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Abstract. The aim of this paper is to treat the analytical solution of the truncated interar-
rival hyperexponential machine interference queue: H2/M/1/m+Y/m+Y in case of two
branches with the following concepts: balking, reneging, state-dependent, spares, and an
additional server for longer queues. Our research treats the general case for the values of
m and Y considering the discipline FIFO. And some special cases have been verified.
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1. Introduction. The truncated interarrival hyperexponential queue H2/M/1/m+
y/m+y (in case of two branches) treated numerically by Gupta [6]. Al-Seedy [2]

treated analytically in some cases of Y = 0 and m = 1, 2, 3. Also Al-Seedy [3] studied

the general case of m but with Y = 0 with the two concepts of balking and reneging.

Abou-El-Ata [1] treated the analytical solution of the truncated interarrival hyperex-

ponential machine interference queueH2/M/C/m/m with both balking and reneging

concepts only.

In this paper, we treat the analytical solution of the truncated interarrival hyper-

exponential machine interference queue H2/M/1/m+Y/m+Y with the concepts of

balking, reneging, state-dependent, spares, and an additional server for longer queues.

The discipline considered is FIFO.

2. Analyzing the problem. Consider the two-channels truncated interarrival hy-

perexponential queue having two branches with rates αλ1 and (1−α)λ2, and the

service time is an exponential with service rate µ.

Assume the balking concept with probability

β= Prob{a unit joins the queue}, (2.1)

where

0≤ β < 1 if n= 1(1)m+Y , β= 1 if n= 0. (2.2)

Also, the reneging concept in case of n units with probability is

r(n)= Prob{a unit leaves the queue} = (n−1)δ, (2.3)

http://ijmms.hindawi.com
http://ijmms.hindawi.com
http://www.hindawi.com


738 R. O. AL-SEEDY AND F. M. AL-IBRAHEEM

where

r(n)= 0 for n= 0,1, 0< r(n)≤ 1 for n= 2(1)m+Y , (2.4)

and δ is the rate of time t, having the probability density function f(t)= δe−δt .
The interarrival rates λn in case of machine with spares are

λn =




mλ, n= 0,

mβλ, 1≤n≤ Y ,
(m−n+y)βλ, Y < n< Y +m,
0, n≥ Y +m.

(2.5)

But the service time rates in case of the concepts of state-dependent and an additional

server for longer queues are

µn =



µ1, 0≤n≤ k1,

µ2, k1 ≤n≤ k2,

µ2+µ3 = µ, k2 ≤n≤m+Y .
(2.6)

Define the probabilities:

Pn,j = Prob{n units in the system and j the arrival branch occupied by the next

arrival unit} where n≥ 0 and j = 1,2.

The steady-state difference equations of the queue H2/M/1/m+Y/m+Y consid-

ering all the concepts of balking, reneging, state-dependent, spares, and an additional

server for longer queues, are

• for n= 0,

mλ1P0,1 = µ1P1,1,

mλ2P0,2 = µ1P1,2,
(2.7)

• for n= 1,

[
mβλ1+µ1

]
P1,1 =αmλ1P0,1+αmλ2P0,2+

(
µ1+δ

)
P2,1,[

mβλ2+µ1
]
P1,2 = (1−α)mλ1P0,1+(1−α)mλ2P0,2+

(
µ1+δ

)
P2,2,

(2.8)

• for 2≤n≤ Y ,

[
mβλ1+µ1+(n−1)δ

]
Pn,1

=αmβλ1Pn−1,1+αmβλ2Pn−1,2+
(
µ1+nδ

)
Pn+1,1,

[
mβλ2+µ1+(n−1)δ

]
Pn,2

= (1−α)mβλ1Pn−1,1+(1+α)mβλ2Pn−1,2+
(
µ1+nδ

)
Pn+1,2,

(2.9)



AN INTERARRIVAL HYPEREXPONENTIAL MACHINE INTERFERENCE . . . 739

• for Y <n< k1−1,

[
(m−n+Y)βλ1+µ1+(n−1)δ

]
Pn,1

=α(m−n+Y +1)βλ1Pn−1,1+α(m−n+Y +1)βλ2Pn−1,2

+(µ1+nδ
)
Pn+1,1,

[
(m−n+Y)βλ2+µ1+(n−1)δ

]
Pn,2

= (1−α)(m−n+Y +1)βλ1Pn−1,1+(1−α)(m−n+Y +1)βλ2Pn−1,2

+(µ1+nδ
)
Pn+1,2,

(2.10)

• for n= k1−1,

[(
m−k1+Y +1

)
βλ1+µ1+

(
k1−2

)
δ
]
PK1−1,1

=α(m−k1+Y +2
)
βλ1Pk1−2,1+α

(
m−k1+Y +2

)
βλ2Pk1−2,2

+[µ2+
(
k1−1

)
δ
]
Pk1,1,[(

m−k1+Y +1
)
βλ2+µ1+

(
k1−2

)
δ
]
Pk1−1,2

= (1−α)(m−k1+Y +2
)
βλ1Pk1−2,1+(1−α)

(
m−k1+Y +2

)
βλ2Pk1−2,2

+[µ2+
(
k1−1

)
δ
]
Pk1,2,

(2.11)

• for k1 ≤n< k2−1,

[
(m−n+Y)βλ1+µ2+(n−1)δ

]
Pn,1

=α(m−n+Y +1)βλ1Pn−1,1+α(m−n+Y +1)βλ2Pn−1,2

+(µ2+nδ
)
Pn+1,1,

[
(m−n+Y)βλ2+µ2+(n−1)δ

]
Pn,2

= (1−α)(m−n+Y +1)βλ1Pn−1,1

+(1−α)(m−n+Y +1)βλ2Pn−1,2+
(
µ2+nδ

)
Pn+1,2,

(2.12)

• for n= k2−1,

[(
m−k2+Y +1

)
βλ1+µ2+

(
k2−2

)
δ
]
PK2−1,1

=α(m−k2+Y +2
)
βλ1Pk2−2,1+α

(
m−k2+Y +2

)
βλ2Pk2−2,2

+(µ+(k2−1
)
δ
)
Pk2,1,[(

m−k2+Y +1
)
βλ2+µ2+

(
k2−2

)
δ
]
Pk2−1,2

= (1−α)(m−k2+Y +2
)
βλ1Pk2−2,1+(1−α)

(
m−k2+Y +2

)
βλ2Pk2−2,2

+(µ+(k2−1
)
δ
)
Pk2,2,

(2.13)
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• for k2 ≤n<m+Y ,

[
(m−n+Y)βλ1+µ+(n−1)δ

]
Pn1

=α(m−n+Y +1)βλ1Pn−1,1+α(m−n+Y +1)βλ2Pn−1,2

+(µ+nδ)Pn+1,1,

[
(m−n+Y)βλ2+µ+(n−1)δ

]
Pn2

= (1−α)(m−n+Y +1)βλ1Pn−1,1

+(1−α)(m−n+Y +1)βλ2Pn−1,2+
(
µ+nδ)Pn+1,2,

(2.14)

• for n=m+Y ,

[
µ+(m+Y −1)δ

]
Pm+Y ,1 =αβλ1Pm+Y−1,1+αβλ2Pm+Y−1,2,[

µ+(m+Y −1)δ
]
Pm+Y ,2 = (1−α)βλ1Pm+Y−1,1+(1−α)βλ2Pm+Y−1,2.

(2.15)

Write

ρi = λ1

µ1
, ρ∗i =

λ1

µ2
, ρ̄i = λ1

µ
, γ = δ

µ1
, γ∗ = δ

µ2
, γ̄ = δ

µ
, i= 1,2. (2.16)

And add every two equations in each step to simplify the required solution. We find

mρ1P0,1 = P1,1, n= 0,

(
mBρ1+1

)
P1,1+

(
mBρ2+1

)
P1,2

= (1+γ)P2,2+mρ1P0,1+mρ2P0,2+(γ+1)P2,1, n= 1,

[(
mBρ1+1+(n−1)γ

)]
Pn,1+

[(
mBρ2+1+(n−1)γ

)]
Pn,2

=mBρ1Pn−1,1+(1+nγ)Pn+1,1+mBρ2Pn−1,2+(1+nγ)Pn+1,2 , 2≤n≤ Y ,
[
(m−n+Y)Bρ1+1+(n−1)γ

]
Pn,1+

[
(m−n+Y)Bρ2+1+(n−1)γ

]
Pn,2

= (m−n+Y +1)Bρ1Pn−1,1+(m−n+Y +1)Bρ2Pn−1,2

+(1+nγ)Pn+1,1+(1+nγ)Pn+1,2, Y < n< k1−1,

[(
m−k1+1+Y )Bρ∗1 + µ1

µ2
+(k1−2

)
γ∗
]
Pk1−1,1

+
[(
m−k1+1+Y )Bρ∗2 + µ1

µ2
+(k1−2

)
γ∗
]
Pk1−1,2

= (m−k1+2+Y )Bρ∗2 Pk1−2,2+
(
1+(k1−1

)
γ∗
)
Pk1,1

+(1+(k1−1
)
γ∗
)
Pk1,2+

(
m−k1+2+Y )Bρ∗1 Pk1−2,1, n= k1−1,
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[
(m−n+Y)Bρ∗1 +1+(n−1)δ∗

]
Pn,1+

[
(m−n+Y)Bρ∗2 +1+(n−1)γ∗

]
Pn,2

= (m−n+Y +1)Bρ∗1 Pn−1,1+
(
1+nγ∗)Pn+1,2

+(m−n+Y +1)Bρ∗2 Pn−1,2+
(
1+nγ∗)Pn+1,1, k1 ≤n< k2−1,

[(
m−k2+1+Y )Bρ̄1+ µ2

µ
+(k2−2

)
γ̄
]
Pk2−1,1

+
[(
m−k2+1+Y )Bρ̄2+ µ2

µ
+(k2−2

)
γ̄
]
Pk2−1,2

= (m−k2+2+Y )Bρ̄1Pk1−2,1+
(
m−k2+2+Y )Bρ̄2Pk2−2,2

+(1+(k2−1
)
γ̄
)
Pk2,1+

(
1+(k2−1

)
γ̄
)
Pk2,2, n= k2−1,

[
(m−n+Y)Bρ̄1+1+(n−1)γ̄

]
Pn,1+

[
(m−n+Y)Bρ̄2+1+(n−1)γ̄

]
Pn,2

= (m−n+Y +1)Bρ̄1Pn−1,1+(m−n+Y +1)Bρ̄2Pn−1,2

+(1+nγ̄)Pn+1,1+(1+nγ̄)Pn+1,2, k2 ≤n<m+Y ,
[
1+(m+y−1)γ̄

]
Pm+Y ,1+

[
1+(m+Y −1)γ̄

]
Pm+Y ,2

= Bρ̄1Pm+Y−1,1+Bρ̄2Pm+Y−1,2, n= Y +m.
(2.17)

These are (m+Y+1) equations in the unknowns Pn,j . To solve them for Pn,j , we need

the formula which gives the sum of the probabilities at every branch. We introduce

the formula in the following lemma.

Lemma 2.1. For the truncated hyperexponential machine interference queueH2/M/
1/m+Y/m+Y with the concepts of balking, reneging, state–dependent, spares, and

an additional server for longer queues, there is

m+Y∑
n=0

Pn,1 = 1
mB

{
αλ2+(1−α)λ1

}

×
[
αmλ2

{
β+(1−β)P0,2

}+αβλ2Y
m+Y∑
n=Y

Pn,2

−mλ1(1−β)(1−α)P0,1−αβλ2

m+Y∑
n=Y

nPn,2 (2.18)

+βλ1(1−α)
m+Y∑
n=Y

nPn,1−βλ1Y(1−α)
m+Y∑
n=Y

Pn,1

]
= η,

m+Y∑
n=0

Pn,2 = 1−η.
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Proof. Adding either the nine first relations or the nine second relations, we get

mβλ1(1−α)
m+Y∑
n=0

Pn,1−αmβλ2

m+Y∑
n=0

Pn,2

=αmλ2(1−β)P0,2−mλ1(1−β)(1−α)P0,1+αβλ2Y
m+Y∑
n=Y

Pn,2−αβλ2

m+Y∑
n=Y

nPn,2

+βλ1(1−α)
m+Y∑
n=Y

nPn,1−βλ1Y(1−α)
m+Y∑
n=Y

Pn,1.

(2.19)

But
m+Y∑
n=Y

(
Pn,1+Pn,2

)= 1. (2.20)

Multiply (2.20) by αmλ2B then add to (2.19), we obtain relation (2.18), that is, the

concepts of reneging, state-dependent, and an additional server for longer queues are

not affecting the results of the lemma.

Now to solve the set of equations (2.17), first we need to solve Pn,1 (the first branch

probabilities) in terms of Pn,2 (the second branch probabilities) by the following

method:

We arrange the coefficients of equations (2.17) in a square matrix of order (m+
Y +1) after replacing (2.18) instead of the last equation (2.17). By doing elementary

row-operations. We get the following solution’s formula:

From the last row i= 1, we get

Pm+Y ,1 = α
1−αPm+Y ,2 =A, n=m+Y , (2.21)

where i=m+Y +1−n.

At i= 2,

Bρ̄1Pm+Y−1,1−
[
1+(m+Y−1)γ̄

]
Pm+Y ,1=

[
1+(m+Y−1)γ̄

]
Pm+Y ,2−Bρ̄1Pm+Y−1,2,

Bρ̄1Pm+Y−1,1−
[
1+(m+Y−1)γ̄

]
A+[1+(m+Y−1)γ̄

]
Pm+Y ,2−Bρ̄1Pm+Y−1,2=B,

(2.22)

Pm+Y−1,1 = B
βρ̄1

, n=m+Y −1. (2.23)

At i= 3,

Pm+Y−2,1 = 1
2βρ1

[{
1+(m+Y −2)γ̄

}
Pm+Y−1,2

−2βρ̄2Pm+Y−2,2+ 1+(m+Y −2)γ̄
βρ̄1

B
]
, n=m+Y −2.

(2.24)

And so on.
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Then we can find the following formula for the solutions to the rows 4 ≤ i ≤m+
Y −(k2−2), that is, k2−1≤n≤m+Y −3:

pn,1 = 1
(m+Y −n)Bρ̄1

×
[
B

(
1+nγ̄)(m+Y−n−1)γ̄

(m+Y −n−1)!
(
Bρ̄1

)(m+Y−n−1)

−Bρ̄2

m+Y−n−1∑
r=1

(r +1)(1+nγ)(m+Y−n−r−1)γ̄

[m+Y −n−1](m+Y−n−r−1)
(
Bρ̄1

)(m+Y−n−r−1) P(m+Y−r−1,2)

+
m+Y−n−1∑

r=1

(1+nγ)(m+Y−n−r−1)γ̄

[m+Y −n−1](m+Y−n−r−1)
(
Bρ̄1

)(m+Y−n−r−1) P(m+Y−r ,2)

]
,

k2−1≤n≤m+Y −3.
(2.25)

In particular for n= k2−1, we find the value of Pk2−1,1

(
m−k2+Y +1

)
Bρ̄1Pk2−1,1

= T1 = B
(
1+(k2−1

)
γ̄
)
(m+Y−k2)γ̄(

m+Y −k2
)
!
(
Bρ̄1

)(m+Y−k2)

−Bρ̄2

m+Y−k2∑
r=1

(r +1)
(
1+(k2−1

)
γ̄
)
(m+Y−k2−r)γ̄[

m+Y −k2
]
(m+Y−k2−r)

(
Bρ̄1

)(m+Y−k2−r) P(m+Y−r−1,2)

+
m+Y−k2∑
r=1

(
1+(k2−1

)
γ̄
)
(m+Y−k2−r+1)γ̄[

m+Y −k2
]
(m+Y−k2−r)

(
Bρ̄1

)(m+Y−k2−r) P(m+Y−r ,2).

(2.26)

Now from row i=m+Y −(k2−3), the value of Pk2−2,1 is

pk2−2,1
(
m−k1+Y+2

)
Bρ∗1 =

{
1+(k2−2

)
γ∗
}
Pk2−1,2−

(
m−k2+Y+2

)
Bρ∗2 Pk2−2,2

+T1
1+(k2−2

)
γ∗(

m−k2+Y +1
)
Bρ1

=D.
(2.27)

Then

Pk2−2,1 = D(
m−k1+Y +2

)
Bρ∗1

. (2.28)

From the row i=m+Y −(k2−4), the value of Pk2−3,1 is

Pk2−3,1= 1(
m−k2+Y+3

)
Bρ∗1

[{
1+(k2−3

)
γ∗
}
Pk2−2,2−

(
m−k2+Y+3

)
Bρ∗2 Pk2−3,2

+ 1+(k2−3
)
γ∗(

m−k2+Y +2
)
Bρ∗1

D
]
,

(2.29)
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then we can obtain the formula for the solutions to the rows m+Y − (k2−5) ≤ i ≤
m+Y −(k1−2), that is, k1−1≤n≤ k2−4 as

Pn,1 = 1
(m+Y −n)Bρ∗1

×
[
D

(
1+nγ∗)(k1−n−2)γ∗

[m+Y −n−1](k2−n−2)
(
Bρ∗1

)(k2−n−2)

−Bρ∗2
k2−n−2∑
r−1

(
m−k2+Y +r +2

)(
1+nγ∗)(k2−n−r−2)γ∗

[m+Y −n−1](k2−n−r−2)
(
Bρ1

)(k2−n−r−2) Pk2−r−2,2

+
k2−n−2∑
r−1

(
1+nγ∗)(k1−n−r−1)γ∗

[m+Y −n−1](k2−n−r−2)
(
Bρ∗1

)(k2−n−r−2) Pk2−r−1,2

]
.

(2.30)

In particular, for n= k1−1, we find the value of Pk2−1,1

(
m−k1+Y +1

)
Bρ∗1 Pk1−1,1

=D
(
1+(k1−1

)
γ∗
)(
k2−k1−1

)
γ∗[

m+Y −k1
]
(k2−k1−1)

(
Bρ∗1

)(k2−k1−1)

−Bρ∗2
k2−k1−1∑
r=1

(
m−k2+Y +r +2

)(
1+(k1−1

)
γ∗
)
(k2−k1−r−1)γ∗[

m+Y −k1
]
(k2−k1−r−1)

(
Bρ∗1

)(k2−k1−r−1) Pk2−r−2,2

+
k2−k1−1∑
r=1

(
1+(k1−1

)
γ∗
)
(k2−k1−r)γ∗[

m+Y −k1
]
(k2−k1−r−1)

(
Bρ∗1

)(k2+k1−r−1) Pk2−r−1,2 = T2.

(2.31)

Now from row i=m+Y −(k1−3), the value of Pk1−2,1 is

Pk1−2,1 = D1(
m−k1+Y +2

)
Bρ1

, (2.32)

where

D1 =
{
1+(k1−2

)
γ
}
Pk1−1,2−

(
m−k1+Y +2

)
Bρ2Pk1−2,2+T2

1+(k1−2
)
γ(

m−k1+Y +1
)
Bρ∗1

.

(2.33)

From row i=m+Y −(k1−4), the value of Pk1−3,1 is

Pk1−3,1 = 1(
m−k1+Y +3

)
Bρ1

[{
1+(k1−3

)
γ
}
Pk1−2,2−

(
m−k1+Y +3

)
Bρ2Pk1−3,2

+ 1+(k1−3
)
γ(

m−k1+Y +2
)
Bρ1

D1

]
.

(2.34)
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Then we can obtain the formula for the solutions for the rowsm+Y−(k1−5)≤ i≤m,

that is, Y +1≤n≤ k1−4 as

Pn,1 = 1
Bρ1

[
D1

(1+nγ)(k1−n−2)γ

[m+Y −n−1](k1−n−2)
(
βρ1

)(k1−n−2)

−Bρ2

k1−n−2∑
r−1

(
m−k1+Y +r +2

)
(1+nγ)(k1−n−r−2)γ

[m+Y −n−1](k1−n−r−2)
(
Bρ1

)(k1−n−r−2) Pk1−r−2,2

+
k1−n−2∑
r−1

(1+nγ)(k1−n−r−1)γ

[m+Y −n−1](k1−n−r−2)
(
Bρ1

)(k1−n−r−2) Pk1−r−1,2

]
.

(2.35)

In particular for n= Y +1, we find the value of PY+1,1

(m−1)Bρ1PY+1,1 =D1

(
1+(Y +1)γ

)
(k1−Y−3)γ

[m−2](k1−Y−3)
(
Bρ1

)(k1−Y−3)

−Bρ2

k1−Y−3∑
r=1

(
m−k1+Y +r +2

)(
1+(Y +1)γ

)
(k1−Y1−r−3)γ

[m−2](k1−Y1−r−3)
(
Bρ1

)(k1−Y−r−3) Pk1−r−2,2

+
k1−Y−3∑
r=1

(
1+(Y +1)γ

)
(k1−Y−r−2)γ

[m−2](k1−Y−r−3)
(
Bρ1

)(k1−Y−r−3) Pk1−r−1,2 = T3.

(2.36)

Now from row i=m+1, the value of PY,1 is

PY,1 = D2

mBρ1
, (2.37)

where

D2 = PY,1mBρ1 = (1+Yγ)PY+1,2−mBρ2PY,2+ (1+Yγ)
(m−1)Bρ1

T3. (2.38)

From row i=m+2, the value of PY−1,1 is

PY−1,1 = 1
mBρ1

[{
1+(Y −1)γ

}
PY,2−mBρ2PY−1,2+

{
1+(Y −1)γ

}
mBρ1

D2

]
. (2.39)

Then we can obtain the formula for the solutions at the rows m+3≤ i≤m+Y , that

is, 1≤n≤ Y −2 as

Pn,1 = 1
mBρ1

[
D2
(1+nγ)(Y −n)γ(
mβρ1

)(Y−n) −mBP2

Y−n∑
r−1

(1+nγ)(Y −n−r)γ(
mBρ1

)(Y−n−r) PY −r ,2

+
Y−n∑
r−1

(1+nγ)(Y −n−r)γ(
mBρ1

)(Y−n−r) PY −r +1,2
]
.

(2.40)

In particular for n= 1, we find the value of P1,1.
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At the first row i=m+Y +1 we find the value of P0,1 as

P0,1 = 1
mρ1

P1,1, (2.41)

where

[L]α = L·(L−1)·(L−2)···(L−α−1),

(L)α = L·(L+1)·(L+2)···(L+α+1).
(2.42)

Thus we succeed to deduce the first branch probabilities Pn,1 in terms of the second

branch probabilities Pn,2.

Substituting relations from (2.21), (2.23), (2.24), (2.25), (2.28), (2.29), (2.30), (2.32),

(2.34), (2.35), (2.37), (2.39), (2.40), and (2.41) in the second relations of (2.7), (2.8), (2.9),

(2.10), (2.11), (2.12), (2.13), (2.14), (2.15) and by using the relation of (2.18), the second

branch probabilities Pn,2 can be obtained in an explicit form. And so the first branch

probabilities Pn,1 can be obtained in an explicit form too.

3. Measures of effectiveness. The expected number of units in the system and in

the queue are

L=
m+Y∑
n=0

n
(
Pn,1+Pn,2

)
, Lq =

m+Y∑
n=1

(n−1)
(
Pn,1+Pn,2

)
. (3.1)

Also, the probability that there are no units in the system is

P0 = P0,1+P0,2. (3.2)

4. Particular cases

Case 4.1 (the queue H2/M/1/2/2(β,δ)). Let Y = 0 and k1 = k2 =m, (i.e., µ1 = µ2 =
µ and µ3 = 0) in the above relations, we get

P0,1 = ρ2
{
1+γ−aβρ2(1−α)

}
ρ1(ab+d)

, P0,2 = aβρ2(1−α)
ab+d ,

P1,1 = 2ρ2
{
1+γ−aβρ2(1−α)

}
ab+d , P1,2 = 2aβρ1ρ2(1−α)

ab+d ,

P2,1 = 2αβρ1ρ2

ab+d , P2,2 = 2βρ1ρ2(1−α)
ab+d ,

P0 = 1
ρ1(ab+d)

{
ρ2(1+γ)+aβ(1−α)

(
ρ2

1−ρ2
2

)}
,

L= 2ρ2

ab+d
{
1+γ+aβ(1−α)(ρ1−ρ2

)+2βρ1
}
, Lq = 2βρ1ρ2

ab+d ,

(4.1)

where

a= (1+γ)(1+βρ1
)

β
{
βρ1ρ2+αρ1+(1−α)ρ2

} ,
b = β(2ρ2+1

){
αρ2+(1−α)ρ1

}−βρ2
2

{
4α(1−β)+3β−2

}
,

d= 2βρ1ρ2
{
1−2α(1−β)}−ρ2(1+γ)(2−3β).

(4.2)



AN INTERARRIVAL HYPEREXPONENTIAL MACHINE INTERFERENCE . . . 747

Also, the machine availability is

M.A.= m−L
m

= 1− ρ2

ab+d
[
1+γ+aβ(1−α)(ρ1−ρ2

)+2βρ1
]
. (4.3)

And the operative efficiency is

O.E.= 1−ρ0 = 1− 1
ρ1(ab+d)

{
ρ2(1+γ)+aβ(1−α)

(
ρ2

1−ρ2
2

)}
. (4.4)

Case 4.2 (the queue M/M/1/m+y/m+y). Let

β= 1, δ= 0,
(
i.e., γ = 0

)
, α= 1

2

(
i.e., ρ1 = ρ2 = ρ = λµ

)
,

k1 = k2 =m
(
i.e., µ1 = µ2 = µ, µ3 = 0

)
.

(4.5)

We obtain the results of Harris [5] when c = 1.

Case 4.3 (the queue M/M/1/2/2). Let

β= 1, δ=0
(
i.e., γ = 0

)
, Y = 0,

α= 1
2

(
i.e., ρ1 = ρ2 = ρ = λµ

)
, k1 = k2 =m= 2.

(4.6)

We get
P0 =

(
2ρ2+2ρ+1

)−1, L= 2ρ(2ρ+1)
(
2ρ2+2ρ+1

)−1,

Lq = 2ρ2(2ρ2+2ρ+1
)−1.

(4.7)

These results agree with that obtained by Harris [5] and Al-Seedy [4].
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