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1. Introduction. We consider the following elliptic system defined on RN, for
l<i<mn,

n
Lguii=(—A+qi)ui=> ajju;+fi inRV, (1.1)
=1

where n and N are two integers not equal to 0 and A is the Laplacian operator

(H1) for 1 <1i, j <n,a;; € L*®(RN),

(H2) for 1 <i<mn, q; is a continuous potential defined on RN such that g;(x) = 1,

for all x € RN and g;(x) — + when |x| — +oo,

(H3) for1 <i<mn, f; € L2(RN).

We do not make here any assumptions on the sign of a;;. Recall that (1.1) is called
cooperative if a;; = 0 a.e. for i # j.

Our paper is organized as follow, in Section 2, we recall some results about M-
matrices and about the maximum principle for cooperative systems involving Schro-
dinger operators —A +¢q; in RN, In Section 3, we show the existence of a solution for
a non-necessarily cooperative system of n equations. After that we study a limit case
(FA) and finally we study the existence of a solution for a (non-necessarily cooperative)
semilinear system.

2. Definitions and notations

2.1. M-matrix. We recall some results about the M-matrix (see [4, Theorem 2.3,
page 134]). We say that a matrix is positive if all its coefficients are nonnegative
and we say that a symmetric matrix is positive definite if all its principal minors
are strictly positive.

DEFINITION 2.1 (see [4]). A matrix M = sI — B is called a nonsingular M-matrix if B
is a positive matrix (i.e., with nonnegative coefficients) and s > p(B) > 0 the spectral
radius of B.
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PROPOSITION 2.2 (see [4]). If M is a matrix with nonpositive off-diagonal coefficients,
the conditions (P0), (P1), (P2), (P3), and (P4) are equivalent.

(PO) M is a nonsingular M -matrix,

(P1) all the principal minors of M are strictly positive,

(P2) M is semi-positive (i.e., there exists X > 0 such that MX > 0), where X > 0

signify for all i, X; > 0 if X = (X1,...,Xn),
(P3) M has a positive inverse,
(P4) there exists a diagonal matrix D, D > 0, such that MD + D'M is positive definite.

REMARK 2.3. If M is a nonsingular M-matrix, then !M is also a nonsingular M-
matrix.

So condition (P4) holds if and only if condition (P5) holds where (P5): there exists a
diagonal matrix D, D > 0, such that !tMD + DM is positive definite.

2.2. Schrodinger operators. Let B (RN) = 65 (RN) = 62 (RN) be the set of functions
%> on RN with compact support.

Let g be a continuous potential defined on RN such that q(x) = 1, for all x € RV,
and g(x) — +oc when |x| — +o0. The variational space is, Vq([RN ), the completion of
@(RN) for the norm || - ||, where [[ully = [[gn |VUl? +glul?]'/?

Va(RN) = {u e HY(RY), \Jqu € L*(RN)}, (2.1)

(V4(RN), |- l7) is a Hilbert space. (See [1, Proposition 1.1.1].)
Moreover, we have the following proposition.

PROPOSITION 2.4 (see [1, Proposition I.1.1] and [8, Proposition 1, page 356]). The
embedding of V4 (RN) into L?(RN) is compact with dense range.

To the form
a(u,v)=J Vu-VerJ quu, V(u,v)e(Vq([RN))Z, (2.2)
RN RN
we associate the operator L; := —A + g defined on L?(RN) by variational methods.

Here D(L;) denotes the domain of the operator Ly. D(Ly) = {u € V4(RN), (-A +
q), u € L2(RN)} (see [3, Theorem 1.1, page 4]).

We have that, for all u € D(Ly), for all v € V4(RN), a(u,v) = [gn Lgu - v. The em-
bedding of D(L,) into V,4(RV) is continuous and with dense range. (See [1, page 24]
and [3, pages 5-6].)

PROPOSITION 2.5 (see [1, pages 25-27]; [3, Theorem 1.1, pages 4, 6, 8, and 11]; [2,
page 3, Theorem 3.2, page 45]; [7, pages 488-489]; [9, pages 346-350], and [10, Theo-
rem XII1.16, page 120 and Theorem XII1.47, page 207]). Ly, is considered as an operator
in L2(RN), positive, selfadjoint, and with compact inverse. Its spectrum is discrete and
consists of an infinite sequence of positive eigenvalues tending to + . The smallest one,
denoted by A(q), is simple and associated with an eigenfunction ¢, which does not
change sign in RN. The eigenvalue A(q) is a principal eigenvalue if it is positive and
simple.
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Furthermore,

Lapg=A@)Ppg inRY, ¢g(x) —0 whenx — +oo;

2.
bqa>0 inRY; A(q) >0, 3)

Vu e Vy(RY), A(q)I[RN lul|? < LRN [IVul? +qlul?]. (2.4)

Moreover, the equality holds if and only if u is collinear to ¢,. If a € L® (RM)Y, let
a* =supyecpy a(x), asx =inf, gy a(x) and

V|2 +(q—a)Pp?]
Jn @2

A(q—a)zinf{fRN[ d)e@(RN)d)séO}. (2.5)
The operator —A +gq —a in RN has a unique selfadjoint realization (see [2, page 3]) in
L?(RN) which is denoted L,_,. (Indeed, q is a continuous potential, a € L*(RN), so
the condition in [2] (g—a)- € L{';C(IRN) for a p > N/2 is satisfied.) We also note that
Alg—a) <A(q)—ax and for all m € R**, A(g—a+m) =A(g—a) +m.

The following theorem is classical.

THEOREM 2.6 (see [1, 6, 10, page 204]). Consider the equation
(~-A+q)u=au+f inRYN, whereacR, feL?*(RN), f=0 (2.6)

and q is a continuous potential on RN such that q = 1 and q(x) — +oc when |x| — +oo.
Ifa < A(q) then Alu € V4(RYN) solution of (2.6). Moreover, u = 0.

2.3. Cooperative systems. In this section, we consider the system (1.1) and we
assume that it is cooperative, that is,

(H1*) a;j € L*(RN); a;j = 0 a.e. for i + j.

We recall here a sufficient condition for the maximum principle and existence of
solutions for such cooperative systems.

We say that (1.1) satisfies the maximum principle if for all f; > 0, 1 < i < n, any
solution u = (uy,...,uUy,) of (1.1) is nonnegative.

Let E = (ei;) be the n x n matrix such that forall 1 <i < n, e;; = A(q; —ai;), and
forall 1 <i, j <mn, i+ jimplies e;; = —aj;.

THEOREM 2.7 (see [6]). Assume that (HI*), (H2), and (H3) are satisfied. If E is a
nonsingular M -matrix, then (1.1) satisfies the maximum principle.

THEOREM 2.8 (see [6]). Assume that (H1*), (H2), and (H3) are satisfied. If E is a
nonsingular M-matrix and if f; = 0 for each 1 < i <n, then (1.1) has a unique solution
which is nonnegative.

3. Study of a non-necessarily cooperative system

3.1. Study of a non-necessarily cooperative system of n equations with bounded
coefficients. We adapt here an approximation method used in [5] for problems de-
fined on bounded domains.
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We consider the following elliptic system defined on RN; for 1 <i < n,
n
Lqiui:: (—A+qi)ui: zaijuj+fi in [RN. (3.1)
j=1

Let G = (gij) be the n xn matrix such that forall 1 <i <n, g;; = A(q; —ai;) and
foreach 1 <1, j <n, i+ jimpliesthatg;; = —|a;;|*, where |a;;|* = sup,cgn la;;j(x)|.

We make the following hypothesis:

(H) G is a nonsingular M-matrix.

THEOREM 3.1. Assume that (H1), (H2), (H3), and (H) are satisfied. Then system (1.1)
has a weak solution (u1,...,uy) € Vg (RN) X+ - - x Vg, (RN).

First, we prove the following lemma.

LEMMA 3.2. Assume that (H), (H1), (H2), and (H3) are satisfied. Let (U1,...,Uy) €
Vg (RN) x -+ - X Vg, (RN) be the solution of

n
Louiz=(—A+qi)u; = Z aiju; inRN. (3.2)
j=1

Then (Uq,...,u,) = (0,...,0).

PROOF OF LEMMA 3.2. Let m € R** be such thatforall 1 <i<mn, m—a;; > 0. Let
q;=4qi+m-—a;; = 1. For any 1 <i <n, we have

2 ’ 2 2
J‘RN[lvuﬂ +qi|ui| ]:JRNm|ui| +‘Z'LRN6LU1/LJ'M1‘
JiJF
3.3)

2
SJRNWLWJ + ZJRN laijujuil,

JiJ#i

and by the characterization (2.4) of the first eigenvalue A(g;) we get that (A(q;) —
m) Jen uil? < 3w la ¥ (Jan [ug 122 (e [ui12) V2. So (A(g)) —m) (Jgn [ui|?)? <

Zj;j;&i \aij|*(fRN |uj|2)1/2-
) 1/2
u
(JRN l)

Let
X = : . (3.4)

()

We have X > 0 and GX < 0. Since G is a nonsingular M-matrix, by Proposition 2.2, we
deduce that X < 0. So X =0, thatis, forall1 <i<mn, u; =0. O

PROOF OF THEOREM 3.1. Let m € R** such that forall 1 <i <n, m—a;; > 0. Let
q;=4qi—aii+m=1. (m exists because forall 1 <i<n, a;; € L2 (RN).)



EXISTENCE OF SOLUTIONS FOR NON-NECESSARILY COOPERATIVE ... 729

First, we note that (u1,...,Un) € Vg, (RN) x - - - XV, (RN) is a weak solution of (1.1)
if and only if (uq,...,uy) is a weak solution of (3.5) where, for 1 <i < n,

(—A+q))ui=mu;+ > ajju;+f; inRV. (3.5)
Jij#i

Let € €]0,1[, Be = B(0,1/¢) = {x € RN, |x| < 1/€}, and 15, be the indicator function
of Be.

Let T: L2(RN) x - - - X L2(RN) — L2(RN) x - - - x L2(RN) be defined by T(&1,...,&x) =
(w1,...,wy) where forany 1 <i<mn,

&i

- I N
_m1+e|§i\1B€+ 2. aij e+ fi ImRT. (3.6)

(—A+q;)w; 1
l i 1relg]

(i) First, we prove that T is well defined. Let for all (&1,...,&,) € L2(RN) x - - - X
L2(RN), foralll <i=<mn,

wl(El,...,En)—m1+E|§i|1Bc+j%ial‘,1+€<§j~1gc. (3.7)
We have : . ¢ 1
_Si _ 1| _€si 1

’1+e|§i\1B€ _e)1+e\§i|135 = ¢ Lo (3.8)

Since 1z, € L?(RN) and a;; € L*(RN), we deduce that for any 1 < i < n, y;(&,...,
&) € L2(RN). By (H3), fi € L>(R"N) and therefore @;(&1,...,Ex) + f; € L2(RN).

By Theorem 2.6, we deduce the existence (and uniqueness) of (wsi,...,wy) €
Vg (RN) X - -+ x Vg, (RN). So T is well defined.

(ii) We note that for all (&1,...,8xn), Wi(&1,...,En) | <mmax;.j+i (m,lai;j|*)(1/€)1g,.

Let h = (n/€)max; jii+; (M, lai;|*), 1z, € L>(RN), and h+ f; € L>(RN), so, by the
scalar case, we deduce that there exists a unique & € V. (RN) such that (-A+q})&? =
h+fiin RN, (E?,...,Eﬁ) is an upper solution of (3.5), forall 1 <i <mn,

(—A+a)8 = yi(&,....,E8x) + fi (3.9)

In the same way, we construct a lower solution of (3.5), for all 1 < i < n, there exists a
unique & € Vy, (RY) such that (-A+q})&io = —h+ fiin RN, (&10,...,En0) is a lower
solution of (3.5), forall 1 <i <n,

(—A+a)&io0 = Wi(&r,...,En) + fi. (3.10)

We note that for all i, & < &Y (because (—A+g})(E? —&;¢) = 2h > 0). We consider
now the restriction of T, denoted by T*, at [&;,0, E?] X+ X [En0,E0]. We prove that
T* has a fixed point by the Schauder fixed point theorem.

(iii) First, we prove that [El,o,E?] X+ X[Eno,E%]is invariant by T*. Let (1,...,&n) €
[€1,0,E01X - X [En0,E0]. We put T* (&1,...,En) = (w1,...,wy). We have (-A+q}) (82—
w;) = h—yi(&,...,&) = 0. By the scalar case, we deduce that £° > w; a.e. By the
same way we get (—A+q;)(w; —&;io) = Yi(&1,...,&) +h 2 0 and w; = §;p a.e. So
[£1,0,E)1x - - - x[Epn0,E0] is invariant by T*.
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(iv) We prove that T* is a compact continuous operator. T* is continuous if and
only if for all i, ¢ is continuous where ;" is the restriction of ; to [&; o, E?] X+ X
[En,o, g‘?l]

Let (£1,...,&n) €[E1,0,E01X + X [En0, E0 1. Let (EY,...,ER), be asequencein [&; o, EY]
X -+« X [Eno,E0] converging to (&1,...,&,) for || - lz2@®Nyn. We have forall 1 <i <mn,

H g’ &

1n — 1
L+e| €7 % 1+el&

<=
€

€€ €&
1+e|&| 1+€l&]|

(3.11)

s

L2(RN) L2(RN)

However, the function [ defined on R by for all x € R, I(x) = x/(1 +|x]) is Lipschitz
and satisfies for all x,y e R, [l(x)—1L(y)| < |x—2y].So

134 &i Ly ¢p P
- < —|l€e& —€&; =& —&; . 3.12
H1+d§f\ T CTE T, = e8! Bl = 187 ~Ellie. 312)
Hence,
g’ & 12 (mN
1p — 13, — 0 in L°(R"Y) when p — +oo. 3.13
L& " TrelE] ™ (B whenp e G49

So y is continuous and therefore T* is a continuous operator. Moreover, by
Proposition 2.5, (-A +q§)*1 is a compact operator. So T* is compact.

W) [&1,0, E‘f] X -+ X [En0,E%] is a closed convex subset. Hence, by the Schauder fixed
point theorem, we deduce the existence of (&1,...,&x) € [&1,0, E?] XX [Eno,E2] such
that T*(&1,...,&n) = (&1,...,&n) for all i, & depends of €, so we denote &; = u; and
Ule,-.., Un,e Satisfy for 1 <i <mn,

Uije

w
A e Mie g Mie
( Qi) Uic T+elugel J-Jzﬂ' Ylrefujel

lp. +f; inRN. (3.14)

(vi) Now we prove that for all i, (eu;¢)e is a bounded sequence in Vq;([R{N ). Let
lully, = [fan IVUI% + q;lul?]V/2. Multiply (3.14) by €?u;. and integrate over RM. So
we get

[lewie ZISmJ —Mie 1, eu;,
<l RV | L+eluie| "
(3.15)
+i%i|al‘,| J[RN Trelu,] lp €Uic +LRN lefieuic|.

Butfor all j, leu;¢/(1+€lujcl)| < 1. So there exists a strictly positive constant K such
that ||eui,€||$l( <Klleujellp2wny < K\Ieui,EII(d and therefore, II(—:ui_EIIq; <K.

(vii) We prove now that eu; — 0 when € — 0 strongly in L?(RN) and weakly in
VqE(IRN ). We know that the imbedding of Vq;([R{N ) into L?(RN) is compact. The se-
quence (euie)e is bounded in ti (RN) so (for a subsequence), we deduce that there
exist u} such that eu;¢ — u; when € — 0 strongly in L?(RV) and weakly in Ve, (RM),
Multiplying (3.14) by €, we get

€EUje

“A+d gy SMie
(—A+aqj)euc M e e ]

EU;
1p + i——LC _1p +€ef; inRM. 3.16
Be zal]1+€|uj’€| B +E€fi i ( )
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But eu; — u; weakly in V,, (RV). So for all ¢ € B(RYN),
JRN [V(eUic) - VP +qieuicp] — J[RN [Vuf-Vo+quf¢] whene —0. (3.17)

Moreover, for all ¢ € B(RN), [zy €fip — 0 when € — 0. Moreover, we have for all j

* 2

€Uje oy
1+€|ujel Be L+ |uf|

D (3.18)

_J €uje uj 2+J up \?
B[ 1+elujel 1+ |ufl RN \ 1+ [uf| )~

Since |uf/(1+ufDl < [ufl, uy /(1 +ufl) € L*(RN), hence [pn_p (uF/(1+|ujl))?
— 0 when € — 0. Moreover,

J EUje uj : <J €Uje uj ’
B | 1+€|Ujc] 1+|u| Trv [ 1+€e|ugel 1+|u| (3.19)

2
<|lewje—utlli2@ny-

But euj — u;‘ when € — 0 strongly in L2(RN). So, (eujc/1 +€lujel)1p — u;‘/(l +
Iu;.k |) when € — 0 strongly in L2(RN). Therefore, we can pass through the limit and
we getforall 1 <i<mn,

(-A+g)uf=m——"—— Z“”1+| |in[RN. (3.20)

1+|u
JiJFL

We prove now that for any i, uf = 0. Multiply (3.20) by u}, integrate over RY, and
obtain

124 gt lur 2] = [u/ | J B e
LKN[W”I' +ql|ul| ] J m1+|u*{ Z 1J1+|u*|

NOER

|uf *lu*\lul
Sf m1+|u*\ ZJ @i L+ |us|

J JF1

(3.21)

But for all j, 1/(1+ \u;’fl) < 1. So we get

N [ P em [P S al ([ e ?) ([ ) 622

JiJ#1

Replacing u; by u}, we proceed exactly as in Lemma 3.2 and we get that forall 1 <
i<n,uf=0.

(viii) We prove now by contradiction that forall 1 < i < n, (uj¢)e is bounded in
ti([RN). We suppose that there exists i, IIuiO,ellqi0 — +oo when € — 0. Letforall 1 <
i<n,

1
te = max (Hui,€||qi), Vie = 3 Uie- (3.23)
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We have [|[viellg, <180 (vie)e is a bounded sequence in Vg, (RN). Since the imbedding
of Vg, (RN) in L2(RY) is compact (see Proposition 2.4), there exists v; such that Vie —
v; when € — 0 strongly in L?(RY) and weakly in V,, (RV).

In a weak sense, we have for all 1 <i <mn,

, Vie Vje 1 BN
“A+g@ ) Vie=m—F""——15 + ij———1p. +—fi RY. 3.24
( U Vie m1+e|ui,€| Be J.;J,Zﬂa” L+elujc| tefl n (624
We have for all ¢ € B(RN),
JRN [VVie: Vo +qvicd] — L«N [Vvi- Vo +qivip] whene— 0. (3.25)

Moreover, tc — +oo when € — 0 so, for all ¢ € B(RN), [gnv(1/t) fip — 0 when € — 0.
We also have forall 1 < j <n,

2 v 2
~vj s Le [1+€|J‘;J_‘€| —vj] +JRN73€ V7. (3.26)
Butv; € L2(RN) so, IRN_& vf — 0 when € — 0. Moreover,
vj : vj :
JBc [1+€|J;fij,e| _vj} SJ[RN [1+€\Jitj,e| _vj]
ZU (vj,e—vj)zv +J (ev)|uje])? }
SR (refuge ) TR (T efuge])’

But 1+€lujel = 1. S0, Jgn(Vje —V))2/(1 +€lujel)® < [y (Vje —vj)2. Since vje —
vjin L>(RN), we get [pn (Vje —v;)?/(1+€lujel)? — 0 when € — 0. Moreover,

”Uj,e 13
1+€e|luje| ¢

(3.27)

2
(evjlujel)

— 0 a.e.whene — 0. (3.28)
(1+elujel)?

(At least for a subsequence because eu ;. — 0 when € — 0.) By using the dominated
convergence theorem, we deduce that [py (€vjlujcl)?/(1+€lujcl)? — 0 when € — 0.
So we can pass through the limit and we get for all 1 <i < n,

(-A+q))vi=mvi+ > a;v; inRV. (3.29)
Jij#i

By Lemma 3.2, we deduce that forall 1 < i < n, v; = 0. However, there exists a se-
quence (€,) such that there exists iy, [|vi),e, IIqi1 = 1. But vi; ¢, — Vi, Wwhen n — +oo.
So we get a contradiction.

(ix) There exists u! such that u;c — u! strongly in L?(RN) and weakly in V,, (RVN).
We have in a weak sense

Uije

(—A+a)uic = mm

U
1p, + i 1p +fi in RN. 3.30
Be zal]1+€|uj’€| B +fi in ( )
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But u;c — u? when € — 0 weakly in V,;, (RN). Hence, for all ¢ € B(RV),
J N [(VUuie.Vo+aqiuicp] — J N [Vu?- V¢ +qulp] whene— 0. (3.31)
R R
We also have
2 2
u; 2
1p —u? =J [*e—u‘?] +J ul | 3.32
B Pl mny ~ Jpc L1 +€fuie] ! RN735| a 3.32)
By u? € L*(RN) we derive [gn_g_|u?]? — 0 when € — 0. Moreover,
Jo ] = [ i)
BeLl1+e€|uiel t RV L1+€|uiel t
2“ (uie—uf)’ N (eu?|ui,€\>2}
B RY (1+€|uic|)® Jo¥ (1+e]uicl)?

Since 1+€luiel > 1 we get Jpn (Uie —u?)?/(1+€luiel)? < [pn (Uie —u?)?. But uje —
u? in L2(RN). So [gv (uie —u?)?/(1+€luiel)? — 0 when € — 0. Moreover,

‘ Uje
1+e|uie]

(3.33)

(eu? | Uie ’ )2

(1 | |)2 — 0 a.e.whene — 0. (3.34)
+E€|Uje

(At least for a subsequence because eu; — 0 when € — 0) and (eu?lui,el)z/(l +
€luic)? < u?l? and [u?l? € L1(RN).
By using the dominated convergence theorem, we deduce that

014,. 2
J M—»O when € — 0. (3.35)
R

2
N(L+eluiel)
So we can pass through the limit and we get forall 1 <i < n,

(—A+ag)ud =mul+ > a;uf+fi inRY. (3.36)
Jij#i

So we get (-A+qgi)u? = a;u’ +21;#iaiju3 +f;in RN, (u,...,u) is a weak solution
of (1.1). O

3.2. Study of a limit case. We use again a method in [5]. We rewrite system (1.1),
assuming foralll1 <i<mn, q;=¢q

n
Louii=(-A+q@)ui = > ajju;+ fi(x,u1,...,un) in RN, (3.37)
i

Each a;; is a real constant. We denote A = (a;;) the n xn matrix, I the n xn identity
matrix, (U = (u1,...,uyn) and 'F = (f1,..., fn)-
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THEOREM 3.3. Suppose that (H1), (H2), and (H3) are satisfied. Suppose that A has
only real eigenvalues. Suppose also that A(q), the principal eigenvalue of —A + q, is the
largest eigenvalue of A and that it is simple.

Let X € RN such that ' X(A(q)I — A) = 0. Then (3.37) has a solution if and only if
Jen EXFy =0, where ¢, is the eigenfunction associated to A(q).

PROOF OF THEOREM 3.3. Let P be a n X n nonsingular matrix such that the last
line of P is !X and such that T = PAP~!: = (t;;) where, t;; = 0if i > j; tyn = A(q) and
foralll <i<n-1,t; <Aq).

Let W = PU. The system (3.37) is equivalent to the system (3.2) (-A+q)W =TW +
PF.Let ‘W = (wy,...,wy) and 11; = (;;) where, 6;; = 0if i = j and J;; = 1. So (3.2) is

qui = (—A+q)wi = tjjw; + Z tiij‘ +1m;PF in RN, (3.38)
JiJ>i

for 1 <i <n.We have
(—A+q)wy = A(@Qwy +! XF  in RV, (3.39)

Equation (3.39) has a solution if and only if [pnv ‘XF¢, = 0. If [zv EXFpg = 0 is sat-
isfied, first we solve (2n), then we solve (2n —1) until n = 1 because forall 1 <i <
n—1, ti; <A(q). Then we deduce U (because matrix P is a nonsingular matrix). O

3.3. Study of a non-necessarily cooperative semilinear system of n equations.
We rewrite system (3.37), for 1 <i<mn,

n

Lguwii=(-A+ai)u; Z aijuj+ fi(x,u1,...,uy) inRY. (3.40)

Werecall that the n Xn matrix G = (g;;) defined by g;; = A(g;—ai;),for all 1 <i<n, and

Vi<i, j<mn,i#j= gij=—|aij|", where |a;|™ = sup |aij(x)]. (3.41)
xeRN

Let I be the identity matrix.

THEOREM 3.4. Assume that (H1), (H2), and (H3) are satisfied. Also assume that hy-
pothesis (H4), (H5), and (H6) are satisfied, where
(H4) 3s > 0 such that F —sI is a nonsingular M -matrix,
(H5) foralll <i<mn,30; € L2(RN), 0; > 0, such that for all1 <i < n, for all u,,...,
Un, 0 < fi(x,U1,...,Uy) < su;+0;,
(H6) forall 1 <i<mn, f; is Lipschitz for (ui,...,uy), uniformly in x.
Then (3.40) has at least a solution.

PROOF OF THOREM 3.4. (a) Construction of an upper and lower solution. We con-
sider the following system (3.42)

Vi<isn, Lguii=(-A+qi)ui=asui+ » |aij|u;j+su;+0; inRN. (3.42)
Jij#i

By hypothesis (H4) and (H5) we can apply Theorem 2.8. We deduce the existence of a
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positive solution U° = (u!,...,u%) in V4, (RN) x - - - x V,, (RN) for the system (3.42).
U? is an upper solution of (3.40).

LetUp = —U° = (—ul,...,—uf).Wehave forall 1 <i <n, (-A+q;)(-u?) = —(-A+
qi)uy. Hence, (~A+q;) (—uf) = —ajuf - X .. laijlud—su) - 0. So, forall 1 <i=<mn,

(—A+ai) (—u)) <ai(-ud)+ > ai(-ud) + filx,~uf,...,—uj). (3.43)
JiJ#i
Therefore, Uy is a lower solution of (3.40).
(b) We first recall the definition of a compact operator. Let m € R** be such that
foralll <i<mn, m—-aj > 0.Let q; = qi —ai; + m. Let T : (L2(RN))" — (L2(RN))"
defined by T (uy,...,uy) = (wy,...,wy) such that for all 1 <i <n,

n
(—A+q£)wi =mu;+ Z aiA,-uj+fi(x,u1,...,un) in [RN. (3.44)
J=Lj*i
We easily prove that T is a well-defined operator by the scalar case, continuous by
(H6) and compact (because (—A+q;)~! is compact). We prove now that T([Uy, U°]) C
[Uo,U°].Let U = (uy,...,uy) € [Up,U°]. We have for all 1 <i<n, —u? <u; <u?. We have

(—Aa+a;) (u) —wi) =mu)—u) + > |ag|ul
JiJ#i
(3.45)
= > ajjuj+sud +0;i— filx,ur,..., un).
Jij#i

So m(u? —1u;) > 0. By (H5), we have fi(x,u1,...,un) <su;+6; < su? + 0;. Moreover,
lagju;l < \aijlu? SO, aijUj < Iail,-lu?. So, (~A+4})(u? —w;) > 0 and by the scalar case
u? —w; > 0. In the same way, we have

(—A+q;) (wi— (—u?) =m(u +u) + > |aij|ul

e (3.46)
+ > aijuj+sud+0i+ fi(x,ur,..., un).
Jij#i
But —u? < u;. So m(u? +u;) > 0. Moreover, —a;ju; < Iaijlu?. By using (H5), we con-
clude that (-A + q})(w; +u?) = 0 and hence, w; > —u?. So T([Up,U°]) C [Uy,U°].
[Uy,U°] is a convex, closed, and bounded subset of (L?(RN))", so by the Schauder

fixed point theorem, we deduce that T has a fixed point. Therefore, (3.40) has at least
a solution. O
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