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ABSTRACT. A common coincidence point theorem for R-weakly commuting mappings is
obtained. Our result extend several ones existing in literature.
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1. Introduction. Throughout this paper, X denotes a metric space with metric d.
For x €e X and A < X, d(x,A) =inf{d(x,y) : y € A}. We denote by CB(X) the class
of all nonempty bounded closed subsets of X. Let H be the Hausdorff metric with
respect to d, that is,

H(A,B) :max{sup d(x,B),sup d(y,A)} (1.1)
xeA YEB

for every A,B € CB(X). The mappings T : X — CB(X), f : X — X are said to be com-
muting if, fTX < TfX. A point p € X is said to be a fixed point of T : X — CB(X) if
p € Tp. The point p is called a coincidence point of f and T if fp € Tp. The map-
pings f: X — X and T : X — CB(X) are called weakly commuting if, for all x € X,
fTxeCB(X)and H(fTx, Tfx)<d(fx,Tx).

Recently Daffer and Kaneko [2] reaffirmed the positive answer [5] to the conjecture
of Reich [8] by giving an alternative proof to Theorem 5 of Mizoguchi and Takahashi
[5]. We state Theorem 2.1 of Daffer and Kaneko [2] for convenience.

THEOREM 1.1. Let X be a complete metric space and T : X — CB(X). If « is a function
of (0,00) to (0,1] such thatlimsup,_;+ x(v) <1 foreach t € [0,0) and if

H(Tx,Ty) < «(d(x,y))d(x,y) (1.2)

for each x,y € X, then T has a fixed point in X.

The purpose of this paper is to obtain a coincidence point theorem for R-weakly
commuting multivalued mappings analogous to Theorem 1.1. We follow the same
technique used in [2]. The notion of R-weak commutativity for single-valued map-
pings was defined by Pant [7] to generalize the concept of commuting and weakly
commuting mappings [9]. Recently, Shahzad and Kamran [10] extended this concept
to the setting of single and multivalued mappings, and studied the structure of com-
mon fixed points.
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DEFINITION 1.2 (see [10]). The mappings f:X — X and T : X — CB(X) are called
R-weakly commuting if for all x € X, fTx € CB(X) and there exists a positive real
number R such that

H(Tfx, Tfx) <Rd(fx,Tx). (1.3)
2. Main result. Before giving our main result, we state the following lemmas which
are noted in Nadler [6], and Assad and Kirk [1].

LEMMA 2.1. If A,B € CB(X) and a € A, then for each € > 0, there exists b € B
such that

d(a,b) <H(A,B) +e. (2.1)

LEMMA 2.2. If {A,} is a sequence in CB(X) andlim,,_.. H(A,,A) =0 for Ac CB(X).
If xy, € Ay, and limy, .., d(x,,x) =0, then x € A.

Now, we prove our main result.

THEOREM 2.3. Let X be a complete metric space, f,g:X — X and S,T: X — CB(X)
are continuous mappings such that SX < gX and TX c fX. Let «: (0,0) — (0,1] be
such that limsup, _;+ x(r) <1 for each t € [0,0) and

H(Sx,Ty) < a(d(gx,fy))d(gx,fy) (2.2)

for each x,y € X. If the pairs (g, T) and (f,S) are R-weakly commuting, then g,S and
f,T have a common coincidence point.

PROOF. Our method is constructive. We construct sequences {x,},{yn}, and {A,}
in X and CB(X), respectively as follows. Let x( be an arbitrary point of X and yy = fxo.
Since Sx( € gX, there exists a point x; € X such that y; = gx; € Sxo = Ap. Choose a
positive integer n; such that

o™ (d(y0,71)) <{1-a(d(y0,71))}d(>0,21). (2.3)

Now Lemma 2.1 and the fact TX < fX guarantee that there is a point y, = fx;, €
Tx; = A; such that

d(y2, 1) <H(A1,Ap) + o™ (d(0,21))- (2.4)

The above inequality in view of (2.2) and (2.3) implies that d(y2,y1) < d(»o,»1). Now
choose a positive integer n, > n; such that

a2 (d(y2,71)) < {1-a(d(y2,21))}d(y2,21). (2.5)

Again using Lemma 2.1 and the fact SX < gX, we get a point y; = gx3 € Sx» = A
such that

d(ys,y2) <H(Az,Ap) + o™ (d(y2,71)).- (2.6)

Now (2.2) and (2.5) further imply that d(y3,y2) < d(y2,¥1).
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By induction we obtain sequences {x,},{yxn}, and {A,} in X and CB(X), respec-
tively, such that

Vok+l = gXoks1 € SXok = Aok, Yok = fXok € TXog-1 = Azk-1, (2.7)
A(Var+1,21) < H(Azk, Apk—1) + o™ (A Yok, Vor-1) ) (2.8)

where
"2k (d(Vak, Vok-1)) < {1 = (d(¥Vor, Yor-1))} A(Vaks Vor-1) (2.9)

for each k. So we have d(yok+1,V2k) < d(Vok,V2k—1). Therefore, the sequence
{d(y2k+1,Y2k)} is monotone nonincreasing. Then, as in the proof of Theorem 2.1
in [2], {y,} is a Cauchy sequence in X. Further, equation (2.2) ensures that {A,} is a
Cauchy sequence in CB(X). It is well known that if X is complete, then so is CB(X).
Therefore, there exist z € X and A € CB(X) such that y,, — z and A,, — A. Moreover,
gxor+1 — z and fxo — z. Since

d(z,A) :rlliy}od(yn,An) srllilroloH(An,l,An) =0, (2.10)
it follows from Lemma 2.2 that z € A. Also
]lijl;lofX2k =Z€A=P_I£105X2k, %{ggxzml =zeA=£iE130TX2k,1. (2.11)
Using (2.7) and R-weak commutativity of the pairs (g,T) and (f,S), we have

A(gfxok+2, Tgxok1) < H(gTXok+1, TGXok+1) < RA(gxok+1, TX2k+1),

A(fgxo+1,Sfxon) < H(fSxox,Sfxok) < RA(f X0k, Sx2k).

(2.12)

Now it follows from the continuity of f, g, T, and S that gz € Tz and fz € Sz. O
If we put T =S and f = g in Theorem 2.3, we get the following corollary.

COROLLARY 2.4. Let X be a complete metric space, and let f : X — X be a continuous
mapping and T : X — CB(X) be a mapping such that TX < fX. Let «: (0,00) — (0,1]
be such that limsup, _;+ x(¥) < 1 for each t € [0, ) and

H(Tx,Ty) <a(d(fx,fy))d(fx,fy) (2.13)

for each x,y € X. If the mappings f and T are R-weakly commuting, then f and T
have coincidence point.

REMARK 2.5. (1) Theorem 2.3 improves and extends some known results of Hu [3],
Kaneko [4], Mizoguchi and Takahashi [5], and Nadler [6].

(2) In Corollary 2.4, T is not assumed to be continuous. In fact the continuity of T
follows from the continuity of f.

(3) If we put f = I, the identity map, in Corollary 2.4, we obtain Theorem 1.1.
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