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A NOTE ON MINIMAL ENVELOPES OF DOUGLAS ALGEBRAS,
MINIMAL SUPPORT SETS, AND RESTRICTED
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Abstract. We characterize the interpolating Blaschke products of finite type in terms of
their support sets. We also give a sufficient condition on the restricted Douglas algebra of
a support set that is invariant under the Bourgain map, and its minimal envelope is singly
generated.
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1. Introduction. Let H∞ be the Banach algebra of bounded analytic functions on

the open unit disk D. We denote byM(H∞) the set of nonzero complex valued homo-

morphism of H∞. With the weak∗-topology,M(H∞) is a compact Hausdorff space. We

identify a function in H∞ with the Gelfand transform and consider H∞ the supremum

norm closed subalgebra of the space of continuous functions onM(H∞). By Carleson’s
corona theorem, D is dense in M(H∞) in the weak∗-topology. For f ∈H∞, put

Z(f)= {x ∈M(H∞)\D : f(x)= 0
}
,{|f |< 1

}= {x ∈M(H∞)\D : |f(x)|< 1
}
.

(1.1)

For two points x,y in M(H∞), the pseudohyperbolic distance is given by

ρ(x,y)= sup
{|f(y)| : f ∈H∞,‖f‖∞ ≤ 1,f (x)= 0

}
. (1.2)

Then, 0≤ ρ(x,y)≤ 1 and put

P(x)= {m∈M(H∞) : ρ(x,m) < 1
}
. (1.3)

The set P(x) is called the Gleason part containing x. For z,x ∈ D, ρ(z,w) =
|(z−w)/(1− w̄z)|, and P(z) = D. When P(x) ≠ {x}, both x and P(x) are called

nontrivial. We denote by G the set of nontrivial points in M(H∞).
For an infinite sequence {zn}n in D with

∑∞
n=1(1− |zn|) < ∞, the corresponding

Blaschke product is defined by

b(z)=
∞∏
n=1

−z̄n
|zn|

z−zn
1− z̄nz , z ∈D. (1.4)

In addition, we have

inf
n

(
1−|zn|2

)∣∣b′(zn)∣∣> 0, (1.5)
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both b and {zn}n are called interpolating. When b is interpolating and

lim
n→∞

(
1−|zn|2

)∣∣b′(zn)∣∣= 1, (1.6)

both b and {zn}n are called sparse. An interpolating Blaschke product b is said to be

unimodular on trivial points if {x : |b(x)| < 1} ⊂ G. In [4], Hoffman proved that for

x ∈M(H∞), x ∈G if and only if x ∈ Z(b) for some interpolating Blaschke product b.
He also proved that for a point x ∈G, there exists a one-to-one continuous onto map

Lx : D → P(x) such that Lx(0) = x and f ◦Lx ∈ H∞ for every f ∈ H∞. The map Lx ,
which is called the Hoffman map for the point x, is given by

Lx(z)= lim
α

z+z0
1+ z̄αz , z ∈D, (1.7)

where {Zα}α is a net inD which converges tox. A part P(x) is called sparse if there is a

sparse Blaschke product b such that b(x)= 0. In this case we have |(b◦Lx)′(0)| = 1.

Therefore, b is a sparse Blaschke product if and only if |(b ◦Lx)′(0)| = 1 for every

x ∈ Z(b). A part is called locally sparse if there is an interpolating Blaschke product

b such that b(x)= 0 and |(b◦Lx)′(0)| = 1.

For an interpolating Blaschke product b with zeros {zn}n, let

δ0(b)= lim
n→∞ infmin

k≠n
ρ
(
zn,zk

)
. (1.8)

An interpolating Blaschke product b is called spreading if δ0(b) = 1. By considering

boundary function, we may consider H∞, as a closed subalgebra of L∞, the Banach

algebra of essentially bounded Lebesgue measurable functions on the unit circle T .
It is known that M(L∞) ⊂ M(H∞) and M(L∞) is the Shilov boundary for H∞. Any
uniformly closed subalgebra B with H∞ ⊂ B ⊂ L∞ is called a Douglas algebra. For a

point x ∈M(H∞), there exists a probability measure µx on M(L∞) such that

f(x)=
∫
M(L∞)

f dµx ∀f ∈H∞. (1.9)

We denote by suppµx the closed support set of µx . Since suppµx is a weak peak set of

M(L∞) for H∞, we have H∞suppµx =
{
f ∈ L∞ : f|suppµx ∈H∞|suppµx

}
is a Douglas algebra.

For E ⊂M(H∞), a point x ∈ E is called a minimal support point for E if

suppµx ⊂ suppµy or suppµx∩suppµy =φ ∀y ∈ E. (1.10)

If x is a minimal support point for E, suppµx is called a minimal support set for E.
For an interpolating Blaschke product b, we denote by m(Z(b)) the set of minimal

support points for the set {x : |b(x)| < 1}. Let X be a Banach algebra with identity

and let B be a closed subalgebra of X. The Bourgain algebra Bb of B relative to X is

defined by the set of f inX such that ‖ffn+B‖→ 0 for every sequence {fn}n in B with

fn → 0 weakly. If A and B are Douglas algebras with A ⊆ B and properly contained,

then B is a minimal superalgebra of A if and only if suppµx = suppµy for every

x,y ∈M(A)\M(B). We denote by Bm the smallest Douglas algebra which contains all

minimal superalgebras of B. We note that Bb ⊂ Bm. An interpolating Blaschke product

b such that {x : |b(x)|< 1} ⊂G, with Z(b)∩P(x) being a finite set for every x ∈ Z(b),
is said to be of finite type.
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2. Proofs of the theorems

Theorem 2.1. An interpolating Blaschke product b that is unimodular on trivial

parts is of finite type if and only if m(Z(b))= {z : |b(z)|< 1}.
Proof. Suppose b is an interpolating Blaschke product that is unimodular on

the trivial points and of finite type. Let z ∈ M(H∞ +C) such that |b(z)| < 1. By [1,

Theorems 1 and 2], there is an x ∈ m(Z(b)) such that suppµx ⊂ suppµz. By [3,

Theorem 3.1], the set suppµx is a maximal support set. Hence suppµx = suppµz.
This implies that z is a minimal support point for b, that is, z ∈ m(Z(b)). So {z :

|b(z)| < 1} ⊂m(Z(b)). Since m(Z(b)) ⊂ {z : |b(z)| < 1}, we have {z : |b(z)|< 1} =
m(Z(b)). Conversely, suppose m(Z(b)) = {z : |b(z)| < 1} and assume that b is

unimodular on trivial points but not of finite type. Then there is a y ∈ Z(b) such

that the set Z(b)∩ P(y) is an infinite set. By [2, Theorems 1 and 2], there is an

x ∈M(H∞+C) such that |b(x)|< 1, an uncountable index set I such that for α,β∈ I,
α ≠ β, suppµxα ∩ suppµxβ = φ, xα,xβ ∈ m(Z(b)), and suppµxα ⊂ suppµx for all

α∈ I. Since suppµxα is properly contained in suppµx , this implies that x ∉m(Z(b))
but |b(x)|< 1. This contradicts our assumption that {z : |b(z)|< 1} =m(Z(b)).Thus,
b is of finite type.

Theorem 2.2. Suppose that b is a spreading nonsparse Blaschke product, and x ∈
m(Z(b)) such that |(b◦Lx)′(0)|≠ 1. Then

(i) (H∞suppµx )b =Hsuppµx ,

(ii) (H∞suppµx )m =H∞suppµx [b̄].
Proof. By [5, Lemma 2.1], we have that Px is a nonlocally sparse part. Hence, by

[6, Theorem 5] we have that (i) holds.

Since b is spreading and x ∈m(Z(b)),

M
(
H∞suppµx

)
=M

(
H∞suppµx

[
b̄
])∪Ex, (2.1)

where Ex = {y ∈M(H∞+C) : suppµx = suppµy}. This implies that H∞suppµx is prop-

erly contained in (H∞suppµx )m. Since H
∞
suppµx is a maximal subalgebra of H∞suppµx [b̄],

H∞suppµx [b̄] is contained in (H∞suppµx )m. Since

M
(
H∞suppµx

)
=M(L∞)∪{y ∈M(H∞+C) : suppµy ⊆ suppµx

}
, (2.2)

we show that if q is an interpolating Blaschke product such that q̄ ∈ (H∞suppµx )m, then

H∞suppµx [q̄] = H∞suppµx [b̄]. This proves (ii). Suppose that we have H∞suppµx [b̄] properly
contained in

(H∞suppµx )m, then we haveM((H∞suppµx )m) properly contained inM(H∞suppµx [b̄]). So there

is a y ∈M(H∞suppµx [b̄]), an interpolating Blaschke product q with q̄∈ (H∞suppµx)m and

q(y) = 0. By (2.2) we have y ∈ M(H∞suppµx ) but y ∉ Ex . Again, by (2.2), this implies

that suppµy is properly contained in the suppµx . By [2, Theorems 1 and 2], there is

an uncountable index set I such that if α,β ∈ I, α ≠ β, there are xα,xβ ∈ Z(q) with

suppµα∩suppµxβ =φ and suppµα, suppµxβ are both properly contained in suppµx .
This implies that

∪α∈IExα ⊂
{
m∈M

(
H∞suppµx

)
: |q(m)|< 1

}
. (2.3)
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But this contradicts [2, Theorem 3] since α ≠ β implies that Exα ∩Exβ = φ. Thus, no

such y exists and we have H∞suppµx [b̄]=H∞suppµx [q̄]. So (ii) holds.
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