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A NOTE ON MINIMAL ENVELOPES OF DOUGLAS ALGEBRAS,
MINIMAL SUPPORT SETS, AND RESTRICTED
DOUGLAS ALGEBRAS
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ABSTRACT. We characterize the interpolating Blaschke products of finite type in terms of
their support sets. We also give a sufficient condition on the restricted Douglas algebra of
a support set that is invariant under the Bourgain map, and its minimal envelope is singly
generated.
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1. Introduction. Let H* be the Banach algebra of bounded analytic functions on
the open unit disk D. We denote by M (H®) the set of nonzero complex valued homo-
morphism of H®. With the weak™*-topology, M (H®) is a compact Hausdorff space. We
identify a function in H* with the Gelfand transform and consider H*® the supremum
norm closed subalgebra of the space of continuous functions on M (H*). By Carleson’s
corona theorem, D is dense in M (H®) in the weak *-topology. For f € H®, put

Z(f) = {x e M(H™)\D: f(x) = 0},

{11 <1} = [x e MESND: £ ()] <1}, (D
For two points x,y in M(H®), the pseudohyperbolic distance is given by
p(x,y) =sup{lf(¥)|:feH” | flle<1,f(x)=0} (1.2)
Then, 0 < p(x,y) < 1 and put
P(x) = {meM(H"):p(x,m) <1}. (1.3)

The set P(x) is called the Gleason part containing x. For z,x € D, p(z,w) =
[(z—w)/(1 —w2z)|, and P(z) = D. When P(x) # {x}, both x and P(x) are called
nontrivial. We denote by G the set of nontrivial points in M(H>).

For an infinite sequence {z,}, in D with >, _;(1 —|z,|) < o, the corresponding
Blaschke product is defined by

.
b(z) = 7 B eD. 1.4
(2) £|2n|1_2nz, z (1.4)
In addition, we have

igf(lf\zn\2)|b’(zn)| >0, (1.5)
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both b and {z,}, are called interpolating. When b is interpolating and
71115510(1—|zn|2)|b’(zn)| =1, (1.6)

both b and {z,}, are called sparse. An interpolating Blaschke product b is said to be
unimodular on trivial points if {x : |b(x)| < 1} C G. In [4], Hoffman proved that for
x € M(H®), x € G if and only if x € Z(b) for some interpolating Blaschke product b.
He also proved that for a point x € G, there exists a one-to-one continuous onto map
Ly :D — P(x) such that L,(0) = x and foLy, € H® for every f € H*. The map Ly,
which is called the Hoffman map for the point x, is given by

Z+2Zp
1+242°

Ly (2) :lior(n zeD, (1.7)
where {Z4}«is anetin D which converges to x. A part P(x) is called sparse if there is a
sparse Blaschke product b such that b(x) = 0. In this case we have |(boL,) (0)]| = 1.
Therefore, b is a sparse Blaschke product if and only if |(boL,) (0)| = 1 for every
x € Z(b). A part is called locally sparse if there is an interpolating Blaschke product
b such that b(x) =0and [(boL,) (0)| = 1.

For an interpolating Blaschke product b with zeros {z; },, let

do(b) =rlli;goinfrlgyrllp(zn,zk)- (1.8)

An interpolating Blaschke product b is called spreading if 6¢(b) = 1. By considering
boundary function, we may consider H®, as a closed subalgebra of L., the Banach
algebra of essentially bounded Lebesgue measurable functions on the unit circle T.
It is known that M(L*) c M(H*) and M(L®) is the Shilov boundary for H*. Any
uniformly closed subalgebra B with H® c B C L™ is called a Douglas algebra. For a
point x € M (H®), there exists a probability measure u, on M(L*) such that

f<x>=j fdue VfeH™. (1.9)
M(L*®)

We denote by supp ui the closed support set of L. Since supp Ly is a weak peak set of
M(L®) for H*, we have Hy,,, = {f € L fisuppuy € Hl";uppux} is a Douglas algebra.
For E Cc M(H®), a point x € E is called a minimal support point for E if

SUPP Uy C SUPPHy OF SUPPHxNSUPPUy =¢ Vy €E. (1.10)

If x is a minimal support point for E, supp u, is called a minimal support set for E.
For an interpolating Blaschke product b, we denote by m(Z(b)) the set of minimal
support points for the set {x : |b(x)| < 1}. Let X be a Banach algebra with identity
and let B be a closed subalgebra of X. The Bourgain algebra Bj, of B relative to X is
defined by the set of f in X such that || f.f, + Bl — 0 for every sequence { f; }, in B with
fn — 0 weakly. If A and B are Douglas algebras with A = B and properly contained,
then B is a minimal superalgebra of A if and only if suppux = suppu, for every
X,y € M(A)\M (B). We denote by By, the smallest Douglas algebra which contains all
minimal superalgebras of B. We note that B, C B,,. An interpolating Blaschke product
b such that {x:|b(x)| <1} C G,with Z(b) nP(x) being a finite set for every x € Z(b),
is said to be of finite type.
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2. Proofs of the theorems

THEOREM 2.1. An interpolating Blaschke product b that is unimodular on trivial
parts is of finite type if and only if m(Z (b)) = {z:|b(z)| < 1}.

PROOF. Suppose b is an interpolating Blaschke product that is unimodular on
the trivial points and of finite type. Let z € M(H® + C) such that |b(z)| < 1. By [1,
Theorems 1 and 2], there is an x € m(Z (b)) such that suppuy C suppu:. By [3,
Theorem 3.1], the set supp uy is a maximal support set. Hence supp iy = Supp u-.
This implies that z is a minimal support point for b, that is, z € m(Z(b)). So {z :
Ib(z)] <1} c m(Z(b)). Since m(Z(b)) Cc {z:|b(z2)| <1}, we have {z:|b(2)| <1} =
m(Z(b)). Conversely, suppose m(Z(b)) = {z : |b(z)| < 1} and assume that b is
unimodular on trivial points but not of finite type. Then there is a vy € Z(b) such
that the set Z(b) n P(y) is an infinite set. By [2, Theorems 1 and 2], there is an
x € M(H® + C) such that |b(x)| < 1, an uncountable index set I such that for &, €I,
& # B, supp Ux, N SUpp px; = ¢, Xa,xg € m(Z(b)), and supp py, C supp py for all
o € 1. Since supp Ly, is properly contained in supp py, this implies that x ¢ m(Z (b))
but |b(x)| < 1. This contradicts our assumptionthat {z: |b(z)| < 1} = m(Z(b)). Thus,
b is of finite type. O

THEOREM 2.2. Suppose that b is a spreading nonsparse Blaschke product, and x €
m(Z (b)) such that |(boLy) (0)| # 1. Then
(i) (H;appux )h = Hsuppuxy

(i) (Hguppp, )m = Hstppus

[b].
PROOF. By [5, Lemma 2.1], we have that P, is a nonlocally sparse part. Hence, by
[6, Theorem 5] we have that (i) holds.

Since b is spreading and x € m(Z (b)),

M( SDEIPPHX) :M<Hsoflppux[5])UEXy (2.1)

where Ex = {y € M(H® + C) : supp lx = supp iy }. This implies that Hg,,,, is prop-
erly contained in (Hgpp,, )m- Since Hg o, is a maximal subalgebra of Hg, [b],
HS, b

SUPPHx
SUpPiix [b] is contained in (Hguppuy )m- Since

M( gflppux) =M(L*)u{y e M(H® +C) : supp H, S supp px}, (2.2)

we show that if g is an interpolating Blaschke product such that g € (Hgpp,,, )m, then

Hppu [4] = H;’{’,ppux[lé]. This proves (ii). Suppose that we have Hg’flppux[[)] properly
contained in
(Hgppuy )m» then we have M ((Hgpp,,, ) m) Properly contained in M (Hgy,p,,, . [b]). So there

isayeMHgppu, [b]), an interpolating Blaschke product g with G € (Hgoppuy)m and
q(y) = 0. By (2.2) we have y M(Hgppyuy) but v ¢ E.. Again, by (2.2), this implies
that supp u, is properly contained in the supp uy. By [2, Theorems 1 and 2], there is
an uncountable index set I such that if «, € I, & # B, there are x4, xg € Z(gq) with
SUPP U N SUPP Hxy = ¢ and Supp pu, SUPP Uy, are both properly contained in supp pix.

This implies that

UactExy © {m € M(Hgpp, ) la(m)| <1} (2.3)
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But this contradicts [2, Theorem 3] since « #  implies that Ey, NEy, = ¢. Thus, no
such y exists and we have Hgy,,,, [b] = Hgppuy [d]- So (ii) holds. O
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