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MIXED PROBLEM WITH NONLOCAL BOUNDARY CONDITIONS
FOR A THIRD-ORDER PARTIAL DIFFERENTIAL EQUATION

OF MIXED TYPE
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Abstract. We study a mixed problem with integral boundary conditions for a third-order
partial differential equation of mixed type. We prove the existence and uniqueness of the
solution. The proof is based on two-sided a priori estimates and on the density of the range
of the operator generated by the considered problem.
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1. Introduction. In the rectangle Ω = (0,�)×(0,T ), we consider the equation

�u= ∂2u
∂t2

− ∂
∂x

(
a(x,t)

∂2u
∂x∂t

)
= f(x,t), (1.1)

where a(x,t) is bounded with 0 < a0 < a(x,t) ≤ a1 and has bounded partial deriva-

tives such that 0<a2 ≤ ∂a(x,t)/∂t ≤ a3 and 0<a4 ≤ ∂a(x,t)/∂x ≤ a5 for (x,t)∈Ω.
To (1.1) we add the initial conditions

l1u=u(x,0)=ϕ(x), l2u= ∂u
∂t
(x,0)=ψ(x), x ∈ (0,�), (1.2)

the Dirichlet condition

u(0, t)= 0, t ∈ (0,T ), (1.3)

and the integral condition

∫ �
0
u(ξ,t)dξ = 0, t ∈ (0,T ), (1.4)

where ϕ and ψ are known functions which satisfy the compatibility conditions given

by (1.3) and (1.4), that is,

ϕ(0)= 0,
∫ �
0
ϕ(x)dx = 0, ψ(0)= 0,

∫ �
0
ψ(x)dx = 0. (1.5)

Boundary-value problems for parabolic equations with integral boundary condi-

tions are investigated by Batten [1], Bouziani and Benouar [2], Cannon [3, 4], Perez

Esteva and van der Hoeck [5], Ionkin [8], Kamynin [9], Kartynnik [10], Shi [11], Yurchuk

[13], and many references therein. We remark that integral boundary conditions for

evolution problems have various applications in chemical engineering, thermoelastic-

ity, underground water flow and population dynamics; see for example, [6, 7, 11, 12].
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The present paper is devoted to the study of a mixed problem with boundary inte-

gral conditions for a third-order partial differential equation of mixed type.

We associate to problem (1.1), (1.2), (1.3), and (1.4) the operator L = (�, l1, l2), de-
fined from E into F , where E is the Banach space of functions u ∈ L2(Ω), satisfying
(1.3) and (1.4), with the finite norm

‖u‖2E =
∫
Ω
(�−x)2

[∣∣∣∣∂2u∂t2
∣∣∣∣
2

+
∣∣∣∣ ∂3u
∂x2∂t

∣∣∣∣
2
]
dxdt

+ sup
0≤t≤T

∫ �
0
(�−x)2

[∣∣∣∣ ∂2u∂x∂t

∣∣∣∣
2

+
∣∣∣∣∂u∂x

∣∣∣∣
2
]
dx+ sup

0≤t≤T

∫ �
0

[∣∣∣∣∂u∂t
∣∣∣∣
2

+|u|2
]
dx,

(1.6)

and F is the Hilbert space of vector-valued functions � = (f ,ϕ,ψ) obtained by com-

pletion of the space L2(Ω)×W 2
2 (0,�)×W 2

2 (0,�) with respect to the norm

‖�‖2F =
∥∥(f ,ϕ,ψ)∥∥2F

=
∫
Ω
(�−x)2|f |2dxdt+

∫ �
0
(�−x)2

[∣∣∣∣dϕdx
∣∣∣∣
2

+
∣∣∣∣dψdx

∣∣∣∣
2
]
dx+

∫ �
0

[|ϕ|2+|ψ|2]dx.
(1.7)

Using the energy inequalities method proposed in [13], we establish two-sided a pri-

ori estimates. Then, we prove that the operator L is a linear homeomorphism between

the spaces E and F .

2. Two-sided a priori estimates

Theorem 2.1. For any function u∈ E, there is the a priori estimate
‖Lu‖F ≤ c‖u‖E, (2.1)

where the constant c is independent of u.

Proof. Using (1.1) and the initial conditions (1.2), we obtain∫
Ω
(�−x)2|�u|2dxdt≤3

∫
Ω
(�−x)2

[∣∣∣∣∂2u∂t2
∣∣∣∣
2

+a25
∣∣∣∣ ∂2u∂x∂t

∣∣∣∣
2

+a21
∣∣∣∣ ∂3u
∂x2∂t

∣∣∣∣
2
]
dxdt,

∫ �
0
(�−x)2

[∣∣∣∣dψdx
∣∣∣∣
2

+
∣∣∣∣dϕdx

∣∣∣∣
2
]
dx ≤ sup

0≤t≤T

∫ �
0
(�−x)2

[∣∣∣∣ ∂2u∂x∂t

∣∣∣∣
2

+
∣∣∣∣∂u∂x

∣∣∣∣
2
]
dx,

∫ �
0

[|ψ|2+|ϕ|2]dx ≤ sup
0≤t≤T

∫ �
0

[∣∣∣∣∂u∂t
∣∣∣∣
2

+|u|2
]
dx.

(2.2)

Combining the inequalities (2.2), we obtain (2.1) for u∈ E.
Theorem 2.2. For any function u∈ E, there is the a priori estimate

‖u‖E ≤α‖Lu‖F , (2.3)

with the constant

α= max
(
167/10,a1

)
min

(
exp(−cT)/20,exp(−cT)a20/15

) , (2.4)
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and c is such that

c ≥ 1, ca0−1≥ a3+2a25. (2.5)

Before proving this theorem, we first give the following two lemmas.

Lemma 2.3. For u∈ E satisfying the first condition in (1.2),

1
2

∫ τ
0

∫ �
0
(�−x)2 exp(−ct)

∣∣∣∣ ∂2u∂x∂t

∣∣∣∣
2

dxdt+c−1
2

∫ τ
0

∫ �
0
(�−x)2 exp(−ct)

∣∣∣∣∂u∂x
∣∣∣∣
2

dxdt

≥ 1
2

∫ �
0
(�−x)2 exp(−cτ)

∣∣∣∣∂u∂x (x,τ)
∣∣∣∣
2

dx− 1
2

∫ �
0
(�−x)2

∣∣∣∣dϕdx
∣∣∣∣
2

dx.

(2.6)

Proof. Starting from

∫ τ
0

∫ �
0
(�−x)2 exp(−ct) ∂

∂t

(
∂u
∂x

)
∂u
∂x

dxdt, (2.7)

then integrating by parts and using elementary inequalities, we obtain (2.6).

Lemma 2.4. For u∈ E satisfying the initial conditions (1.2),
∫ �
0
exp(−cτ)∣∣u(x,τ)∣∣2dx ≤

∫ τ
0

∫ �
0
exp(−ct)

∣∣∣∣∂u∂t
∣∣∣∣
2

dxdt+
∫ �
0
|ϕ|2dx, (2.8)

with c ≥ 1.

Proof. Integrating by parts the expression

∫ τ
0

∫ �
0
exp(−ct)u∂u

∂t
dxdt (2.9)

and using elementary inequalities yield (2.8).

Remark 2.5. We note that Lemmas 2.3 and 2.4 hold for weaker conditions on u.

Proof of Theorem 2.2. First, define

D(L)=
{
u∈ E | ∂5u

∂x2∂t3
∈ L2(Ω)

}
, Mu= (�−x)2 ∂

2u
∂t2

+2(�−x)J ∂
2u
∂t2

, (2.10)

where

Ju=
∫ x
0
u(ξ,t)dξ. (2.11)

We consider for u∈D(L) the quadratic formula

Re
∫ τ
0

∫ �
0
exp(−ct)�uMudxdt, (2.12)

with the constant c satisfying (2.5), obtained by multiplying (1.1) by exp(−ct)Mu, by
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integrating over Ωτ , where Ωτ = (0,�)×(0,τ), with 0 ≤ τ ≤ T , and by taking the real

part. Integrating by parts (2.12) with the use of boundary conditions (1.3) and (1.4),

we obtain

Re
∫ τ
0

∫ �
0
exp(−ct)�uMudxdt

=
∫ τ
0

∫ �
0
(�−x)2 exp(−ct)

∣∣∣∣∂2u∂t2
∣∣∣∣
2

dxdt+1
2

∫ τ
0

∫ �
0
exp(−ct)

∣∣∣∣J ∂2u∂t2
∣∣∣∣
2

dxdt

+Re
∫ τ
0

∫ �
0
(�−x)2 exp(−ct)a ∂2u

∂x∂t
∂
∂t

(
∂2u
∂x∂t

)
dxdt

+2Re
∫ τ
0

∫ �
0
exp(−ct)∂u

∂t
a
∂2u
∂t2

dxdt

+2Re
∫ τ
0

∫ �
0
exp(−ct) ∂a

∂x
∂u
∂t
J
∂2u
∂t2

dxdt.

(2.13)

On the other hand, by using the elementary inequalities we get

Re
∫ τ
0

∫ �
0
exp(−ct)�uMudxdt

≥
∫ τ
0

∫ �
0
(�−x)2 exp(−ct)

∣∣∣∣∂2u∂t2
∣∣∣∣
2

dxdt

+Re
∫ τ
0

∫ �
0
(�−x)2 exp(−ct)a ∂2u

∂x∂t
∂
∂t

(
∂2u
∂x∂t

)
dxdt

+2Re
∫ τ
0

∫ �
0
exp(−ct)∂u

∂t
a
∂2u
∂t2

dxdt

−2Re
∫ τ
0

∫ �
0
exp(−ct)

∣∣∣∣ ∂a∂x
∣∣∣∣
2∣∣∣∣∂u∂t

∣∣∣∣
2

dxdt.

(2.14)

Again, integrating by parts the second and third terms of the right-hand side of the

inequality (2.14) and taking into account the initial conditions (1.2) give

Re
∫ τ
0

∫ �
0
exp(−ct)�uMudxdt+

∫ �
0
a(x,0)|ψ|2dx+1

2

∫ �
0
a(x,0)(�−x)2

∣∣∣∣dψdx
∣∣∣∣
2

dxdt

≥
∫ τ
0

∫ �
0
exp(−ct)(�−x)2

∣∣∣∣∂2u∂t2
∣∣∣∣
2

dxdt−2
∫ τ
0

∫ �
0
exp(−ct)

∣∣∣∣ ∂a∂x
∣∣∣∣
2∣∣∣∣∂u∂t

∣∣∣∣
2

dxdt

+ 1
2

∫ �
0
a(x,τ)exp(−cτ)(�−x)

∣∣∣∣ ∂2u∂x∂t
(x,τ)

∣∣∣∣
2

dx

− 1
2

∫ τ
0

∫ �
0
exp(−ct)∂a

∂t
(�−x)2

∣∣∣∣ ∂2u∂x∂t

∣∣∣∣
2

dxdt

+ c
2

∫ τ
0

∫ �
0
exp(−ct)(�−x)2a

∣∣∣∣ ∂2u∂x∂t

∣∣∣∣
2

dxdt+
∫ �
0
exp(−cτ)a(x,τ)

∣∣∣∣∂u∂t (x,τ)
∣∣∣∣
2

dx

−
∫ τ
0

∫ �
0
exp(−ct)∂a

∂t

∣∣∣∣∂u∂t
∣∣∣∣
2

dxdt+c
∫ τ
0

∫ �
0
exp(−ct)a

∣∣∣∣∂u∂t
∣∣∣∣
2

dxdt.

(2.15)
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By using the elementary inequalities on the first integral in the left-hand side of (2.15),

we obtain

33
2

∫ τ
0

∫ �
0
exp(−ct)(�−x)2|�u|2dxdt+ 3

4

∫ τ
0

∫ �
0
exp(−ct)(�−x)2

∣∣∣∣∂2u∂t2
∣∣∣∣
2

dxdt

+
∫ �
0
a(x,0)|ψ|2dx+ 1

2

∫ �
0
a(x,0)(�−x)2

∣∣∣∣dψdx
∣∣∣∣
2

dx

≥
∫ τ
0

∫ �
0
exp(−ct)(�−x)2

∣∣∣∣∂2u∂t2
∣∣∣∣
2

dxdt−2
∫ τ
0

∫ �
0
exp(−ct)

∣∣∣∣ ∂a∂x
∣∣∣∣
2∣∣∣∣∂u∂t

∣∣∣∣
2

dxdt

+1
2

∫ �
0
exp(−cτ)(�−x)2

∣∣∣∣∂2u(x,τ)∂x∂t

∣∣∣∣
2

dx−1
2

∫ τ
0

∫ �
0
exp(−ct)(�−x)2 ∂a

∂t

∣∣∣∣ ∂2u∂x∂t

∣∣∣∣
2

dxdt

+c
2

∫ τ
0

∫ �
0
exp(−ct)(�−x)2a

∣∣∣∣ ∂2u∂x∂t

∣∣∣∣
2

dxdt+
∫ �
0
exp(−cτ)a(x,τ)

∣∣∣∣∂u(x,τ)∂t

∣∣∣∣
2

dx

−
∫ τ
0

∫ �
0
exp(−ct)∂a

∂t

∣∣∣∣∂u∂t
∣∣∣∣
2

dxdt+c
∫ τ
0

∫ �
0
exp(−ct)a

∣∣∣∣∂u∂t
∣∣∣∣
2

dxdt.

(2.16)

Now, from (1.1) we have

1
5

∫ τ
0

∫ �
0
exp(−ct)(�−x)2|�u|2dxdt

+ 1
5

∫ τ
0

∫ �
0
exp(−ct)(�−x)2

∣∣∣∣ ∂a∂x
∣∣∣∣
2∣∣∣∣ ∂2u∂x∂t

∣∣∣∣
2

dxdt

+ 1
5

∫ τ
0

∫ �
0
exp(−ct)(�−x)2

∣∣∣∣∂2u∂t2
∣∣∣∣
2

dxdt

≥ 1
15

∫ τ
0

∫ �
0
exp(−ct)(�−x)2a2

∣∣∣∣ ∂3u
∂x2∂t

∣∣∣∣
2

dxdt.

(2.17)

Combining inequalities (2.16), (2.17), and Lemmas 2.3 and 2.4, we get

167
10

∫
Ω
(�−x)2|�u|2dxdt+ a1

2

∫ �
0
(�−x)2

∣∣∣∣dψdx
∣∣∣∣
2

dx

+a1
∫ �
0
|ψ|2dx+ 1

2

∫ �
0
(�−x)2

∣∣∣∣dϕdx
∣∣∣∣
2

dx+
∫ �
0
|ϕ|2dx

≥ exp(−cT)
(
1
20

∫ τ
0

∫ �
0
(�−x)2

∣∣∣∣∂2u∂t2
∣∣∣∣
2

dxdt+ 1
2

∫ �
0
(�−x)2

∣∣∣∣ ∂2u∂x∂t
(x,τ)

∣∣∣∣
2

dxdt

+
∫ �
0
|u(x,τ)|2dx+a0

∫ �
0

∣∣∣∣∂u∂t (x,τ)
∣∣∣∣
2

dx+1
2

∫ �
0
(�−x)2

∣∣∣∣∂u∂x (x,τ)
∣∣∣∣
2

dx

+a
2
0

15

∫ τ
0

∫ �
0
(�−x)2

∣∣∣∣ ∂3u
∂x2∂t

∣∣∣∣
2

dxdt
)
.

(2.18)

As the left-hand side of (2.18) is independent of τ , by replacing the right-hand side

by its upper bound with respect to τ in the interval [0,T ], we obtain the desired

inequality.
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3. Solvability of the problem. From estimates (2.1) and (2.3) it follows that the

operator L : E → F is continuous and its range is closed in F . Therefore, the inverse
operator L−1 exists and is continuous from the closed subspace R(L) onto E, which
means that L is a homomorphism from E onto R(L). To obtain the uniqueness of

solution, it remains to show that R(L)= F . The proof is based on the following lemma.

Lemma 3.1. Suppose that ∂3a/∂x2∂t is also bounded. LetD0(L)={u∈D(L) : l1u=0,
l2u= 0}. If for u∈D0(L) and some ω∈ L2(Ω),∫

Ω
(�−x)�u"dxdt = 0, (3.1)

then ω= 0.

Proof. From (3.1) we have∫
Ω
(�−x)∂

2u
∂t2

"dxdt =
∫
Ω
(�−x) ∂

∂x

(
a
∂2u
∂x∂t

)
"dxdt. (3.2)

If we introduce the smoothing operators with respect to t (see [13]) J−1ξ =(I+ξ(∂/∂t))−1
and (J−1ξ )∗, then these operators provide the solutions of the respective problems

ξ
dgξ(t)
dt

+gξ(t)= g(t), gξ(t)|t=0 = 0, (3.3)

−ξdg
∗
ξ (t)
dt

+g∗ξ (t)= g(t), g∗ξ (t)|t=T = 0, (3.4)

and also have the following properties: for any g ∈ L2(0,T ), the functions gξ = (J−1ξ )g
and g∗ξ = (J−1ξ )∗g are in W 1

2 (0,T ) such that gξ|t=0 = 0 and g∗ξ |t=T = 0. Moreover, J−1ξ
commutes with ∂/∂t, so

∫ T
0 |gξ−g|2dt→ 0 and

∫ T
0 |g∗ξ −g|2dt→ 0 for ξ→ 0.

Now, for given ω(x,t), we introduce the function

v(x,t)=ω(x,t)−
∫ x
0

ω(ξ,t)
�−ξ dξ. (3.5)

Integrating by parts with respect to ξ, we obtain
∫ x
0
v(ξ,t)dξ =

∫ x
0
ω(ξ,t)dξ+

∫ x
0

∂
∂ξ
(�−ξ)

∫ ξ
0

ω(η,t)
�−η dηdξ

= (�−x)(ω(x,t)−v(x,t)),
(3.6)

which implies that

(�−x)v+Jv = (�−x)w,
∫ �
0
v(x,t)dx = 0. (3.7)

Then, from equality (3.2) we obtain

−
∫
Ω

∂2u
∂t2

Nvdxdt =
∫
Ω
A(t)

∂u
∂t
vdxdt, (3.8)

where

Nv = (�−x)v+Jv, A(t)u=− ∂
∂x

(
(�−x)a(x,t)∂u

∂x

)
. (3.9)
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Replace ∂u/∂t by the smoothed function J−1ξ (∂u/∂t) in (3.8) and use the relation

A(t)J−1ξ = J−1ξ A(τ)+ξJ−1ξ
∂A(τ)
∂τ

J−1ξ . (3.10)

Then, by taking the adjoint of the operator J−1ξ , and by integrating by parts with

respect to t in the left-hand side, we obtain

∫
Ω

∂u
∂t
N
∂v∗ξ
∂t

dxdt =
∫
Ω
A(t)

∂u
∂t
v∗ξ dxdt+ξ

∫
Ω

∂A
∂t

(
∂u
∂t

)
ξ
v∗ξ dxdt. (3.11)

The operator A(t) has a continuous inverse on L2(0,�) defined by the relation

A−1(t)g =−
∫ x
0

dξ
a(ξ,t)(�−ξ)

∫ ξ
0
g(η)dη+c

∫ x
0

dξ
a(ξ,t)(�−ξ) , (3.12)

where

c =
∫ �
0

(
dx/a(x,t)

)∫ x
0 g(ξ)dξ∫ �

0

(
dx/a(x,t)

) ,
∫ �
0
A−1(t)gdx = 0. (3.13)

Hence, the function (∂u/∂t)ξ can be represented in the form

(
∂u
∂t

)
ξ
= J−1ξ A−1(t)A(t)

∂u
∂t
. (3.14)

Then, (∂A/∂t)(∂u/∂t)ξ =Aξ(t)A(t)(∂u/∂t), where

Aξ(t)=
(
∂2a
∂x∂t

J−1ξ − ∂a
∂t
J−1ξ

∂a
∂x

1
a

)
1
a

(∫ x
0
g(η,t)dη−c

)
+ ∂a
∂t
J−1ξ

1
a
g, (3.15)

where the constant c is given by (3.13).

Consequently, equation (3.11) becomes

∫
Ω

∂u
∂t
N
∂v∗ξ
∂t

dxdt =
∫
Ω
A(t)

∂u
∂t
(
v∗ξ +ξA∗ξ v∗ξ

)
dxdt, (3.16)

in which the conjugate operator A∗ξ (t) of Aξ(t) is defined by

A∗ξ v
∗
ξ =

1
a
(
J−1ξ

)∗ ∂a
∂τ

v∗ξ +
(
Bv∗ξ

)
(x)−(Bv∗ξ )(0)

∫ �
x
(
dξ/a(ξ,t)

)
∫ �
0

(
dξ/a(ξ,t)

) , (3.17)

where

(
Bv∗ξ

)
(x)=

∫ �
x

1
a(ξ,t)

[(
J−1ξ

)∗ ∂2a
∂ξ∂τ

− 1
a(ξ,t)

∂a
∂ξ
(
J−1ξ

)∗ ∂a
∂τ

]
v∗ξ (ξ,τ)dξ. (3.18)
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The left-hand side of (3.16) is a continuous linear functional of ∂u/∂t. Hence, the
function hξ = v∗ξ +ξA∗ξ v∗ξ has the derivatives (�−x)(∂hξ/∂x) ∈ L2(Ω), (∂/∂x)((�−
x)(∂hξ/∂x))∈ L2(Ω), and the following conditions are satisfied

hξ|x=0 = 0, hξ|x=� = 0, (�−x)∂hξ
∂x

∣∣∣∣
x=�

= 0. (3.19)

From (3.17) we have

(�−x)∂hξ
∂x

=
(
I+ξ 1

a
(
J−1ξ

)∗ ∂a
∂τ

)∂v∗ξ
∂x

, (3.20)

∂
∂x

(
(�−x)∂hξ

∂x

)
=
(
I+ξ 1

a
(
J−1ξ

)∗ ∂a
∂τ

)
∂
∂x

(
(�−x)∂v

∗
ξ

∂x

)

+ξ
[
− (∂a/∂x)

(
J−1ξ

)∗(∂a/∂τ)
a2

+ 1
a
(
J−1ξ

)∗ ∂2a
∂x∂τ

]
(�−x)∂v

∗
ξ

∂x
,

(3.21)

[(
I+ξ 1

a
(
J−1ξ

)∗ ∂a
∂τ

)
v∗ξ

]
x=0

= 0, (3.22)

[(
I+ξ 1

a
(
J−1ξ

)∗ ∂a
∂τ

)
v∗ξ

]
x=�

= 0, (3.23)

[(
I+ξ 1

a
(
J−1ξ

)∗ ∂a
∂τ

)
(�−x)∂v

∗
ξ

∂x

]
x=�

= 0. (3.24)

Since ‖ξ(1/a)(J−1ξ )∗(∂a/∂τ)‖L2(Ω) < 1 for sufficiently small ξ, the operator I +
ξ(1/a)(J−1ξ )∗(∂a/∂τ) has a continuous inverse on L2(Ω). In addition, the derivative

of the above operator with respect to x is a bounded operator in L2(Ω). Therefore,
from (3.20) and (3.21), the function v∗ξ has derivatives (�−x)(∂v∗ξ /∂x)∈ L2(Ω) and
(∂/∂x)((�−x)(∂v∗ξ /∂x))∈ L2(Ω).
In a similar way, we show that for each fixed x ∈ [0,�] and sufficiently small ξ, the

operator I+ξ(1/a)(J−1ξ )∗(∂a/∂τ) has a continuous inverse on L2(0,T ); hence, (3.22),
and (3.23), and (3.24) imply that

v∗ξ
∣∣
x=0 = 0, v∗ξ

∣∣
x=� = 0, (�−x)∂v

∗
ξ

∂x

∣∣∣∣∣
x=�

= 0. (3.25)

So, for ξ sufficiently small, the function v∗ξ has the same properties as hξ . In addition,
v∗ξ satisfies the integral condition in (3.7).

Puttingu= ∫ t0 ∫ τ0 exp(cη)v∗ξ (η,τ)dηdτ in (3.8), where the constant c satisfies ca0−
a3−a23/a0 ≥ 0, and using (3.4), we obtain

∫
Ω
exp(ct)v∗ξ Nvdxdt =−

∫
Ω
A(t)

∂u
∂t

exp(−ct)∂
2u
∂t2

dxdt+ξ
∫
Ω
A(t)

∂u
∂t

∂v∗ξ
∂t

dxdt.

(3.26)
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Integrating by parts each term in the left-hand side of (3.26) and taking the real parts

yield

Re
∫
Ω
A(t)

∂u
∂t

exp(−ct)∂
2u
∂t2

dxdt

≥ c
2

∫
Ω
(�−x)a(x,t)exp(−ct)

∣∣∣∣ ∂2u∂x∂t

∣∣∣∣
2

dxdt

− 1
2

∫
Ω
(�−x)∂a

∂t
exp(−ct)

∣∣∣∣ ∂2u∂x∂t

∣∣∣∣
2

dxdt,

Re


−ξ

∫
Ω
A(t)

∂u
∂t

∂v∗ξ
∂t

dxdt


≥ −ξa23

2a0

∫
Ω
(�−x)exp(−ct)

∣∣∣∣ ∂2u∂x∂t

∣∣∣∣
2

dxdt.

(3.27)

Now, using (3.27) in (3.26) with the choice of c indicated above we have

2Re
∫
Ω
exp(ct)v∗ξ Nvdxdt ≤ 0. (3.28)

Then, for ξ→ 0 we obtain 2Re
∫
Ω exp(ct)vNvdxdt ≤ 0, that is,

2Re
∫
Ω
exp(ct)(�−x)|v|2dxdt+2Re

∫
Ω
exp(ct)vJvdxdt ≤ 0. (3.29)

Since Re
∫
Ω exp(ct)vJvdxdt = 0, we conclude that v = 0; hence, ω = 0, which ends

the proof of the lemma.

Theorem 3.2. The range R(L) of L coincides with F .

Proof. Since F is a Hilbert space, we have R(L)= F if and only if the relation

∫
Ω
(�−x)2�uf dxdt+

∫ �
0

[
(�−x)2

(
dl1u
dx

dϕ
dx

+dl2u
dx

dψ
dx

)]
dx+

∫ �
0

(
l1uϕ+l2uψ

)
dx=0,
(3.30)

for arbitrary u ∈ E and (f ,ϕ,ψ) ∈ F , implies that f = 0, ϕ = 0 and ψ = 0. Putting

u∈D0(L) in (3.30), we conclude from Lemma 3.1 that (�−x)f = 0. Hence,

∫ �
0

[
(�−x)2

(
dl1u
dx

dϕ
dx

+ dl2u
dx

dψ
dx

)
+l1uϕ+l2uψ

]
dx = 0 ∀u∈D(L). (3.31)

Setting

D0k(L)=
{
u∈D(L) :u(k)∣∣t=0 = 0, k= 0,1

}
, (3.32)

and taking u∈D01(L) in (3.31) yield

∫ �
0

[
(�−x)2dl1u

dx
dϕ
dx

+l1uϕ
]
dx = 0. (3.33)

The range of the trace operator l1 is everywhere dense in Hilbert space with the norm
[
∫ �
0 ((�−x)2|dϕ/dx|2+|ϕ|2)dx]1/2; hence, ϕ = 0. Likewise, for u ∈ D00(L), we get

ψ= 0.
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