

APPROXIMATING FIXED POINTS OF NONEXPANSIVE TYPE MAPPINGS

HEMANT K. PATHAK and MOHAMMAD S. KHAN

(Received 1 March 1999)

ABSTRACT. In a uniformly convex Banach space, the convergence of Ishikawa iterates to a unique fixed point is proved for nonexpansive type mappings under certain conditions.

2000 Mathematics Subject Classification. 47H10, 54H25.

1. Introduction. Let D be a nonempty, closed, and convex subset of a uniformly convex Banach space B , and $T : D \rightarrow D$ with fixed point set $F(T)$. Recently, Ghosh and Debnath [1] introduced the generalized versions of the conditions of Senter and Dotson [6] as: the mapping T with $F(T) \neq \emptyset$ is said to satisfy the following conditions.

CONDITION 1.1. If there exists a nondecreasing function $f : [0, \infty) \rightarrow [0, \infty)$ with $f(0) = 0$ and $f(r) > 0$ for all $r \in (0, \infty)$ such that

$$\|(1 - TT_\mu)x\| \geq f(d(x, F)) \quad \forall x \in D, \quad (1.1)$$

where $T_\mu x = (1 - \mu)x + \mu Tx$ with $0 \leq \mu \leq \beta < 1$ and $d(x, F) = \inf_{z \in F} \|x - z\|$.

CONDITION 1.2. If there exists a positive real number k such that

$$\|(1 - TT_\mu)x\| \geq k d(x, F(T)) \quad \forall x \in D. \quad (1.2)$$

When $\mu = 0$, both conditions reduce to those of Senter and Dotson [6]. It may be noted that the mapping which satisfies **Condition 1.2** also satisfies **Condition 1.1**.

In this paper, we wish to use Conditions 1.1 and 1.2 to prove the convergence of Ishikawa iterates [3] of certain nonexpansive type mappings.

2. Ishikawa's iterative process. Let D be a convex subset of a Banach space B and $T : D \rightarrow D$. For $x_1 \in D$, Ishikawa [3] defined a sequence $\{x_n\}$ such that

$$x_{n+1} = (1 - \alpha_n)x_n + \alpha_n T[(1 - \beta_n)x_n + \beta_n Tx_n], \quad (2.1)$$

where $\{\alpha_n\}_{n=1}^\infty$ and $\{\beta_n\}_{n=1}^\infty$ are sequences of nonnegative numbers with $0 \leq \alpha_n \leq \beta_n \leq 1$, $\lim_{n \rightarrow \infty} \beta_n = 0$, and $\sum_{n=1}^\infty \alpha_n \beta_n = \infty$.

Using notation for $T_\mu x$ of [Section 1](#), (2.1) may be written as

$$x_{n+1} = (1 - \alpha_n)x_n + \alpha_n TT_\beta_n x_n. \quad (2.2)$$

In this paper, we assume that α_n and β_n satisfy

- (i) $0 < \alpha \leq \alpha_n < b < 1$,
- (ii) $0 \leq \beta_n \leq \beta < 1$.

We denote the sequence (2.1) by $M(x_1, \alpha_n, \beta_n, T)$, where α_n and β_n satisfy (i) and (ii). We also assume that $\alpha_n = \lambda$ and $\beta_n = \mu$ for all n in the Ishikawa iterates defined above, that is,

$$x_{n+1} = T_{\lambda, \mu}^n x_1, T_{\lambda, \mu} = (1 - \lambda)I + \lambda T[(1 - \mu)I + \mu T]. \quad (2.3)$$

3. Nonexpansive type mappings and convergence theorems. Before we state and prove our main results we need to recall several definitions.

DEFINITION 3.1. A mapping $T : D \rightarrow D$ is called nonexpansive if for all $x, y \in D$,

$$\|Tx - Ty\| \leq \|x - y\|. \quad (3.1)$$

DEFINITION 3.2. A mapping $T : D \rightarrow D$ is called generalized nonexpansive if it satisfies the condition, for all $X, Y \in D$,

$$\|Tx - Ty\| \leq a\|x - y\| + b\{\|x - Tx\| + \|y - Ty\|\} + c\{\|x - Ty\| + \|y - Tx\|\}, \quad (3.2)$$

where $a, c \geq 0$, $b > 0$, and $a + 2b + 2c \leq 1$. This type of mapping was introduced by Hardy and Rogers [2] in metric spaces.

DEFINITION 3.3. A mapping $T : D \rightarrow D$ is said to satisfy [Condition 1.1](#) if for all $x, y \in D$,

$$\|Tx - Ty\| \leq \max \left\{ \beta\|x - y\|, \frac{\|x - Tx\| + \|y - Ty\|}{2}, \frac{\|x - Ty\| + \|y - Tx\|}{2} \right\}, \quad (3.3)$$

and T is said to satisfy [Condition 1.2](#) if for all $x, y \in D$,

$$\|Tx - Ty\| \leq \max \left\{ \beta\|x - y\|, \frac{\|x - Tx\| + \|y - Ty\|}{2}, \|x - Ty\|, \beta\|y - Tx\| \right\}, \quad (3.4)$$

where $0 \leq \mu \leq \beta < 1$.

REMARK 3.4. It is to be noted that

- (i) a nonexpansive mapping is generalized nonexpansive,
- (ii) generalized nonexpansive mappings and mappings satisfying [Condition 1.1](#) also satisfy [Condition 1.2](#), but the converse is not true as can be seen from the following example.

EXAMPLE 3.5. Let $B = \mathbb{R}$ with the usual norm and let $D = D_1 \cup D_2$ where

$$\begin{aligned} D_1 &= \frac{m}{n}, \quad m = 0, 1, 3, 9, \dots; n = 1, 4, \dots, 3k+1, \\ D_2 &= \frac{m}{n}, \quad m = 1, 3, 9, 27, \dots; n = 2, 5, \dots, 3k+2. \end{aligned} \quad (3.5)$$

Define $T : D \rightarrow D$ by

$$Tx = \begin{cases} \frac{3x}{4}, & x \in D_1, \\ \frac{x}{2}, & x \in D_2. \end{cases} \quad (3.6)$$

Then T satisfies [Condition 1.2](#), but it does not satisfy [Condition 1.1](#) and coincidentally that T is not a generalized nonexpansive mapping; for instance, take $x = 1, y = 3/5$. Then

$$\begin{aligned} \|Tx - Ty\| &= \frac{9}{20} \geq \max\left\{\frac{2}{5}\beta, \frac{11}{40}, \frac{17}{40}\right\} \\ &= \max\left\{\frac{2}{5}\beta, \frac{1}{2}\left[\frac{1}{4} + \frac{3}{10}\right], \frac{1}{2}\left[\frac{7}{10} + \frac{3}{20}\right]\right\} \\ &= \max\left\{\beta\|x - y\|, \frac{\|x - Tx\| + \|y - Ty\|}{2}, \frac{\|x - Ty\| + \|y - Tx\|}{2}\right\}. \end{aligned} \quad (3.7)$$

We now show that a mapping T satisfying [Condition 1.2](#) is a quasi-nonexpansive mapping. Suppose p is a fixed point of T . Then putting $y = p$ in [\(3.4\)](#) and for $Tx \neq p$, we obtain

$$\begin{aligned} 0 < \|Tx - p\| &= \|Tx - Tp\| \\ &\leq \max\left\{\beta\|Tx - p\|, \frac{1}{2}\|x - Tx\|, \|x - p\|, \beta\|p - Tx\|\right\} \\ &\leq \max\left\{\beta\|Tx - p\|, \frac{1}{2}\left[\|x - p\| + \|p - Tx\|\right], \|x - p\|, \beta\|p - Tx\|\right\}. \end{aligned} \quad (3.8)$$

Since $\|Tx - p\| \leq \beta\|p - Tx\|$ is not possible, we have

$$\|Tx - p\| \leq \max\left\{\frac{1}{2}\left[\|x - p\| + \|p - Tx\|\right], \|x - p\|\right\} \quad (3.9)$$

which implies that

$$\|Tx - p\| \leq \|x - p\|. \quad (3.10)$$

Therefore, T is quasi-nonexpansive. Next we show that

$$F(T) = F(T_{\lambda,\mu}) = F(TT_\mu). \quad (3.11)$$

Obviously $F(T) \subset F(T_{\lambda,\mu})$.

Let $p \in F(T_{\lambda,\mu})$. Then $T_{\lambda,\mu}p = p$ implies that $T_{\lambda,\mu}p = (1-\lambda)Ip + \lambda T[(1-\mu)Ip + \mu Tp] = (1-\lambda)p + \lambda TT_\mu p$ and so $TT_\mu p = p$.

It follows from [\(3.4\)](#) that

$$\begin{aligned} \|Tp - p\| &= \|Tp - TT_\mu p\| \\ &\leq \max\left\{\beta\|p - T_\mu p\|, \frac{1}{2}\left[\|p - Tp\| + \|T_\mu p - p\|\right], 0, \beta\|T_\mu p - Tp\|\right\} \\ &= \max\left\{\beta\mu\|p - Tp\|, \frac{1}{2}(1+\mu)\|p - Tp\|, 0, \beta(1-\mu)\|p - Tp\|\right\}, \end{aligned} \quad (3.12)$$

whence we obtain $Tp = p$, since $\max\{\beta\mu, (1/2)(1+\mu), \beta(1-\mu)\} < 1$. Thus, $F(T_{\lambda,\mu}) \subset F(T)$ leading to the result (3.11).

Now, we show that the mapping T satisfies [Condition 1.2](#). We have from (3.4)

$$\begin{aligned}
\|TT_\mu x - p\| &= \|TT_\mu x - Tp\| \\
&\leq \max \left\{ \beta \|T_\mu x - P\|, \frac{1}{2} \|T_\mu x - TT_\mu x\|, \|T_\mu x - p\|, \beta \|p - TT_\mu x\| \right\} \\
&= \max \left\{ \|T_\mu x - p\|, \frac{1}{2} \|T_\mu x - TT_\mu x\|, \beta \|p - TT_\mu x\| \right\} \\
&\leq \max \left\{ \|T_\mu x - p\|, \frac{1}{2} \|T_\mu x - TT_\mu x\|, \beta \|p - T_\mu x\| \right\} \\
&= \max \left\{ \|T_\mu x - p\|, \frac{1}{2} \|T_\mu x - TT_\mu x\| \right\} \\
&\leq \max \left\{ [(1-\mu)\|x - p\| + \mu\|Tx - P\|], \frac{1}{2} [\|x - T_\mu x\| + \|x - TT_\mu x\|] \right\} \\
&\leq \max \left\{ [(1-\mu)\|x - p\| + \mu\|x - p\|], \frac{1}{2} [\mu\|x - Tx\| + \|x - TT_\mu x\|] \right\} \\
&\leq \max \left\{ \|x - p\|, \frac{1}{2} [\mu(\|x - p\| + \|p - Tx\|) + \|x - TT_\mu x\|] \right\} \\
&\leq \max \left\{ \|x - p\|, \frac{1}{2} [2\mu\|x - p\| + \|x - TT_\mu x\|] \right\}.
\end{aligned} \tag{3.13}$$

Also, we know that

$$\|TT_\mu x - p\| \geq \|x - p\| - \|x - TT_\mu x\|. \tag{3.14}$$

From (3.13) and (3.14), we deduce that

$$\max \left\{ \|x - p\|, \frac{1}{2} [2\mu\|x - p\| + \|x - TT_\mu x\|] \right\} \geq \|x - p\| - \|x - TT_\mu x\| \tag{3.15}$$

which implies $\|x - TT_\mu x\| \geq (2(1-\mu)/3)\|x - p\|$. Then we may write

$$\|x - TT_\mu x\| \geq k\|x - p\|, \tag{3.16}$$

where

$$0 < k = \frac{2(1-\mu)}{3} < 1. \tag{3.17}$$

Thus T satisfies [Condition 1.2](#) with $0 < k < 1$. Consequently, by Maiti and Ghosh [4, Theorem 1, page 114], we have the following.

THEOREM 3.6. *Let D be a closed convex Banach space B , and let $T : D \rightarrow D$ be a mapping which satisfies (3.4) and has a fixed point in D . Then T satisfies [Condition 1.2](#) and, for any $x_1 \in D$, $M(x_1, \alpha_n, \beta_n, T)$ converges to the fixed point of D .*

We next consider a mapping T which satisfies [Condition 1.1](#), and a variant of [Theorem 3.6](#) is stated below.

THEOREM 3.7. *Let D be a closed convex bounded subset of a uniformly convex Banach space B , and let $T : D \rightarrow D$ be a mapping satisfying (3.3). Then T satisfies Condition 1.1, and for any $x_1 \in D$, $M(x_1, \alpha_n, \beta_n, T)$ converges to the unique fixed point of T .*

PROOF. The mapping T satisfying (3.3) also satisfies Naimpally and Singh [5, Condition II(D)], and so T has a unique fixed point. We now show that T is quasinonexpansive. Let $p \in F(T)$. Then, for any $x \in D$, we have from (3.3),

$$\begin{aligned} \|Tx - p\| &= \|Tx - Tp\| \leq \max \left\{ \beta \|x - p\|, \frac{1}{2} \|x - Tx\|, \frac{1}{2} [\|x - p\| + \|p - Tx\|] \right\} \\ &\leq \max \left\{ \beta \|x - p\|, \frac{1}{2} [\|x - p\| + \|p - Tx\|] \right\} \end{aligned} \quad (3.18)$$

implying

$$\|Tx - p\| \leq \|x - p\|. \quad (3.19)$$

Next, we show that T satisfies Condition 1.1.

Let $p \in F(T)$. Then we have from (3.1),

$$\begin{aligned} \|TT_\mu x - p\| &= \|TT_\mu x - T\| \\ &\leq \max \left\{ \beta \|T_\mu x - p\|, \frac{1}{2} \|T_\mu x - TT_\mu x\|, \frac{1}{2} [\|T_\mu x - p\| + \|p - TT_\mu x\|] \right\} \\ &\leq \max \left\{ \beta \|T_\mu x - p\|, \frac{1}{2} [\|T_\mu x - p\| + \|p - TT_\mu x\|] \right\} \\ &\leq \max \left\{ \beta \|T_\mu x - p\|, \|T_\mu x - p\| \right\} \\ &= \|T_\mu x - p\| = \|x - p\|. \end{aligned} \quad (3.20)$$

From (3.14) and (3.20), we derive

$$\|x - p\| \geq \|x - p\| - \|x - TT_\mu x\| \quad (3.21)$$

which implies that

$$\|x - TT_\mu x\| \geq 0 = f(0). \quad (3.22)$$

Thus T satisfies all conditions which ensure the convergence of $M(x_1, \alpha_n, \beta_n, T)$. \square

REFERENCES

- [1] M. K. Ghosh and L. Debnath, *Approximation of the fixed points of quasi-nonexpansive mappings in a uniformly convex Banach space*, Appl. Math. Lett. **5** (1992), no. 3, 47–50. [MR 93b:47117](#). [Zbl 760.47026](#).
- [2] G. E. Hardy and T. D. Rogers, *A generalization of a fixed point theorem of Reich*, Canad. Math. Bull. **16** (1973), 201–206. [MR 48 #2847](#). [Zbl 266.54015](#).
- [3] S. Ishikawa, *Fixed points by a new iteration method*, Proc. Amer. Math. Soc. **44** (1974), 147–150. [MR 49 #1243](#). [Zbl 286.47036](#).

- [4] M. Maiti and M. K. Ghosh, *Approximating fixed points by Ishikawa iterates*, Bull. Austral. Math. Soc. **40** (1989), no. 1, 113–117. MR 90j:47076. Zbl 667.47030.
- [5] S. A. Naimpally and K. L. Singh, *Extensions of some fixed point theorems of Rhoades*, J. Math. Anal. Appl. **96** (1983), no. 2, 437–446. MR 85h:47069. Zbl 524.47033.
- [6] H. F. Senter and W. G. Dotson, Jr., *Approximating fixed points of nonexpansive mappings*, Proc. Amer. Math. Soc. **44** (1974), 375–380. MR 49 #11333. Zbl 299.47032.

HEMANT K. PATHAK: DEPARTMENT OF MATHEMATICS, KALYAN MAHAVIDYALAYA, BHILAI NAGAR, CG 490006, INDIA

E-mail address: sycomp@satyam.net.in

MOHAMMAD S. KHAN: DEPARTMENT OF MATHEMATICS AND STATISTICS, SULTAN QABOOS UNIVERSITY, P.O. BOX 36, P. CODE 123, AL-KHOD MUSCAT, OMAN

E-mail address: mohammad@squ.edu.om

Special Issue on Space Dynamics

Call for Papers

Space dynamics is a very general title that can accommodate a long list of activities. This kind of research started with the study of the motion of the stars and the planets back to the origin of astronomy, and nowadays it has a large list of topics. It is possible to make a division in two main categories: astronomy and astrodynamics. By astronomy, we can relate topics that deal with the motion of the planets, natural satellites, comets, and so forth. Many important topics of research nowadays are related to those subjects. By astrodynamics, we mean topics related to spaceflight dynamics.

It means topics where a satellite, a rocket, or any kind of man-made object is travelling in space governed by the gravitational forces of celestial bodies and/or forces generated by propulsion systems that are available in those objects. Many topics are related to orbit determination, propagation, and orbital maneuvers related to those spacecrafts. Several other topics that are related to this subject are numerical methods, nonlinear dynamics, chaos, and control.

The main objective of this Special Issue is to publish topics that are under study in one of those lines. The idea is to get the most recent researches and published them in a very short time, so we can give a step in order to help scientists and engineers that work in this field to be aware of actual research. All the published papers have to be peer reviewed, but in a fast and accurate way so that the topics are not outdated by the large speed that the information flows nowadays.

Before submission authors should carefully read over the journal's Author Guidelines, which are located at <http://www.hindawi.com/journals/mpe/guidelines.html>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/> according to the following timetable:

Manuscript Due	July 1, 2009
First Round of Reviews	October 1, 2009
Publication Date	January 1, 2010

Lead Guest Editor

Antonio F. Bertachini A. Prado, Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, 12227-010 São Paulo, Brazil; prado@dem.inpe.br

Guest Editors

Maria Cecilia Zanardi, São Paulo State University (UNESP), Guaratinguetá, 12516-410 São Paulo, Brazil; cecilia@feg.unesp.br

Tadashi Yokoyama, Universidade Estadual Paulista (UNESP), Rio Claro, 13506-900 São Paulo, Brazil; tadashi@rc.unesp.br

Silvia Maria Giuliatti Winter, São Paulo State University (UNESP), Guaratinguetá, 12516-410 São Paulo, Brazil; silvia@feg.unesp.br