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1. Introduction. We consider the following elliptic system defined on RN , for

1≤ i≤n,

Lqiui := (−∆+qi)ui =
n∑
j=1

aijuj+fi in RN, (1.1)

where n and N are two integers not equal to 0 and ∆ is the Laplacian operator

(H1) for 1≤ i, j ≤n, aij ∈ L∞(RN),
(H2) for 1≤ i≤ n, qi is a continuous potential defined on RN such that qi(x)≥ 1,

for all x ∈RN and qi(x)→+∞ when |x| → +∞,

(H3) for 1≤ i≤n, fi ∈ L2(RN).
We do not make here any assumptions on the sign of aij . Recall that (1.1) is called

cooperative if aij ≥ 0 a.e. for i≠ j.
Our paper is organized as follow, in Section 2, we recall some results about M-

matrices and about the maximum principle for cooperative systems involving Schrö-

dinger operators −∆+qi in RN . In Section 3, we show the existence of a solution for

a non-necessarily cooperative system of n equations. After that we study a limit case

(FA) and finally we study the existence of a solution for a (non-necessarily cooperative)

semilinear system.

2. Definitions and notations

2.1. M-matrix. We recall some results about the M-matrix (see [4, Theorem 2.3,

page 134]). We say that a matrix is positive if all its coefficients are nonnegative

and we say that a symmetric matrix is positive definite if all its principal minors

are strictly positive.

Definition 2.1 (see [4]). A matrix M = sI−B is called a nonsingular M-matrix if B
is a positive matrix (i.e., with nonnegative coefficients) and s > ρ(B) > 0 the spectral

radius of B.
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Proposition 2.2 (see [4]). IfM is a matrix with nonpositive off-diagonal coefficients,

the conditions (P0), (P1), (P2), (P3), and (P4) are equivalent.

(P0) M is a nonsingular M-matrix,

(P1) all the principal minors of M are strictly positive,

(P2) M is semi-positive (i.e., there exists X � 0 such that MX � 0), where X � 0

signify for all i, Xi > 0 if X = (X1, . . . ,Xn),
(P3) M has a positive inverse,

(P4) there exists a diagonal matrix D, D > 0, such thatMD+DtM is positive definite.

Remark 2.3. If M is a nonsingular M-matrix, then tM is also a nonsingular M-

matrix.

So condition (P4) holds if and only if condition (P5) holds where (P5): there exists a

diagonal matrix D, D > 0, such that tMD+DM is positive definite.

2.2. Schrödinger operators. Let �(RN)=�∞0 (RN)=�∞c (RN) be the set of functions

�∞ on RN with compact support.

Let q be a continuous potential defined on RN such that q(x) ≥ 1, for all x ∈ RN ,

and q(x)→+∞ when |x| → +∞. The variational space is, Vq(RN), the completion of

�(RN) for the norm ‖·‖q where ‖u‖q = [
∫
RN |∇u|2+q|u|2]1/2

Vq
(
RN

)= {
u∈H1(RN), √qu∈ L2(RN)}, (2.1)

(Vq(RN),‖·‖q) is a Hilbert space. (See [1, Proposition I.1.1].)

Moreover, we have the following proposition.

Proposition 2.4 (see [1, Proposition I.1.1] and [8, Proposition 1, page 356]). The

embedding of Vq(RN) into L2(RN) is compact with dense range.

To the form

a(u,v)=
∫
RN
∇u·∇v+

∫
RN
quv, ∀(u,v)∈ (

Vq
(
RN

))2, (2.2)

we associate the operator Lq :=−∆+q defined on L2(RN) by variational methods.

Here D(Lq) denotes the domain of the operator Lq. D(Lq) = {u ∈ Vq(RN),(−∆+
q), u∈ L2(RN)} (see [3, Theorem 1.1, page 4]).

We have that, for all u ∈ D(Lq), for all v ∈ Vq(RN), a(u,v) =
∫
RN Lqu ·v . The em-

bedding of D(Lq) into Vq(RN) is continuous and with dense range. (See [1, page 24]

and [3, pages 5–6].)

Proposition 2.5 (see [1, pages 25–27]; [3, Theorem 1.1, pages 4, 6, 8, and 11]; [2,

page 3, Theorem 3.2, page 45]; [7, pages 488–489]; [9, pages 346–350], and [10, Theo-

rem XIII.16, page 120 and Theorem XIII.47, page 207]). Lq, is considered as an operator

in L2(RN), positive, selfadjoint, and with compact inverse. Its spectrum is discrete and

consists of an infinite sequence of positive eigenvalues tending to +∞. The smallest one,

denoted by λ(q), is simple and associated with an eigenfunction φq which does not

change sign in RN . The eigenvalue λ(q) is a principal eigenvalue if it is positive and

simple.
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Furthermore,

Lqφq = λ(q)φq in RN, φq(x) �→ 0 when x �→+∞;

φq > 0 in RN ; λ(q) > 0,
(2.3)

∀u∈ Vq
(
RN

)
, λ(q)

∫
RN
|u|2 ≤

∫
RN

[|∇u|2+q|u|2]. (2.4)

Moreover, the equality holds if and only if u is collinear to φq. If a ∈ L∞(RN), let

a∗ = supx∈RN a(x), a∗ = infx∈RN a(x) and

λ(q−a)= inf

{∫
RN

[|∇φ|2+(q−a)φ2
]

∫
RN φ2

φ∈�
(
RN

)
φ �≡ 0

}
. (2.5)

The operator −∆+q−a in RN has a unique selfadjoint realization (see [2, page 3]) in

L2(RN) which is denoted Lq−a. (Indeed, q is a continuous potential, a ∈ L∞(RN), so

the condition in [2] (q−a)− ∈ Lploc(RN) for a p > N/2 is satisfied.) We also note that

λ(q−a)≤ λ(q)−a∗ and for all m∈R∗+, λ(q−a+m)= λ(q−a)+m.

The following theorem is classical.

Theorem 2.6 (see [1, 6, 10, page 204]). Consider the equation

(−∆+q)u= au+f in RN, where a∈R, f ∈ L2(RN), f ≥ 0 (2.6)

and q is a continuous potential on RN such that q ≥ 1 and q(x)→+∞ when |x| → +∞.

If a< λ(q) then ∃!u∈ Vq(RN) solution of (2.6). Moreover, u≥ 0.

2.3. Cooperative systems. In this section, we consider the system (1.1) and we

assume that it is cooperative, that is,

(H1∗) aij ∈ L∞(RN); aij ≥ 0 a.e. for i≠ j.
We recall here a sufficient condition for the maximum principle and existence of

solutions for such cooperative systems.

We say that (1.1) satisfies the maximum principle if for all fi ≥ 0, 1 ≤ i ≤ n, any

solution u= (u1, . . . ,un) of (1.1) is nonnegative.

Let E = (eij) be the n×n matrix such that for all 1 ≤ i ≤ n, eii = λ(qi−aii), and

for all 1≤ i, j ≤n, i≠ j implies eij =−a∗ij .

Theorem 2.7 (see [6]). Assume that (H1∗), (H2), and (H3) are satisfied. If E is a

nonsingular M-matrix, then (1.1) satisfies the maximum principle.

Theorem 2.8 (see [6]). Assume that (H1∗), (H2), and (H3) are satisfied. If E is a

nonsingular M-matrix and if fi ≥ 0 for each 1≤ i≤n, then (1.1) has a unique solution

which is nonnegative.

3. Study of a non-necessarily cooperative system

3.1. Study of a non-necessarily cooperative system of n equations with bounded

coefficients. We adapt here an approximation method used in [5] for problems de-

fined on bounded domains.
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We consider the following elliptic system defined on RN ; for 1≤ i≤n,

Lqiui := (−∆+qi)ui =
n∑
j=1

aijuj+fi in RN. (3.1)

Let G = (gij) be the n×n matrix such that for all 1 ≤ i ≤ n, gii = λ(qi−aii) and

for each 1≤ i, j ≤n, i≠ j implies thatgij =−|aij|∗, where |aij|∗ = supx∈RN |aij(x)|.
We make the following hypothesis:

(H) G is a nonsingular M-matrix.

Theorem 3.1. Assume that (H1), (H2), (H3), and (H) are satisfied. Then system (1.1)

has a weak solution (u1, . . . ,un)∈ Vq1(RN)×···×Vqn(RN).

First, we prove the following lemma.

Lemma 3.2. Assume that (H), (H1), (H2), and (H3) are satisfied. Let (u1, . . . ,un) ∈
Vq1(RN)×···×Vqn(RN) be the solution of

Lqiui := (−∆+qi)ui =
n∑
j=1

aijuj in RN. (3.2)

Then (u1, . . . ,un)= (0, . . . ,0).

Proof of Lemma 3.2. Let m ∈R∗+ be such that for all 1≤ i≤ n, m−aii > 0. Let

q′i = qi+m−aii ≥ 1. For any 1≤ i≤n, we have

∫
RN

[∣∣∇ui∣∣2+q′i
∣∣ui∣∣2

]
=
∫
RN
m
∣∣ui∣∣2+

∑
j;j≠i

∫
RN
aijujui

≤
∫
RN
m
∣∣ui∣∣2+

∑
j;j≠i

∫
RN

∣∣aijujui∣∣,
(3.3)

and by the characterization (2.4) of the first eigenvalue λ(q′i) we get that (λ(q′i)−
m)

∫
RN |ui|2 ≤

∑
j;j≠i |aij|∗(

∫
RN |uj|2)1/2(

∫
RN |ui|2)1/2. So (λ(q′i)−m)(

∫
RN |ui|2)1/2 ≤∑

j;j≠i |aij|∗(
∫
RN |uj|2)1/2.

Let

X =




(∫
RN
u2

1

)1/2

...(∫
RN
u2
n

)1/2



. (3.4)

We have X ≥ 0 and GX ≤ 0. Since G is a nonsingular M-matrix, by Proposition 2.2, we

deduce that X ≤ 0. So X = 0, that is, for all 1≤ i≤n, ui = 0.

Proof of Theorem 3.1. Let m ∈ R∗+ such that for all 1 ≤ i ≤ n, m−aii > 0. Let

q′i = qi−aii+m≥ 1. (m exists because for all 1≤ i≤n, aii ∈ L∞(RN).)
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First, we note that (u1, . . . ,un)∈ Vq1(RN)×···×Vqn(RN) is a weak solution of (1.1)

if and only if (u1, . . . ,un) is a weak solution of (3.5) where, for 1≤ i≤n,

(−∆+q′i)ui =mui+ ∑
j;j≠i

aijuj+fi in RN. (3.5)

Let ε ∈]0,1[, Bε = B(0,1/ε) = {x ∈ RN, |x| < 1/ε}, and 1Bε be the indicator function

of Bε.
Let T : L2(RN)×···×L2(RN)→ L2(RN)×···×L2(RN) be defined by T(ξ1, . . . ,ξn)=

(ω1, . . . ,ωn) where for any 1≤ i≤n,

(−∆+q′i)ωi =m ξi
1+ε

∣∣ξi∣∣1Bε+
∑
j;j≠i

aij
ξj

1+ε
∣∣ξj∣∣1Bε+fi in RN. (3.6)

(i) First, we prove that T is well defined. Let for all (ξ1, . . . ,ξn) ∈ L2(RN)×···×
L2(RN), for all 1≤ i≤n,

ψi
(
ξ1, . . . ,ξn

)=m ξi
1+ε

∣∣ξi∣∣1Bε+
∑
j;j≠i

aij
ξj

1+ε
∣∣ξj∣∣1Bε . (3.7)

We have ∣∣∣∣ ξi
1+ε|ξi|

1Bε

∣∣∣∣= 1
ε

∣∣∣∣ εξi
1+ε|ξi|

1Bε

∣∣∣∣≤ 1
ε

1Bε . (3.8)

Since 1Bε ∈ L2(RN) and aij ∈ L∞(RN), we deduce that for any 1 ≤ i ≤ n, ψi(ξ1, . . . ,
ξn)∈ L2(RN). By (H3), fi ∈ L2(RN) and therefore ψi(ξ1, . . . ,ξn)+fi ∈ L2(RN).

By Theorem 2.6, we deduce the existence (and uniqueness) of (ω1, . . . ,ωn) ∈
Vq1(RN)×···×Vqn(RN). So T is well defined.

(ii) We note that for all (ξ1, . . . ,ξn), |ψi(ξ1, . . . ,ξn)|≤nmaxj;j≠i (m,|aij|∗)(1/ε)1Bε .
Let h = (n/ε)maxi,j;i≠j (m,|aij|∗), 1Bε ∈ L2(RN), and h+fi ∈ L2(RN), so, by the

scalar case, we deduce that there exists a unique ξ0
i ∈ Vqi(RN) such that (−∆+q′i)ξ0

i =
h+fi in RN , (ξ0

1 , . . . ,ξ0
n) is an upper solution of (3.5), for all 1≤ i≤n,

(−∆+q′i)ξ0
i ≥ψi

(
ξ1, . . . ,ξn

)+fi. (3.9)

In the same way, we construct a lower solution of (3.5), for all 1≤ i≤n, there exists a

unique ξi,0 ∈ Vqi(RN) such that (−∆+q′i)ξi,0 =−h+fi in RN , (ξ1,0, . . . ,ξn,0) is a lower

solution of (3.5), for all 1≤ i≤n,

(−∆+q′i)ξi,0 ≤ψi(ξ1, . . . ,ξn
)+fi. (3.10)

We note that for all i, ξi,0 ≤ ξ0
i (because (−∆+q′i)(ξ0

i −ξi,0) = 2h ≥ 0). We consider

now the restriction of T , denoted by T∗, at [ξ1,0,ξ0
1]×···× [ξn,0,ξ0

n]. We prove that

T∗ has a fixed point by the Schauder fixed point theorem.

(iii) First, we prove that [ξ1,0,ξ0
1]×···×[ξn,0,ξ0

n] is invariant by T∗. Let (ξ1, . . . ,ξn)∈
[ξ1,0,ξ0

1]×···×[ξn,0,ξ0
n]. We put T∗(ξ1, . . . ,ξn)= (ω1, . . . ,ωn). We have (−∆+q′i)(ξ0

i −
ωi) = h−ψi(ξ1, . . . ,ξn) ≥ 0. By the scalar case, we deduce that ξ0

i ≥ ωi a.e. By the

same way we get (−∆+q′i)(ωi − ξi,0) = ψi(ξ1, . . . ,ξn)+h ≥ 0 and ωi ≥ ξi,0 a.e. So

[ξ1,0,ξ0
1]×···×[ξn,0,ξ0

n] is invariant by T∗.
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(iv) We prove that T∗ is a compact continuous operator. T∗ is continuous if and

only if for all i, ψ∗i is continuous where ψ∗i is the restriction of ψi to [ξ1,0,ξ0
1]×···×

[ξn,0,ξ0
n].

Let (ξ1, . . . ,ξn)∈[ξ1,0,ξ0
1]×···×[ξn,0,ξ0

n]. Let (ξp1 , . . . ,ξ
p
n)p be a sequence in [ξ1,0,ξ0

1]
×···×[ξn,0,ξ0

n] converging to (ξ1, . . . ,ξn) for ‖·‖(L2(RN))n . We have for all 1≤ i≤n,

∥∥∥∥∥ ξpi
1+ε

∣∣ξpi ∣∣1Bε−
ξi

1+ε
∣∣ξi∣∣1Bε

∥∥∥∥∥
L2(RN)

≤ 1
ε

∥∥∥∥∥ εξpi
1+ε

∣∣ξpi ∣∣ −
εξi

1+ε
∣∣ξi∣∣

∥∥∥∥∥
L2(RN)

. (3.11)

However, the function l defined on R by for all x ∈R, l(x)= x/(1+|x|) is Lipschitz

and satisfies for all x,y ∈R, |l(x)−l(y)| ≤ |x−y|. So
∥∥∥∥∥ ξpi

1+ε
∣∣ξpi ∣∣ −

ξi
1+ε

∣∣ξi∣∣
∥∥∥∥∥
L2(RN)

≤ 1
ε
∥∥εξpi −εξi∥∥L2(RN) =

∥∥ξpi −ξi∥∥L2(RN). (3.12)

Hence,
ξpi

1+ε
∣∣ξpi ∣∣1Bε−

ξi
1+ε

∣∣ξi∣∣1Bε �→ 0 in L2(RN) when p �→+∞. (3.13)

So ψ∗i is continuous and therefore T∗ is a continuous operator. Moreover, by

Proposition 2.5, (−∆+q′i)−1 is a compact operator. So T∗ is compact.

(v) [ξ1,0,ξ0
1]×···×[ξn,0,ξ0

n] is a closed convex subset. Hence, by the Schauder fixed

point theorem, we deduce the existence of (ξ1, . . . ,ξn)∈ [ξ1,0,ξ0
1]×···×[ξn,0,ξ0

n] such

that T∗(ξ1, . . . ,ξn) = (ξ1, . . . ,ξn) for all i, ξi depends of ε, so we denote ξi = ui,ε and

u1,ε, . . . ,un,ε satisfy for 1≤ i≤n,

(−∆+q′i)ui,ε =m ui,ε
1+ε|ui,ε|

1Bε+
∑
j;j≠i

aij
uj,ε

1+ε
∣∣uj,ε∣∣1Bε+fi in RN. (3.14)

(vi) Now we prove that for all i, (εui,ε)ε is a bounded sequence in Vq′i (R
N). Let

‖u‖q′i = [
∫
RN |∇u|2 + q′i|u|2]1/2. Multiply (3.14) by ε2ui,ε and integrate over RN . So

we get

∥∥εui,ε∥∥2
q′i
≤m

∫
RN

∣∣∣∣∣ εui,ε
1+ε

∣∣ui,ε∣∣1Bεεui,ε

∣∣∣∣∣
+

∑
j;j≠i

∣∣aij∣∣∗
∫
RN

∣∣∣∣∣ εuj,ε
1+ε

∣∣uj,ε∣∣1Bεεui,ε

∣∣∣∣∣+
∫
RN

∣∣εfiεui,ε∣∣.
(3.15)

But for all j, |εuj,ε/(1+ε|uj,ε|)|< 1. So there exists a strictly positive constantK such

that ‖εui,ε‖2
q′i
≤K‖εui,ε‖L2(RN) ≤K‖εui,ε‖q′i and therefore, ‖εui,ε‖q′i ≤K.

(vii) We prove now that εui,ε → 0 when ε → 0 strongly in L2(RN) and weakly in

Vq′i (R
N). We know that the imbedding of Vq′i (R

N) into L2(RN) is compact. The se-

quence (εui,ε)ε is bounded in Vq′i (R
N) so (for a subsequence), we deduce that there

exist u∗i such that εui,ε → u∗i when ε→ 0 strongly in L2(RN) and weakly in Vq′i (R
N).

Multiplying (3.14) by ε, we get

(−∆+q′i)εui,ε =m εui,ε
1+ε

∣∣ui,ε∣∣1Bε+
∑
j;j≠i

aij
εuj,ε

1+ε
∣∣uj,ε∣∣1Bε+εfi in RN. (3.16)
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But εui,ε →u∗i weakly in Vqi(R
N). So for all φ∈�(RN),

∫
RN

[∇(εui,ε)·∇φ+q′iεui,εφ] �→
∫
RN

[∇u∗i ·∇φ+q′iu∗i φ] when ε �→ 0. (3.17)

Moreover, for all φ∈�(RN),
∫
RN εfiφ→ 0 when ε→ 0. Moreover, we have for all j

∥∥∥∥∥ εuj,ε
1+ε

∣∣uj,ε∣∣1Bε−
u∗j

1+
∣∣u∗j ∣∣

∥∥∥∥∥
2

L2(RN)

=
∫
Bε

[
εuj,ε

1+ε
∣∣uj,ε∣∣ −

u∗j
1+

∣∣u∗j ∣∣
]2

+
∫
RN−Bε

(
u∗j

1+
∣∣u∗j ∣∣

)2

.

(3.18)

Since |u∗j /(1+|u∗j |)| ≤ |u∗j |, u∗j /(1+|u∗j |) ∈ L2(RN), hence
∫
RN−Bε(u

∗
j /(1+|u∗j |))2

→ 0 when ε→ 0. Moreover,

∫
Bε

[
εuj,ε

1+ε
∣∣uj,ε∣∣ −

u∗j
1+

∣∣u∗j ∣∣
]2

≤
∫
RN

[
εuj,ε

1+ε
∣∣uj,ε∣∣ −

u∗j
1+

∣∣u∗j ∣∣
]2

≤
∥∥εuj,ε−u∗j ∥∥2

L2(RN).

(3.19)

But εuj,ε → u∗j when ε → 0 strongly in L2
(
RN

)
. So, (εuj,ε/1+ ε|uj,ε|)1Bε → u∗j /(1+

|u∗j |) when ε → 0 strongly in L2(RN). Therefore, we can pass through the limit and

we get for all 1≤ i≤n,

(−∆+q′i)u∗i =m u∗i
1+

∣∣u∗i ∣∣ +
∑
j;j≠i

aij
u∗j

1+
∣∣u∗j ∣∣ in RN. (3.20)

We prove now that for any i, u∗i = 0. Multiply (3.20) by u∗i , integrate over RN , and

obtain

∫
RN

[∣∣∇u∗i ∣∣2+q′i
∣∣u∗i ∣∣2

]
=
∫
RN
m

∣∣u∗i ∣∣2

1+
∣∣u∗i ∣∣ +

∑
j;j≠i

∫
RN
aij

u∗j u
∗
i

1+
∣∣u∗j ∣∣

≤
∫
RN
m

∣∣u∗i ∣∣2

1+
∣∣u∗i ∣∣ +

∑
j;j≠i

∫
RN

∣∣aij∣∣∗
∣∣u∗j ∣∣∣∣u∗i ∣∣
1+

∣∣u∗j ∣∣ .

(3.21)

But for all j, 1/(1+|u∗j |)≤ 1. So we get

λ
(
q′i
)∫

RN

∣∣u∗i ∣∣2 ≤m
∫
RN

∣∣u∗i ∣∣2+
∑
j;j≠i

∣∣aij∣∣∗
(∫

RN

∣∣u∗j ∣∣2
)1/2(∫

RN

∣∣u∗i ∣∣2
)1/2

. (3.22)

Replacing ui by u∗i , we proceed exactly as in Lemma 3.2 and we get that for all 1 ≤
i≤n, u∗i = 0.

(viii) We prove now by contradiction that for all 1 ≤ i ≤ n, (ui,ε)ε is bounded in

Vqi(R
N). We suppose that there exists i0, ‖ui0,ε‖qi0 →+∞ when ε→ 0. Let for all 1≤

i≤n,

tε =max
i

(∥∥ui,ε∥∥qi
)
, vi,ε = 1

tε
ui,ε. (3.23)
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We have ‖vi,ε‖qi ≤ 1 so (vi,ε)ε is a bounded sequence in Vqi(R
N). Since the imbedding

of Vqi(R
N) in L2(RN) is compact (see Proposition 2.4), there exists vi such that vi,ε →

vi when ε→ 0 strongly in L2(RN) and weakly in Vqi(R
N).

In a weak sense, we have for all 1≤ i≤n,

(−∆+q′i)vi,ε =m vi,ε
1+ε

∣∣ui,ε∣∣1Bε+
∑
j;j≠i

aij
vj,ε

1+ε
∣∣uj,ε∣∣1Bε+

1
tε
fi in RN. (3.24)

We have for all φ∈�(RN),
∫
RN

[∇vi,ε ·∇φ+q′ivi,εφ] �→
∫
RN

[∇vi ·∇φ+q′iviφ] when ε �→ 0. (3.25)

Moreover, tε → +∞ when ε → 0 so, for all φ ∈ �(RN),
∫
RN (1/tε)fiφ→ 0 when ε → 0.

We also have for all 1≤ j ≤n,

∥∥∥∥∥ vj,ε
1+ε

∣∣uj,ε∣∣1Bε−vj
∥∥∥∥∥

2

L2(RN)
=
∫
Bε

[
vj,ε

1+ε
∣∣uj,ε∣∣ −vj

]2

+
∫
RN−Bε

v2
j . (3.26)

But vj ∈ L2(RN) so,
∫
RN−Bε v

2
j → 0 when ε→ 0. Moreover,

∫
Bε

[
vj,ε

1+ε
∣∣uj,ε∣∣ −vj

]2

≤
∫
RN

[
vj,ε

1+ε
∣∣uj,ε∣∣ −vj

]2

≤ 2

[∫
RN

(
vj,ε−vj

)2

(
1+ε

∣∣uj,ε∣∣)2 +
∫
RN

(
εvj

∣∣uj,ε∣∣)2

(
1+ε

∣∣uj,ε∣∣)2

]
.

(3.27)

But 1+ ε|uj,ε| ≥ 1. So,
∫
RN (vj,ε − vj)2/(1+ ε|uj,ε|)2 ≤

∫
RN (vj,ε − vj)2. Since vj,ε →

vj in L2(RN), we get
∫
RN (vj,ε−vj)2/(1+ε|uj,ε|)2 → 0 when ε→ 0. Moreover,

(
εvj

∣∣uj,ε∣∣)2

(
1+ε

∣∣uj,ε∣∣)2 �→ 0 a.e. when ε �→ 0. (3.28)

(At least for a subsequence because εuj,ε → 0 when ε → 0.) By using the dominated

convergence theorem, we deduce that
∫
RN (εvj|uj,ε|)2/(1+ε|uj,ε|)2 → 0 when ε → 0.

So we can pass through the limit and we get for all 1≤ i≤n,

(−∆+q′i)vi =mvi+ ∑
j;j≠i

aijvj in RN. (3.29)

By Lemma 3.2, we deduce that for all 1 ≤ i ≤ n, vi = 0. However, there exists a se-

quence (εn) such that there exists i1, ‖vi1,εn‖qi1 = 1. But vi1,εn → vi1 when n→+∞.

So we get a contradiction.

(ix) There exists u0
i such that ui,ε → u0

i strongly in L2(RN) and weakly in Vqi(R
N).

We have in a weak sense

(−∆+q′i)ui,ε =m ui,ε
1+ε

∣∣ui,ε∣∣1Bε+
∑
j;j≠i

aij
uj,ε

1+ε
∣∣uj,ε∣∣1Bε+fi in RN. (3.30)
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But ui,ε ⇀ u0
i when ε→ 0 weakly in Vqi(R

N). Hence, for all φ∈�(RN),

∫
RN

[∇ui,ε.∇φ+q′iui,εφ] �→
∫
RN

[∇u0
i ·∇φ+q′iu0

i φ
]

when ε �→ 0. (3.31)

We also have

∥∥∥∥ ui,ε
1+ε

∣∣ui,ε∣∣1Bε−u0
i

∥∥∥∥
2

L2(RN)
=
∫
Bε

[ ui,ε
1+ε

∣∣ui,ε∣∣ −u0
i

]2

+
∫
RN−Bε

∣∣u0
i
∣∣2. (3.32)

By u0
i ∈ L2(RN) we derive

∫
RN−Bε |u0

i |2 → 0 when ε→ 0. Moreover,

∫
Bε

[ ui,ε
1+ε

∣∣ui,ε∣∣ −u0
i

]2

≤
∫
RN

[ ui,ε
1+ε

∣∣ui,ε∣∣ −u0
i

]2

≤ 2

[∫
RN

(
ui,ε−u0

i
)2

(
1+ε

∣∣ui,ε∣∣)2 +
∫
RN

(
εu0

i
∣∣ui,ε∣∣)2

(
1+ε

∣∣ui,ε∣∣)2

]
.

(3.33)

Since 1+ε|ui,ε| ≥ 1 we get
∫
RN (ui,ε−u0

i )2/(1+ε|ui,ε|)2 ≤
∫
RN (ui,ε−u0

i )2. But ui,ε →
u0
i in L2(RN). So

∫
RN (ui,ε−u0

i )2/(1+ε|ui,ε|)2 → 0 when ε→ 0. Moreover,

(
εu0

i
∣∣ui,ε∣∣)2

(
1+ε

∣∣ui,ε∣∣)2 �→ 0 a.e. when ε �→ 0. (3.34)

(At least for a subsequence because εui,ε → 0 when ε → 0) and (εu0
i |ui,ε|)2/(1+

ε|ui,ε|)2 ≤ |u0
i |2 and |u0

i |2 ∈ L1(RN).
By using the dominated convergence theorem, we deduce that

∫
RN

(
εu0

i
∣∣ui,ε∣∣)2

(
1+ε

∣∣ui,ε∣∣)2 �→ 0 when ε �→ 0. (3.35)

So we can pass through the limit and we get for all 1≤ i≤n,

(−∆+q′i)u0
i =mu0

i +
∑
j;j≠i

aiju0
j +fi in RN. (3.36)

So we get (−∆+qi)u0
i = aiiu0

i +
∑
j;j≠i aiju0

j+fi in RN , (u0
1, . . . ,u0

n) is a weak solution

of (1.1).

3.2. Study of a limit case. We use again a method in [5]. We rewrite system (1.1),

assuming for all 1≤ i≤n, qi = q

Lqui := (−∆+q)ui =
n∑
j=1

aijuj+fi
(
x,u1, . . . ,un

)
in RN. (3.37)

Each aij is a real constant. We denote A= (aij) the n×n matrix, I the n×n identity

matrix, tU = (u1, . . . ,un) and tF = (f1, . . . ,fn).
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Theorem 3.3. Suppose that (H1), (H2), and (H3) are satisfied. Suppose that A has

only real eigenvalues. Suppose also that λ(q), the principal eigenvalue of −∆+q, is the

largest eigenvalue of A and that it is simple.

Let X ∈ RN such that tX(λ(q)I −A) = 0. Then (3.37) has a solution if and only if∫
RN

tXFφq = 0, where φq is the eigenfunction associated to λ(q).

Proof of Theorem 3.3. Let P be a n×n nonsingular matrix such that the last

line of P is tX and such that T = PAP−1 := (tij) where, tij = 0 if i > j; tnn = λ(q) and

for all 1≤ i≤n−1, tii < λ(q).
Let W = PU . The system (3.37) is equivalent to the system (3.2) (−∆+q)W = TW +

PF . Let tW = (w1, . . . ,wn) and πi = (δij) where, δij = 0 if i≠ j and δii = 1. So (3.2) is

Lqwi := (−∆+q)wi = tiiwi+
∑
j;j>i

tijwj+πiPF in RN, (3.38)

for 1≤ i≤n. We have

(−∆+q)wn = λ(q)wn+t XF in RN. (3.39)

Equation (3.39) has a solution if and only if
∫
RN

tXFφq = 0. If
∫
RN

tXFφq = 0 is sat-

isfied, first we solve (2n), then we solve (2n−1) until n = 1 because for all 1 ≤ i ≤
n−1, tii < λ(q). Then we deduce U (because matrix P is a nonsingular matrix).

3.3. Study of a non-necessarily cooperative semilinear system of n equations.

We rewrite system (3.37), for 1≤ i≤n,

Lqiui := (−∆+qi)ui =
n∑
j=1

aijuj+fi
(
x,u1, . . . ,un

)
in RN. (3.40)

We recall that then×nmatrixG = (gij) defined bygii=λ(qi−aii), for all 1≤i≤n, and

∀1≤ i, j ≤n, i≠ j �⇒ gij =−
∣∣aij∣∣∗, where

∣∣aij∣∣∗ = sup
x∈RN

∣∣aij(x)∣∣. (3.41)

Let I be the identity matrix.

Theorem 3.4. Assume that (H1), (H2), and (H3) are satisfied. Also assume that hy-

pothesis (H4), (H5), and (H6) are satisfied, where

(H4) ∃s > 0 such that F−sI is a nonsingular M-matrix,

(H5) for all 1≤ i≤n, ∃θi ∈ L2(RN), θi > 0, such that for all 1≤ i≤n, for all u1, . . . ,
un, 0≤ fi(x,u1, . . . ,un)≤ sui+θi,

(H6) for all 1≤ i≤n, fi is Lipschitz for (u1, . . . ,un), uniformly in x.

Then (3.40) has at least a solution.

Proof of Thorem 3.4. (a) Construction of an upper and lower solution. We con-

sider the following system (3.42)

∀1≤ i≤n, Lqiui := (−∆+qi)ui = aiiui+ ∑
j;j≠i

∣∣aij∣∣uj+sui+θi in RN. (3.42)

By hypothesis (H4) and (H5) we can apply Theorem 2.8. We deduce the existence of a
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positive solution U0 = (u0
1, . . . ,u0

n) in Vq1(RN)×···×Vqn(RN) for the system (3.42).

U0 is an upper solution of (3.40).

Let U0 =−U0 = (−u0
1, . . . ,−u0

n). We have for all 1≤ i≤n, (−∆+qi)(−u0
i )=−(−∆+

qi)u0
i . Hence, (−∆+qi)(−u0

i )=−aiiu0
i −

∑
j;j≠i |aij|u0

j−su0
i −θi. So, for all 1≤ i≤n,

(−∆+qi)(−u0
i
)≤ aii(−u0

i
)+ ∑

j;j≠i
aij

(−u0
j
)+fi(x,−u0

1, . . . ,−u0
n
)
. (3.43)

Therefore, U0 is a lower solution of (3.40).

(b) We first recall the definition of a compact operator. Let m ∈ R∗+ be such that

for all 1 ≤ i ≤ n, m−aii > 0. Let q′i = qi −aii +m. Let T : (L2(RN))n → (L2(RN))n

defined by T(u1, . . . ,un)= (w1, . . . ,wn) such that for all 1≤ i≤n,

(−∆+q′i)wi =mui+
n∑

j=1;j≠i
aijuj+fi

(
x,u1, . . . ,un

)
in RN. (3.44)

We easily prove that T is a well-defined operator by the scalar case, continuous by

(H6) and compact (because (−∆+q′i)−1 is compact). We prove now that T([U0,U0])⊂
[U0,U0]. LetU=(u1, . . . ,un)∈[U0,U0]. We have for all 1≤i≤n,−u0

i ≤ui≤u0
i . We have

(−∆+q′i)(u0
i −wi

)=m(
u0
i −ui

)+ ∑
j;j≠i

∣∣aij∣∣u0
j

−
∑
j;j≠i

aijuj+su0
i +θi−fi

(
x,u1, . . . ,un

)
.

(3.45)

So m(u0
i −ui) ≥ 0. By (H5), we have fi(x,u1, . . . ,un) ≤ sui+θi ≤ su0

i +θi. Moreover,

|aijuj| ≤ |aij|u0
j so, aijuj ≤ |aij|u0

j . So, (−∆+q′i)(u0
i −wi)≥ 0 and by the scalar case

u0
i −wi ≥ 0. In the same way, we have

(−∆+q′i)(wi−
(−u0

i
))=m(

u0
i +ui

)+ ∑
j;j≠i

∣∣aij∣∣u0
j

+
∑
j;j≠i

aijuj+su0
i +θi+fi

(
x,u1, . . . ,un

)
.

(3.46)

But −u0
i ≤ ui. So m(u0

i +ui) ≥ 0. Moreover, −aijuj ≤ |aij|u0
j . By using (H5), we con-

clude that (−∆+q′i)(wi +u0
i ) ≥ 0 and hence, wi ≥ −u0

i . So T([U0,U0]) ⊂ [U0,U0].
[U0,U0] is a convex, closed, and bounded subset of (L2(RN))n, so by the Schauder

fixed point theorem, we deduce that T has a fixed point. Therefore, (3.40) has at least

a solution.
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