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Abstract. In a uniformly convex Banach space, the convergence of Ishikawa iterates to a
unique fixed point is proved for nonexpansive type mappings under certain conditions.
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1. Introduction. Let D be a nonempty, closed, and convex subset of a uniformly

convex Banach space B, and T : D → D with fixed point set F(T). Recently, Ghosh
and Debnath [1] introduced the generalized versions of the conditions of Senter and

Dotson [6] as: the mapping T with F(t) �= ∅ is said to satisfy the following conditions.
Condition 1.1. If there exists a nondecreasing function f : [0,∞) → [0,∞) with

f(0)= 0 and f(r) > 0 for all r ∈ (0,∞) such that
∥∥(1−TTµ)x∥∥≥ f (d(x,F)) ∀x ∈D, (1.1)

where Tµx = (1−µ)x+µTx with 0≤ µ ≤ β < 1 and d(x,F)= infz∈F ‖x−z‖.
Condition 1.2. If there exists a positive real number k such that

∥∥(1−TTµ)x∥∥≥ k d(x,F(T)) ∀x ∈D. (1.2)

When µ = 0, both conditions reduce to those of Senter and Dotson [6]. It may be noted
that the mapping which satisfies Condition 1.2 also satisfies Condition 1.1.

In this paper, we wish to use Conditions 1.1 and 1.2 to prove the convergence of

Ishikawa iterates [3] of certain nonexpansive type mappings.

2. Ishikawa’s iterative process. Let D be a convex subset of a Banach space B and
T :D→D. For x1 ∈D, Ishikawa [3] defined a sequence {xn} such that

xn+1 =
(
1−αn

)
xn+αnT

[(
1−βn

)
xn+βnTxn

]
, (2.1)

where {αn}∞n=1 and {βn}∞n=1 are sequences of nonnegative numbers with 0 ≤ αn ≤
βn ≤ 1, limn→∞βn = 0, and

∑∞
n=1αnβn =∞.

Using notation for Tµx of Section 1, (2.1) may be written as

xn+1 =
(
1−αn

)
xn+αnTTβnxn. (2.2)
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In this paper, we assume that αn and βn satisfy
(i) 0<a≤αn < b < 1,
(ii) 0≤ βn ≤ β < 1.
We denote the sequence (2.1) by M(x1,αn,βn,T), where αn and βn satisfy (i) and

(ii). We also assume that αn = λ and βn = µ for all n in the Ishikawa iterates defined
above, that is,

xn+1 = Tnλ,µx1,Tλ,µ = (1−λ)I+λT
[
(1−µ)I+µT ]. (2.3)

3. Nonexpansive type mappings and convergence theorems. Before we state and

prove our main results we need to recall several definitions.

Definition 3.1. A mapping T :D→D is called nonexpansive if for all x,y ∈D,
∥∥Tx−Ty∥∥≤ ∥∥x−y∥∥. (3.1)

Definition 3.2. A mapping T : D → D is called generalized nonexpansive if it

satisfies the condition, for all X,Y ∈D,
∥∥Tx−Ty∥∥≤ a∥∥x−y∥∥+b{∥∥x−Tx∥∥+∥∥y−Ty∥∥}+c{∥∥x−Ty∥∥+∥∥y−Tx∥∥}, (3.2)

where a,c ≥ 0, b > 0, and a+2b+2c ≤ 1. This type of mapping was introduced by
Hardy and Rogers [2] in metric spaces.

Definition 3.3. A mapping T : D → D is said to satisfy Condition 1.1 if for all

x,y ∈D,

∥∥Tx−Ty∥∥≤max
{
β
∥∥x−y∥∥,

[∥∥x−Tx∥∥+∥∥y−Ty∥∥]
2

,
[∥∥x−Ty∥∥+∥∥y−Tx∥∥]

2

}
,

(3.3)

and T is said to satisfy Condition 1.2 if for all x,y ∈D,

∥∥Tx−Ty∥∥≤max
{
β
∥∥x−y∥∥,

[∥∥x−Tx∥∥+∥∥y−Ty∥∥]
2

,
∥∥x−Ty∥∥, β∥∥y−Tx∥∥

}
,

(3.4)

where 0≤ µ ≤ β < 1.
Remark 3.4. It is to be noted that

(i) a nonexpansive mapping is generalized nonexpansive,

(ii) generalized nonexpansive mappings and mappings satisfying Condition 1.1

also satisfy Condition 1.2, but the converse is not true as can be seen from the

following example.

Example 3.5. Let B = R with the usual norm and let D =D1
⋃
D2 where

D1 = m
n
, m= 0,1,3,9, . . . ; n= 1,4, . . . ,3k+1,

D2 = m
n
, m= 1,3,9,27, . . . ; n= 2,5, . . . ,3k+2.

(3.5)
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Define T :D→D by

Tx =



3x
4
, x ∈D1,

x
2
, x ∈D2.

(3.6)

Then T satisfies Condition 1.2, but it does not satisfy Condition 1.1 and coincidentally
that T is not a generalized nonexpansive mapping; for instance, take x = 1, y = 3/5.
Then

∥∥Tx−Ty∥∥= 9
20
≥max

{
2
5
β,
11
40
,
17
40

}

=max
{
2
5
β,
1
2

[
1
4
+ 3
10

]
,
1
2

[
7
10
+ 3
20

]}

=max
{
β
∥∥x−y∥∥,

[∥∥x−Tx∥∥+∥∥y−Ty∥∥]
2

,
[∥∥x−Ty∥∥+∥∥y−Tx∥∥]

2

}
.

(3.7)

We now show that a mapping T satisfying Condition 1.2 is a quasi-nonexpansive
mapping. Suppose p is a fixed point of T . Then putting y = p in (3.4) and for Tx �= p,
we obtain

0<
∥∥Tx−p∥∥= ∥∥Tx−Tp∥∥

≤max
{
β
∥∥Tx−p∥∥, 1

2
‖x−Tx‖,∥∥x−p∥∥, β∥∥p−Tx∥∥}

≤max
{
β
∥∥Tx−p∥∥, 1

2

[∥∥x−p∥∥+∥∥p−Tx∥∥],∥∥x−p∥∥,β∥∥p−Tx∥∥}.
(3.8)

Since ‖Tx−p‖ ≤ β‖p−Tx‖ is not possible, we have
∥∥Tx−p∥∥≤max{1

2

[∥∥x−p∥∥+∥∥p−Tx∥∥],∥∥x−p∥∥} (3.9)

which implies that ∥∥Tx−p∥∥≤ ∥∥x−p∥∥. (3.10)

Therefore, T is quasi-nonexpansive. Next we show that

F(T)= F(Tλ,µ)= F(T Tµ). (3.11)

Obviously F(T)⊂ F(Tλ,µ).
Letp∈F(Tλ,µ). Then Tλ,µp=p implies that Tλ,µp=(1−λ)Ip+λT[(1−µ)Ip+µTp]=

(1−λ)p+λTTµp and so TTµp = p.
It follows from (3.4) that∥∥Tp−p∥∥= ∥∥Tp−TTµp∥∥

≤max
{
β
∥∥p−Tµp∥∥, 1

2

[∥∥p−Tp∥∥+∥∥Tµp−p∥∥],0,β∥∥Tµ p−Tp∥∥
}

=max
{
βµ
∥∥p−Tp∥∥, 1

2
(1+µ)∥∥p−Tp∥∥,0,β(1−µ)∥∥p−Tp∥∥},

(3.12)



186 H. K. PATHAK AND M. S. KHAN

whence we obtain Tp = p, since max{βµ,(1/2)(1+µ),β(1−µ)} < 1. Thus, F(Tλ,µ) ⊂
F(T) leading to the result (3.11).
Now, we show that the mapping T satisfies Condition 1.2. We have from (3.4)∥∥TTµx−p∥∥= ∥∥TTµx−Tp∥∥

≤max
{
β
∥∥TµX−P∥∥, 1

2

∥∥Tµx−TTµx∥∥,∥∥Tµx−p∥∥,β∥∥p−TTµx∥∥
}

=max
{∥∥Tµx−p∥∥, 1

2

∥∥Tµx−TTµx∥∥,β∥∥p−TTµx∥∥
}

≤max
{∥∥Tµx−p∥∥, 1

2

∥∥Tµx−TTµx∥∥,β∥∥p−Tµx∥∥
}

=max
{∥∥Tµx−p∥∥, 1

2

∥∥Tµx−TTµx∥∥
}

≤max
{[
(1−µ)∥∥x−p∥∥+µ∥∥Tx−P∥∥], 1

2

[∥∥x−Tµx∥∥+∥∥x−TTµx∥∥]
}

≤max
{[
(1−µ)∥∥x−p∥∥+µ∥∥x−p∥∥], 1

2

[
µ
∥∥x−Tx∥∥+∥∥x−TTµx∥∥]

}

≤max
{∥∥x−p∥∥, 1

2

[
µ
(∥∥x−p∥∥+∥∥p−Tx∥∥)+∥∥x−TTµx∥∥]

}

≤max
{∥∥x−p∥∥, 1

2

[
2µ
∥∥x−p∥∥+∥∥x−TTµx∥∥]

}
.

(3.13)

Also,we know that ∥∥TTµx−p∥∥≥ ∥∥x−p∥∥−∥∥x−TTµx∥∥. (3.14)

From (3.13) and (3.14), we deduce that

max
{∥∥x−p∥∥, 1

2

[
2µ
∥∥x−p∥∥+∥∥x−TTµx∥∥]

}
≥ ∥∥x−p∥∥−∥∥x−TTµx∥∥ (3.15)

which implies ‖x−TTµx‖ ≥ (2(1−µ)/3)‖x−p‖. Then we may write
∥∥x−TTµx∥∥≥ k∥∥x−p∥∥, (3.16)

where

0< k= 2(1−µ)
3

< 1. (3.17)

Thus T satisfies Condition 1.2 with 0 < k < 1. Consequently, by Maiti and Ghosh [4,
Theorem 1, page 114], we have the following.

Theorem 3.6. Let D be a closed convex Banach space B, and let T : D → D be a

mapping which satisfies (3.4) and has a fixed point in D. Then T satisfies Condition 1.2

and, for any x1 ∈D, M(x1,αn,βn,T) converges to the fixed point of D.

We next consider a mapping T which satisfies Condition 1.1, and a variant of

Theorem 3.6 is stated below.
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Theorem 3.7. Let D be a closed convex bounded subset of a uniformly convex

Banach space B, and let T : D → D be a mapping satisfying (3.3). Then T satisfies

Condition 1.1, and for any x1 ∈D,M(x1,αn,βn,T) converges to the unique fixed point

of T .

Proof. The mapping T satisfying (3.3) also satisfies Naimpally and Singh [5, Con-
dition II(D)], and so T has a unique fixed point. We now show that T is quasinon-
expansive. Let p ∈ F(T). Then, for any x ∈D, we have from (3.3),
∥∥Tx−p∥∥= ∥∥Tx−Tp∥∥≤max{β∥∥x−p∥∥, 1

2

∥∥x−Tx∥∥, 1
2

[∥∥x−p∥∥+∥∥p−Tx∥∥]}

≤max
{
β
∥∥x−p∥∥, 1

2

[∥∥x−p∥∥+∥∥p−Tx∥∥]}
(3.18)

implying ∥∥Tx−p∥∥≤ ∥∥x−p∥∥. (3.19)

Next, we show that T satisfies Condition 1.1.
Let p ∈ F(T). Then we have from (3.1),
∥∥TTµx−p∥∥= ∥∥TTµx−T∥∥

≤max
{
β
∥∥Tµx−p∥∥, 1

2

∥∥Tµx−TTµx∥∥, 1
2

[∥∥Tµx−p∥∥+∥∥p−TTµx∥∥]
}

≤max
{
β
∥∥Tµx−p∥∥, 1

2

[∥∥Tµx−p∥∥+∥∥p−TTµx∥∥]
}

≤max
{
β
∥∥Tµx−p∥∥,∥∥Tµx−p∥∥}

= ∥∥Tµx−p∥∥= ∥∥x−p∥∥.
(3.20)

From (3.14) and (3.20), we derive

∥∥x−p∥∥≥ ∥∥x−p∥∥−∥∥x−TTµx∥∥ (3.21)

which implies that ∥∥x−TTµx∥∥≥ 0= f(0). (3.22)

Thus T satisfies all conditions which ensure the convergence of M(x1,αn,βn,T).
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