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MIXED PROBLEM WITH NONLOCAL BOUNDARY CONDITIONS
FOR A THIRD-ORDER PARTIAL DIFFERENTIAL EQUATION
OF MIXED TYPE
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ABSTRACT. We study a mixed problem with integral boundary conditions for a third-order
partial differential equation of mixed type. We prove the existence and uniqueness of the
solution. The proof is based on two-sided a priori estimates and on the density of the range
of the operator generated by the considered problem.
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1. Introduction. In the rectangle Q = (0,€) x (0,T), we consider the equation

o%u
0xot

?u 0
Pu = W—a(a(x,t)

) = f(x,t), (1.1)

where a(x,t) is bounded with 0 < ay < a(x,t) < a; and has bounded partial deriva-
tives such that 0 < a, < da(x,t)/0t <az and 0 < a4 < da(x,t)/dx < as for (x,t) € Q.
To (1.1) we add the initial conditions

bt =u(x,0) = @(x), L= 34 (x,0) = p(x), x€(0,0), (1.2)
the Dirichlet condition
u(0,t)=0, te(0,T), (1.3)
and the integral condition
¢
J u(g,t)dg=0, te(0,7), (1.4)
0

where @ and g are known functions which satisfy the compatibility conditions given
by (1.3) and (1.4), that is,

L ¥
@(0) =0, Jo @(x)dx =0, Y(0) =0, JO Y(x)dx =0. (1.5)

Boundary-value problems for parabolic equations with integral boundary condi-
tions are investigated by Batten [1], Bouziani and Benouar [2], Cannon [3, 4], Perez
Esteva and van der Hoeck [5], Ionkin [8], Kamynin [9], Kartynnik [10], Shi [11], Yurchuk
[13], and many references therein. We remark that integral boundary conditions for
evolution problems have various applications in chemical engineering, thermoelastic-
ity, underground water flow and population dynamics; see for example, [6, 7, 11, 12].
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The present paper is devoted to the study of a mixed problem with boundary inte-
gral conditions for a third-order partial differential equation of mixed type.

We associate to problem (1.1), (1.2), (1.3), and (1.4) the operator L = (£,1;,1»), de-
fined from E into F, where E is the Banach space of functions u € L, (Q), satisfying
(1.3) and (1.4), with the finite norm

02u Bu |2
Il = | (0-x)? U I ]dxdt
0 2., 12 2 ¢ 2
o°u ou ou
R ou ou 2
+0851ng ow x) [ oxot ox }dx+ossltl£T 0 U ot *lul }dx,

(1.6)

and F is the Hilbert space of vector-valued functions ¥ = (f, @, ) obtained by com-

pletion of the space Ly (Q) x W2 (0,£) x W2 (0,£) with respect to the norm
IF12 = |(f, @, )|l7

:Jg(ﬁ—x)zlflzddeJ (£—x)? [ dy

2
]dx+j [+ @] dx
(1.7)

dx

]

dx

Using the energy inequalities method proposed in [13], we establish two-sided a pri-
ori estimates. Then, we prove that the operator L is a linear homeomorphism between
the spaces E and F.

2. Two-sided a priori estimates

THEOREM 2.1. For any function u € E, there is the a priori estimate

ILullr < cllullg, (2.1)
where the constant c is independent of u.

PROOF. Using (1.1) and the initial conditions (1.2), we obtain

J (0—x)2|%ul? dxdt<3J )| |28 4 g2] 221 2| Bu 17 g
ot >l oxot Y ox2at ’
2 2 ¢ 2., 12
0cu ou
ap 2
J(# x)? de + dx :|deOS<l£‘l£)T 0(# X) Uaxat Ix ]dx (2.2)
¢ ¢ 2
j [y +1@[2]dx < sup [la” +u|2}dx.
0 0<t<TJO ot
Combining the inequalities (2.2), we obtain (2.1) for u € E. O

THEOREM 2.2. For any function u € E, there is the a priori estimate
lulle < Il LullF, (2.3)

with the constant

_ max (167/10,a1)
&= min (exp(—cT)/20,exp(—cT)a3/15)’ (2.4)
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and c is such that

c=1, cap—1=asz+2as. (2.5)

Before proving this theorem, we first give the following two lemmas.

LEMMA 2.3. For u € E satisfying the first condition in (1.2),

L flewrovrenl 24 s S

) 1 0 ) 2
Jw X) dx—ijo(f—x) dv
(2.6)
PROOF. Starting from
T o

0 (ou\ou

—x)2 _ Il Bl Padhid
JO JO (£ —x)%exp( Ct)at (ax> dxdt, (2.7)
then integrating by parts and using elementary inequalities, we obtain (2.6). O

LEMMA 2.4. For u € E satisfying the initial conditions (1.2),

¥4 ) T L ou 12 Y
J exp(—cT)|u(x,7)| dxsj J exp(—ct)‘— J lp|?dx, (2.8)
0 o Jo ot 0

withc > 1.

PROOF. Integrating by parts the expression

exp(— ct)u—dxdt (2.9)
I

and using elementary inequalities yield (2.8). O
REMARK 2.5. We note that Lemmas 2.3 and 2.4 hold for weaker conditions on u.

PROOF OF THEOREM 2.2. First, define

U
D(L)=5LueE| PIETE eLZ(Q)}, = - x)zﬁ+2(€ x)] t2' (2.10)
where
P
Juzj u(&,t)de. (2.11)
0
We consider for u € D(L) the quadratic formula
T ol o
ReJ I exp(—ct)FuMudxdt, (2.12)
0 Jo

with the constant ¢ satisfying (2.5), obtained by multiplying (1.1) by exp(—ct)Mu, by
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integrating over Q7, where Q7 = (0,£) x (0,T), with 0 < T < T, and by taking the real
part. Integrating by parts (2.12) with the use of boundary conditions (1.3) and (1.4),
we obtain

T ol
Rej J exp(—ct)PuMudxdt

32

3z dxdt

dxdt+zj J exp(— ct)’]

J J(# x)2exp(—ct)

ot?

T o°u 0 ( 0*u
2 2.13
+ReL L (€ —-x)°exp(— ct)aaxat at(a at)dth ( )

T 2
+2ReI J exp(— ct)a—uaa—dxdt
0 ot?

T da ou  0*u
+2Rej0 Jo exp(—ct)aﬁjﬁd xdt.

On the other hand, by using the elementary inequalities we get
T ol
ReJ J exp(—ct)FuMudxdt
0 Jo

2
dxdt

Tt o%u
Zx)2 _ ou
ZJO L (£ —x)% exp( ct)‘ 32

ou 0 < o%u

axat ot 6x8t> dxdt (2.14)

T ol
_x)2 _
+ReI0 L (L—-x)"exp(—ct)a

Tt ou o*u
+2ReJ0 Jo exp(—ct)aaﬁd xdt

T ot
da
—2Rej0 JO exp(—ct)'a— 3t

Again, integrating by parts the second and third terms of the right-hand side of the
inequality (2.14) and taking into account the initial conditions (1.2) give

T 0 B Y, 1! dy|?
3 2 4y s 1 )2 |4
Ref I exp( ct)éBuMuddeI a(x,0)|y| dx+2J a(x,0)(f-x) dx‘ dxdt
»| 0%u oa
Jjexp (=ct) (¥ —x) a exp —ct) I T
ZJ a(x,t)exp(—cT)({ - x)‘ 3xor dx
2
J J exp(— ct)—(#— )2 aa g‘t dxdt

2 2

7
dxdt+J exp(—cT)a(x,T) —(x T)

T ou |?
J, [ eswt-enal 5

cfr _ 2| O%u
+2J0 Jo exp(-ct) (f-x) “.axat

] [omeenz| s

(2.15)



MIXED PROBLEM WITH NONLOCAL BOUNDARY CONDITIONS ... 421

By using the elementary inequalities on the first integral in the left-hand side of (2.15),
we obtain

2y

zddt

2 J Jﬁexm ct)(0=x)*|Ful*dxdt+ 7 I J exp(—ct) (x|

J a(x,0)|y|? dx+2J a(x,0) (- x)2

2y ou |?

Btz
02
W
52
oxot

J J exp(—ct) (£ —x)?

d dt - 2J J exp(— ct)’

Zaa 0%u |?
2J J exp(—ct) (—x) + |3x0t

+% J exp(—cT) (f—x)?

2J J exp(—ct)(£—x)%a ’

Jjex ct—au
p ot

J exp(—cT)a(x,T)

T o
ou
L Jo exp(—ct)a‘ E

ot

(2.16)
Now, from (1.1) we have
1 (7 ?
gJo J exp(—ct) (£ —x)*|Pul®dx dt
2| 2u
2
sj J exp(=ct) (¢ -x) ax axat
2.17)
Z u
5,[ I exp(—ct) (€ -x) atZ dxdt
1 B 22| Ou
215,[0 Jo exp(—ct)({-x)°a 3x201
Combining inequalities (2.16), (2.17), and Lemmas 2.3 and 2.4, we get
2
167J (0 x)2|Fu? dxdt+—J 0—x2| 2| ax
1 ¢
+a1f |w|2dx+fj (- | o ax
0 2 Jo 0
1 (7! o 02u |? 1! ,| 2%u
zexp(—cT)(zOJ0 L(#—x) 32 EL(#— x) 3xo1 dxdt
¢ 2 1 (¢ ou
2 1 2
+L [u(x, 7| dx+aoj ’at( , dx+2J0 #-x) 3
2 1 4
ao 2
" sjo Jo ) 28t )
(2.18)

As the left-hand side of (2.18) is independent of T, by replacing the right-hand side
by its upper bound with respect to T in the interval [0,T], we obtain the desired
inequality. O
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3. Solvability of the problem. From estimates (2.1) and (2.3) it follows that the
operator L : E — F is continuous and its range is closed in F. Therefore, the inverse
operator L~! exists and is continuous from the closed subspace R(L) onto E, which
means that L is a homomorphism from E onto R(L). To obtain the uniqueness of
solution, it remains to show that R(L) = F. The proof is based on the following lemma.

LEMMA 3.1. Suppose that03a/0x20t is also bounded. Let Do(L) = {u € D(L) : Lyu =0,
lobu =0}. If for u € Dy(L) and some w € L,(Q),

Jg(ﬂ—x)iuwdxdt =0, (3.1)

then w = 0.

PROOF. From (3.1) we have

f(t’ x)ﬁwdxdt—J (=) ( aazgt)wdxdt. 3.2)

If we introduce the smoothing operators with respect to t (see [13]) ng =(I+&(0/ot))~!
and (Jg 1y* then these operators provide the solutions of the respective problems

d t

3 gjt( ) g5 = 9(0), gDl =0, (3.3)
dgi (t)

£ gr =00, g5 Olier =0, (3.4)

and also have the following properties: for any g € L»(0,T), the functions gg = (ng )g
and g = (Jg')*g are in W} (0, T) such that gglr—o = 0 and g |- = 0. Moreover, J¢'
commutes with 3/dt, so [, |gg—g|>dt — 0 and [, lg§ —gl*dt — 0 for & - 0.

Now, for given w(x,t), we introduce the function

w(&,t)
1-¢&

vix,t) = w(x,t)—J0 d&. (3.5)

Integrating by parts with respect to &, we obtain

n,t)

j V(E 1) dE = j W(E ) d§+j 59, dnd 5
=({l-x)(w(x,t)-v(x,t)),
which implies that
¥

-x)v+Jv=HL-x)w, Jov(x,t)dx:O. (3.7)

Then, from equality (3.2) we obtain

0°u—— ou__

7.[9 WNvdxdtleA(t)Evdxdt, (3.8)

where 3 5
Nv={-x)v+]Jv, A(t)u:——<(€—x)a(x,t)—u>. (3.9)
0x 0x
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Replace ou /ot by the smoothed function ]gl (ou/ot) in (3.8) and use the relation

1BA(T)

A Jg' =T A(T) +EJ¢ Tt (3.10)

Then, by taking the adjoint of the operator ]g 1 and by integrating by parts with
respect to t in the left-hand side, we obtain
au Vi
at ot

dxdt —J A(t) vE dxdt+‘§J <aa—1;) vE dxdt. (3.11)

The operator A(t) has a continuous inverse on L, (0,#) defined by the relation

1 _(F ag £ x ag
AT (g = L a0 (l—F) Jog(”)d””L aEni-g5  ©P

where

_ Jy (dx/at) [F 9(8) dE
f(f(dx/a(x,t)) '

¢
JO AN (t)gdx =0. (3.13)

Hence, the function (0u/0t)g can be represented in the form

WY a2t
(6t )g_JE AT (E)A(L) T (3.14)

Then, (0A/0t)(0u/ot)s = Ag(t)A(t)(0u/ot), where

B da _,0al\1( (¥ 3
Ag(”‘(axatjE “are axa) (Lg(”’t)d” C>+ JE g G

where the constant c is given by (3.13).
Consequently, equation (3.11) becomes

6u

LN ’5 dx dt—J A(t) T (v +EATVE) dxdt, (3.16)

in which the conjugate operator Ag (t) of Ag(t) is defined by

¢ (dE/a(E.1)

Afvi=— (J )—v + (Bvf)(x)— (Bv)(0)
§VE g g g g f(f(dg/aft))

(3.17)

where

* ¢ 1 1k 82a 1 *aa -
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The left-hand side of (3.16) is a continuous linear functional of ou/ot. Hence, the
function hg = vg‘ + EAgvg has the derivatives (£ —x)(0hg/0x) € L2(Q), (8/0x)((£ -
x)(0hg/0x)) € L»(Q), and the following conditions are satisfied

dhe

h§|X:0:0, h§|X:g:0, (ﬁ—xw 7{)20. (3.19)
From (3.17) we have
Oheg «0a\ 0vg
(-0 = (1+82Ug") )T (3.20)
2 dohg «oa\ 0 ovg
(058 ) = (12,0 57) x<“’"‘)ax)
(3.21)
©@a/ox)(Jgh) @a/et) 1, 3%a ovg
+§[‘ a? Yale) Gxar ]“”‘ o
1 -1 *aa * _
[(H«SE(Jg ) g)vg]xzo—o, (3.22)
[(1+§ Us )*aa>vg] =0 (3.23)
[(1+§ (Jz )*a“)(e avg] = 0. (3.24)
0x ot

Since ||§(1/a)(]g1)*(aa/aT)IILZ(Q) < 1 for sufficiently small &, the operator I +
E(l/a)(]gl)* (da/oT) has a continuous inverse on L, (Q). In addition, the derivative
of the above operator with respect to x is a bounded operator in L,(Q). Therefore,
from (3.20) and (3.21), the function vg‘ has derivatives (#—x)(avg‘/ax) e Lr(Q) and
(0/0x) (£ —x)(dvg [0x)) € L2(Q).

In a similar way, we show that for each fixed x € [0,¥] and sufficiently small &, the
operator I+&(1/a) (ng)* (0a/o0T) has a continuous inverse on L, (0, T); hence, (3.22),
and (3.23), and (3.24) imply that

Ve lvm0=0, viliop=0, (b-x)5=| =0 (3.25)

x={

So, for & sufficiently small, the function vg has the same properties as hg. In addition,
vg satisfies the integral condition in (3.7).

Putting u = f(f jOT exp(cn)vgk (n,T)dndT in (3.8), where the constant ¢ satisfies cag—
as—a3/ap = 0, and using (3.4), we obtain

ai
I exp(ct)vngdxdt— J A( t)—exp( Ct) dxdt+§J A(t) —a—d xdt.
(3.26)
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Integrating by parts each term in the left-hand side of (3.26) and taking the real parts
yield
ou o’u
Re JQA(t)E exp(—ct)ﬁ dxdt

0%u
oxot
o%u
oxot

2
dxdt

> % JQ(E—x)a(x, t)exp(—ct) ‘

2 (3.27)
dxdt,

1 da
-3 JQ(e—X)EEXp(—Ct) ‘

2
dxdt.

Re (—§J‘9A(t)aattta;}tg dxdt) > %‘f L)({’—x) exp(—ct) ’ %
Now, using (3.27) in (3.26) with the choice of ¢ indicated above we have

2ReJ’Q exp(ct)vg*mdxdt <0. (3.28)
Then, for € — 0 we obtain 2Re [, exp(ct)vNv dx dt < 0, that is,

2Rej exp(ct)(ﬂ—x)lvIzdxdt+2ReJ exp(ct)vjvdxdt <0. (3.29)
Q Q

Since Re [exp(ct)vJUdxdt = 0, we conclude that v = 0; hence, w = 0, which ends
the proof of the lemma. O

THEOREM 3.2. The range R(L) of L coincides with F.

PROOF. Since F is a Hilbert space, we have R(L) = F if and only if the relation

—= ¢ dlyudp dlyudy ¢ _
— )2 _x)2 (8 4 B 4 =
Lz(ﬁ X) 5£ufdxdt+J0 [(3 x) (d dx+ 2 dx)} dx+J0 (Lhup+lbuy)dx=0,
(3.30)

for arbitrary u € E and (f,,y) € F, implies that f = 0, ¢ = 0 and ¢ = 0. Putting
u € Do(L) in (3.30), we conclude from Lemma 3.1 that (£ —x) f = 0. Hence,

g S SR
J[(ﬁ—x)‘Z(d;;ufgj+doll;u(;£)+l1u(p+lzu(p}dx—0 VueD(). (3.31)
0

Setting
Dor(L) = fue D) :u® |,y =0, k=0,1}, (3.32)

and taking u € Do (L) in (3.31) yield

¢ —
dlyu dp ]
— 2 1 _— =
Jo [(€ X) Ax dox +Lu@ |dx =0. (3.33)

The range of the trace operator [, is everywhere dense in Hilbert space with the norm
[fol')((ﬁ—x)zltilqo/dxl2 +|@|?)dx]V?; hence, @ = 0. Likewise, for u € Dgo (L), we get
Y =0. O
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