branches with the following concepts: balking, reneging, state-dependent, spares, and an
additional server for longer queues. Our research treats the general case for the values of
m and Y considering the discipline FIFO. And some special cases have been verified.
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1. Introduction. The truncated interarrival hyperexponential queue H>/M/1/m +
y/m + 7y (in case of two branches) treated numerically by Gupta [6]. Al-Seedy [2]
treated analytically in some cases of Y =0 and m = 1, 2, 3. Also Al-Seedy [3] studied
the general case of m but with Y = 0 with the two concepts of balking and reneging.
Abou-El-Ata [1] treated the analytical solution of the truncated interarrival hyperex-
ponential machine interference queue H, /M /C/m/m with both balking and reneging
concepts only.

In this paper, we treat the analytical solution of the truncated interarrival hyper-
exponential machine interference queue H,/M/1/m+Y /m+Y with the concepts of
balking, reneging, state-dependent, spares, and an additional server for longer queues.
The discipline considered is FIFO.

2. Analyzing the problem. Consider the two-channels truncated interarrival hy-
perexponential queue having two branches with rates «A; and (1 — x)A;, and the
service time is an exponential with service rate u.

Assume the balking concept with probability

B = Prob{a unit joins the queue}, (2.1)

where

0<B<1 ifn=11)m+Y, B=1 ifn=0. (2.2)
Also, the reneging concept in case of n units with probability is

¥ (n) = Prob{a unit leaves the queue} = (n—1)9, (2.3)
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where

r(n)=0 forn=0,1, O0<r(n)<l forn=2(1)m+Y, (2.4)

and ¢ is the rate of time t, having the probability density function f(t) = Se~°t.
The interarrival rates A,, in case of machine with spares are

mA, n =0,
mpA, l=n<y,

Ap = (2.5)
(m-n+y)BA, Y<n<Y+m,

0, n=Y+m.

But the service time rates in case of the concepts of state-dependent and an additional
server for longer queues are

Ui, 0<n <k,
Hn =4 U2, ki =n <k, (2.6)

Up+uUz=U, ko =n=m+Y.

Define the probabilities:

P, ; = Prob{n units in the system and j the arrival branch occupied by the next
arrival unit} where n > 0 and j =1, 2.

The steady-state difference equations of the queue H»/M/1/m+Y/m+Y consid-
ering all the concepts of balking, reneging, state-dependent, spares, and an additional
server for longer queues, are

e forn=0,
maAi1 Py = 1Py,
2.7)
mAzPo = p1 P2,
o forn=1,
[mBAL + 1 ]P11 = amA Py + amAzPoo + (U1 +6)Pat,
(2.8)
[MmBA2+ 1 ]P1p = (1—c)mA1Py1 + (1 — ) mA2Po + (p1 +8) Papo,
o for2<n<x<y,
[mBAL + 1 + (n—1)8] Py
= amPAPp_ig+amPBAPp_1p+ (M1 + 1) Pri,
(2.9)

[mBA2+ 11+ (n—1)5]Pp
=(1-c)MPBAIPp_11+ (1 +0)OMBA2Py_12+ (U1 +NS) Ppi1 o,
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o forY<n<k; -1,

[(m—n+Y)BA1+u1 +(n- 1)6]Pn,1

=x(m-n+Y+1)BA1Pp_g+x(m—n+Y+1)BA2Py 12
+ (1 +10) Prii,

(2.10)
[((m—n+Y)BA2+u+(n—1)6]Pn2

=(1l-c)(im-n+Y+1)BA1Pp_11+(1-cx)(m—n+Y+1)BA2Py_1
+ (UI +n5)Pn+l,2,

o forn=k1 -1,

[(m—ki+Y+1)BA1 + 1+ (k1 —2)0] Pk, -1,1
=ax(m—ki+Y+2)BA1Px,2n1+x(m—ki+Y +2)BAsPy, 22
+ (2 + (k1 —1)6]Pry 1,
(2.11)
[(m—Kki+Y+1)BAs+py + (k1 —2)0]Pry 1,2

=(1-o) (mfkl +Y+2)BA1P]<1_2,1 +(1 70()(7’!’[7](1 +Y+2)B/\2Pk1_2’2
+ [z + (k1 —1)38] Py, 2,

o fork; <n<ky,—1,

[((m-n+Y)BA1+ 2+ (n—1)8]|Pu,

=a(m-n+Y+1)BA1Pp11+ax(m—n+Y+1)BA2Pu_1
+ (M2 +M8)Pri1,

(2.12)
[(m—n+Y),82\2 + U + (1’1— 1)5]Pn,2
=1-0)(m-n+Y+ 1)BA1P1171,1

+(1-—)(Mm—n+Y+1)BA2Py_12+ (L2 +185) P12,

o forn=k,-1,

[((m—ky+Y+1)BA1+ o+ (ko —2)8]Pk,-1,

= a(m— kz +Y+ Z)B)\lpszll + o((m - kz +Y+ Z)B)\ZPkZ—Z,Z
+(u+(ka—1)6)Px, 1,

(2.13)
[(m—ko+Y+1)BA>+ o+ (k2 —2)8]Pr,-1,2

=(1- 0() (m—kz +Y+2)B)\1Pk272,1 + (1 - ) (m—k2 +Y+2)B]\2Pk272,2
+(u+ (k2 —1)8) Py, 2,
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o forky <m<m+yv,
[(m-—n+Y)BAL+u+(n-1)8]Pn

=a(m-n+Y+1)BA1Pp11+ax(m—n+Y+1)BA2Pu_1

+ ([1 + n(s)PnH,l;

(2.14)
[((m—n+Y)BAz+pu+(n—1)6]Pn2
=(l-c0)(m-n+Y+ 1)BA1Pn—1,1
+(1-c)(m-—n+Y+ I)BAZPn—l,Z + ([J +1’16)Pn+1‘2,
o fornm=m+Y,
[+ (M+Y —1)8]Pmev, = &BAIPmiy—11 + &BA2Pimsy_12,
(2.15)

(H+(M+Y =1)8]Pmiv2 = (1—X)BA1Pmiy-11+ (1= &) BA2Pmiy-1,.
Write

, i=1,2. (2.16)

Aq « M Al 1) « O 1)
pi=— = E

S P P Yo VT U

And add every two equations in each step to simplify the required solution. We find

mp1Po1 =P, n=0,

(mel + l)Pl,l + (mez + 1)P1’2
=(1+y)P2+mpi Py +mp2Pop+(y+1)P21, n=1,

[(mBp1+1+(n—1)y)]|Pn1+[(mBp2+1+(n—1)y)]|Pn2

=mMBp1Pn-11+ (1 +0y)Pni11 +MBP2Pr-12+14ny)Pps120 2<N<Y,

[(m-n+Y)Bp1+1+(m—-1)y|Pp1+[(m-n+Y)Bpr+1+(n—1)y]|Pu2
=(m-n+Y+ I)Bpan,l,l +(m-n+Y+ 1)Bp2Pn,1,2
+(1+ny)Ppr1a+(1+ny)Ppi12, Y<n<k -1,

I:(m*kl +1+Y)Bpf +%+ (kl *2)}/*]13](1_1,1

+ [(m—Iq +1+Y)Bps + % + (kq —Z)y*]Pkl,l,g

=(m—ki+2+Y)Bps P, 2o+ (1+ (ki —1)y*)Px, 1

+(1+ (k1 —1)y*)Pry2+(m—k1 +2+Y)Bp{Py—21, m=ki—1,
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[((Mm-n+Y)Bpf+1+(n—-1)8*|Py1+[(m-—n+Y)Bps+1+(n—1)y*|Pn2
=(m-n+Y+1)BpiPp_11+(1+ny*)Pyi12

+(Mm-n+Y+1)BpsPy_12+(1+ny*)Pui11, ki<n<kx-1,

[(m—kz +1+Y)Bp; + % + (k2 —2))7]sz71.1

+ [(m—kg +1 +Y)Bp'2 + % + (k2 —2))_/:|Pk2,1‘2
= (m—kz +2+ Y)Bﬁlpkl—Z,l + (m—kz +2+ Y)Bﬁzpkz_zyz

+(1+(k2=1)y)Pryn + (1 + (k2 = 1)¥)Pro2, n=ka—1,

[(Mm-n+Y)Bp1+1+(n—-1)y|Pp1+[(m—n+Y)Bpo+1+(n—1)y]Pu2
=(m-n+Y+1)Bp1Ppag+(m—-—n+Y+1)BpaPu_1p

+(1+ny)Pp1+(1+nyY)Pyi12, kao<n<m+Y,

[1+mM+y-1)7]Pmsva+[1+(mM+Y = 1) 7] Py,

=Bp1Pm+y-1,1+Bp2Pmiy-12, n=Y+m.
(2.17)

These are (m +Y +1) equations in the unknowns Py, ;. To solve them for P, j, we need
the formula which gives the sum of the probabilities at every branch. We introduce
the formula in the following lemma.

LEMMA 2.1. For the truncated hyperexponential machine interference queue H, /M /
1/m+Y/m+Y with the concepts of balking, reneging, state-dependent, spares, and
an additional server for longer queues, there is

m+Y
> Pt = !
=0T mBlads + (1-00)A}

m+Y
X [am?\2{[3+ (lfﬁ)Poyz} +(XB)\2Y Z Pn’2
n=yY

m+Y

—mA1(1-B)(1—)Po1— &BAz D NPy> (2.18)

n=yY

m+Y m+Y
+BAM(1—) D NPy —PAY(1-) > Pn,1:| =n,
n=y n=yY

m+Y

> Pup=1-n.

n=0
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PROOF. Adding either the nine first relations or the nine second relations, we get

m+Y m+Y
MmPAL(1 =) > Pni—ampBAz > Ppo
n=0 n=0
m+Y m+Y
= amAz(1—B)Po2—mA1(1-B)(1— )Py +xBA2Y > Pnp—afAs > NPy
n=yY n=yY
m+Y m+Y
+BA(1=0) D NPr1—BAIY (1 - ) D P
n=y n=yY
(2.19)
But
m+Y
> (Pni+Pn2) =1 (2.20)
n=yY

Multiply (2.20) by xmA,B then add to (2.19), we obtain relation (2.18), that is, the
concepts of reneging, state-dependent, and an additional server for longer queues are
not affecting the results of the lemma. O

Now to solve the set of equations (2.17), first we need to solve P, ; (the first branch
probabilities) in terms of Py, (the second branch probabilities) by the following
method:

We arrange the coefficients of equations (2.17) in a square matrix of order (m +
Y + 1) after replacing (2.18) instead of the last equation (2.17). By doing elementary
row-operations. We get the following solution’s formula:

From the last row i = 1, we get

&
Ppiyy = mpmw,z =A, n=m+Y, (2.21)

wherei=m+Y+1-—n.
Ati=2,

Bp1Pmiv-11—[1+mM+Y-1)y|Pmay1=[1+(m+Y-1)¥]Pmiy2—Bp1Pm+y-1.2,

2.22)
Bp1Ppiyv-11—[1+(m+Y-Dy]A+[1+(m+Y-1)Y]Pm+v,2—BP1Pm+v-1,2=B,
B
Pm+y_1’1 = E, n=m+Y-1. (2.23)
Ati=3,
1 _
Pniy-21 = 2801 [{1 +(M+Y =2)Y}Pnsy-12
(2.24)

1+(m+Y—2);7B

—2Bp2Pmiy-22+ 851

}, n=m+Y-2.

And so on.
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Then we can find the following formula for the solutions to the rows 4 <i <m+
Y —(kp—2), thatis, kr—-1<n<m+Y-3:

1

Pl = oY —n)Bp,

1+ny 1Y%
X [B ( y)(m+y n(nlft)i/anfl)
(m+Y-n-1)(Bp;)

m+Y-n-1

z (r+1)(1 +ny)(m+y—n—r—1)y
=1 [m+Y-—n—Tlomiy-n-r-1) (Bﬁl)(mwfnfyfl)

—Bp> Ponsy-r-12)

Y-n-1
+m+Zn (1 +nY)(m+Y—n—r—1)y P
N Y-n-r-1) (m+Y-r,2) |»
S m+Y —n—1Umey-n-r-n(Bp1) ™ "7

kr—l<n<m+Y-3.

(2.25)
In particular for n = k> — 1, we find the value of Py,-1,1
(m—ko+Y+1)Bp1Pr,-1,1
o (ke =1)Y) mav-ka)y
T T Y — ko) (B ) TR
IR D+ (k2= DF) mey ko (2.26)

—Bp2 Z

_ ( Y-k 71’)} (m+Y—1—1,2)
r=1 [”l 1 KZ](m-*—Y—kz—T)(B[l) " :

m+Y -k

N 1+ (k2 =1)¥) mav—ko-r+1)y

P _r.2)-
N Y—ko—71) (m+Y-7r,2)
r=1 [m+Y—k2](m+Y—k2—r)(Bpl) e

Now from row i = m+Y — (k> — 3), the value of Py,_»; is

Pkr-2,1 (m—k1+Y+2)Bp1* = {1+(k2—Z)y*}P}Q,l_z—(m—k2+Y+2)Bp§‘Pk2,2,2
1+ (ko —2)y* (2.27)

T kY + 1)Bpr
Then
D
Po-an = G Ty v 2)Bpr (2.28)

From the row i = m +Y — (kp —4), the value of Py,_3 is

1
m—kp+Y+3)Bp§

[{1"‘(’(2—3)}’* }Pk2—2,2_ (m—k2+Y+3)Bp;Pk2_3y2

Pr,-31= (
(2.29)

1+(k2—3)y*
(m—k,+Y+2)Bpy |
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then we can obtain the formula for the solutions to the rows m+Y — (k> —5) <i <
m+Y—(ky—-2), thatis, k1 —-1<n<ky—4as

b 1
"7 (m+Y -n)Bpf
" [D (1+71Y*) 4y —n-2)y*
[M+Y =n—1k,-n—2 (BpF) @ "%
*kz’”’z (m-ko+Y+7r+2)(1 FNY*) (kg onr—2)y* (2.30)
-Bps . To—n—r—2) Pka-r-2,2
-1 [m+Y-n- 1](k27n71’72)(Bp1)
kg m-2 (1+71Y*) 4y —nr-1)y*
+ o ka—nr—2) Dka-r-12 |-
1 [m+Y-n-1]x,-n-r-2(Bp{)
In particular, for n = k; — 1, we find the value of Py,_1,
(m—ki+Y+1)Bp{ Py, -1,
(1+(ki=1)y*)(ka—ki—1)y*
(ka—Kk1-1)
[m+ Y_kl](kg—kl—l)(Bpl*) e
5 *"Z*il*l (m—ke+Y +7+2)(1+ (ki = 1)Y*) kg r 1)y (2:31)
—bp; (kp—k1-r—-1) kp—r-2,2
r=1 [m+Y*kl](k27k17r71)(BPik) e
+k2_k1_1 (1+(k1_1))’*)(k2—k1—1’)y* Per v 1o=T
(ko +ky—r—1) “ka2-7-1, .
r=1 [m+Y—k1](k2—k1-r—1)(BPT) 2T
Now from row i = m+Y — (k; — 3), the value of Py, is
D,
Py, o1 = 2.32
ki-21 (m—k1+Y+2)Bp1’ (2.32)
where
1+ (k-2
Dy ={1+(ki=2)y}Px, 12— (m—ki+Y +2)Bp2Pr; 22+ T> m k1(+1Y+B/Bp*'
- 1
(2.33)

From row i = m+Y — (ki —4), the value of Py, _3 is

1
m—k1+Y+3)Bp1

Py, 31 = ( [{1 + (k1 =3)y}Pr; 22— (m—ki+Y +3)BpaPy, 32

1+ (k-3)y
(m—k1+Y+2)Bp1 L
(2.34)
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Then we can obtain the formula for the solutions for therows m+Y —(k; =5) <i <m,
thatis, Y+1<n<k;—4as

_ 1[D1 (1+n1Y) (k1 -n-2)y
Bp, [m+Y-n-1]k-n-2 (B

Py )(kl—n—Z)

ki-n-2
_Bpy 12" (M—k1 +Y +7+2) (1 +0Y) ky-n-r-2)y

— =5 Pri-r-22  (2.35)
r-1 [m+Y_n_1](k1—n7772)(Bp1)(k1 norma

k1—-n-2

+ (1+ny)(k17n—r—1)y

-1 [m+Y—n—-1]x -n-r-2)(Bp1

)(kl,n,r,z) Pk] —1’—1,2:| .

In particular for n = Y + 1, we find the value of Py,

1+(Y+1) v
(m—-1)Bp1Pyi11 =Dy ( Y)<k1 Y-3)y

K-Y—3
[m—z](kl—Y—S)(Bpl)( ! :
ki—Y-3 (Mm—ki+Y+r+2)(1+ (Y +1)Y) 4y v, r-3)y
-Bpy . ki—Y—1-3) Pij—r-22
S [mMm—2]ky-v,-r-3) (Bp1)
k1-Y-3

(1+(Y+ 1)y)(k1,y,y,2)y

+ —~— 57 Pk -r-12 = T3.
r=1 [m_z](kl—Y—r—3)(Bpl)(k1 Yot

(2.36)

Now from row i = m + 1, the value of Py, is

2
Py, = ; (2.37)

mBp,
where
(1+Yy)
Dy =Py ymBp, =(1+Yy)P —mBpyPy o+ ————1T3. (2.38)
2 Y,1 P1 Y)EFy+1,2 pP2Ey2 (m—1)Bp, 3

From row i = m + 2, the value of Py_; is
1 {1+(Yfl)y}
Py 11=——|{1+(Y -1 Py > —mBpyPy_ —FF— D> |. 2.
YL B [{ +( )Y}Py2—mBpoPy_12+ mBp, 2 (2.39)

Then we can obtain the formula for the solutions at the rows m+3 <i <m+Y, that
is,1<sn<Y-2as

1 l+ny)(Y-n T A+ny)(Y-n-r
P [D (L+ny)( (Yin))ymePZ 5 (LEny)( (Y—n—r))ypyir’z
mbp (mBp1) —1 (mBpy)
v (2.40)
-n
- (1+"3’)(Y(;Z_J)YPY—T+1,2}.
r—1 (mel)

In particular for n = 1, we find the value of P; ;.
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At the first row i = m +Y + 1 we find the value of Py ; as

1
Py = Py, (2.41)
mpa

where
[L]lX:L'(L_l)'(L_Z)---(L—()(—l),

(L)g=L-(L+1)-(L+2)+--(L+x+1). (2.42)

Thus we succeed to deduce the first branch probabilities Py, ; in terms of the second
branch probabilities P, ».

Substituting relations from (2.21), (2.23), (2.24), (2.25), (2.28), (2.29), (2.30), (2.32),
(2.34), (2.35), (2.37), (2.39), (2.40), and (2.41) in the second relations of (2.7), (2.8), (2.9),
(2.10), (2.11),(2.12), (2.13), (2.14), (2.15) and by using the relation of (2.18), the second
branch probabilities P, » can be obtained in an explicit form. And so the first branch
probabilities P, ; can be obtained in an explicit form too.

3. Measures of effectiveness. The expected number of units in the system and in
the queue are

m+Y m+Y
L= > n(Pyi+Pn2), Lg= > (n—1)(Pn1+Pnp2). (3.1)
n=0 n=1

Also, the probability that there are no units in the system is

Py =Py +Pop. (3.2)

4. Particular cases

CASE 4.1 (the queue H2/M/1/2/2(B,06)). LetY =0 and k; =k, =m, (i.e., yy = tp =
u and p3 = 0) in the above relations, we get

p . pellty—aBp(1-} o, = ABp2(l-c)
0.1 p1(ab+d) : 0.2 ab+d '
p, ., 2p2ll+y—aBp:(1-)} p., _ 2aBpip2(1- )
L ab+d : 1.2 ab+d
_ 20‘Bp1p2 _ ZBpIPZ(l_O‘) 4.1)
Pov=""pra > P2=" apva '
_ 1 _ 2_ 52
Py = o ab i d) {p2(1+y)+aB(1-o)(pf-p3)},
_ 2p2 B 3 _ 2Bp1p2
Liab—kd{l—””—aﬁ(l (X)(pl p2)+ZBp1}! qu ab+d'

where

4o e (+Bp)
B{Bpip2+apr+(1-x)p2}’

b=B(2p2+1){axp2+(1-c)p1}-Bpi{4x(1-B)+3B-2},
d=2Bpip2{1-20(1-B)} —p2(1+y)(2-3P).

4.2)
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Also, the machine availability is

_m-L _ p2

M.A. =1-
m ab+d

[1+y+aB(1-a)(p1—p2)+2Bp1].
And the operative efficiency is

2

OE=1-py=1 {p2(1+y) +aB(l—x)(p3 —p3)}.

1
" pi(ab+d)

CASE 4.2 (the queue M/M/1/m+y/m+y). Let

B=1, 5§=0, (ie,y=0), a:%<i.e.,p1:p2:p:%),
ki=ka=m (ie, 1 =p2 =y, p3=0).
We obtain the results of Harris [5] when ¢ = 1.
CASE 4.3 (the queue M/M/1/2/2). Let
B=1, 6=0 (ie,y=0), Y =0,

= (i.e.,plzpzzp:%), ki=k=m=2.

N | —

We get
Po=(2p%+2p+1)"",  L=2pRp+1)(2p*+2p+1) ",

Ly=2p2(2p2+2p+1)".
These results agree with that obtained by Harris [5] and Al-Seedy [4].
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