

SUBMANIFOLDS OF F -STRUCTURE MANIFOLD SATISFYING

$$F^K + (-)^{K+1}F = 0$$

LOVEJOY S. DAS

(Received 2 May 2000)

ABSTRACT. The purpose of this paper is to study invariant submanifolds of an n -dimensional manifold M endowed with an F -structure satisfying $F^K + (-)^{K+1}F = 0$ and $F^W + (-)^{W+1}F \neq 0$ for $1 < W < K$, where K is a fixed positive integer greater than 2. The case when K is odd (≥ 3) has been considered in this paper. We show that an invariant submanifold \tilde{M} , embedded in an F -structure manifold M in such a way that the complementary distribution D_m is never tangential to the invariant submanifold $\Psi(\tilde{M})$, is an almost complex manifold with the induced \tilde{F} -structure. Some theorems regarding the integrability conditions of induced \tilde{F} -structure are proved.

2000 Mathematics Subject Classification. 53C15, 53C40, 53D10.

1. Introduction. Invariant submanifolds have been studied by Blair et al. [1], Kubo [4], Yano and Okumura [7, 8], and among others. Yano and Ishihara [6] have studied and shown that any invariant submanifold of codimension 2 in a contact Riemannian manifold is also a contact Riemannian manifold. We consider an F -structure manifold M and study its invariant submanifolds. Let F be a nonzero tensor field of the type (1,1) and of class C^∞ on an n -dimensional manifold M such that (see [3])

$$F^K + (-)^{K+1}F = 0, \quad F^W + (-)^{W+1}F \neq 0, \quad \text{for } 1 < W < K, \quad (1.1)$$

where K is a fixed positive integer greater than 2. Such a structure on M is called an F -structure of rank r and of degree K . If the rank of F is constant and $r = r(F)$, then M is called an F -structure manifold of degree K (≥ 3).

Let the operator on M be defined as follows (see [3])

$$\ell = (-)^K F^{K-1}, \quad m = I + (-)^{K+1} F^{K-1}, \quad (1.2)$$

where I denotes the identity operator on M . For the operators defined by (1.2), we have

$$\ell + m = I, \quad \ell^2 = \ell; \quad m^2 = m. \quad (1.3)$$

For F satisfying (1.1), there exist complementary distribution D_ℓ and D_m corresponding to the projection operators ℓ and m , respectively. If $\text{rank}(F) = \text{constant}$ on M , then $\dim D_\ell = r$ and $\dim D_m = (n - r)$. We have the following results (see [3]).

$$F\ell = \ell F = F, \quad Fm = mF = 0, \quad (1.4a)$$

$$F^{K-1} = (-)^K \ell, \quad F^{K-1} \ell = -\ell, \quad F^{K-1} m = 0. \quad (1.4b)$$

Thus F^{K-1} acts on D_ℓ as an almost complex structure and on D_m as a null operator.

2. Invariant submanifolds of F -structure manifold. Let \tilde{M} be a differentiable manifold embedded differentially as a submanifold in an n -dimensional C^∞ Riemannian manifold M with an F -structure and we denote its embedding by $\Psi : \tilde{M} \rightarrow M$. Denote by $B : T(\tilde{M}) \rightarrow T(M)$ the differential mapping of Ψ , where $d\Psi = B$ is the Jacobson map of Ψ . $T(\tilde{M})$ and $T(M)$ are tangent bundles of \tilde{M} and M , respectively. We call $T(\tilde{M}, M)$ as the set of all vectors tangent to the submanifold $\Psi(\tilde{M})$. It is known that $B : T(\tilde{M}) \rightarrow T(\tilde{M}, M)$ is an isomorphism (see [5]).

Let \tilde{X} and \tilde{Y} be two C^∞ vector fields defined along $\Psi(\tilde{M})$ and tangent to $\Psi(\tilde{M})$. Let X and Y be the local extensions of \tilde{X} and \tilde{Y} . The restriction of $[X, Y]_{\tilde{M}}$ is determined independently of the choice of these local extensions X and Y . Therefore, we can define

$$[\tilde{X}, \tilde{Y}] = [X, Y]_{\tilde{M}}. \quad (2.1)$$

Since B is an isomorphism, it is easy to see that $[B\tilde{X}, B\tilde{Y}] = B[\tilde{X}, \tilde{Y}]$ for all $\tilde{X}, \tilde{Y} \in T(\tilde{M})$. We denote by G the Riemannian metric tensor of M and put

$$\tilde{g}(\tilde{X}, \tilde{Y}) = g(B\tilde{X}, B\tilde{Y}) \quad \forall \tilde{X}, \tilde{Y} \text{ in } T(\tilde{M}), \quad (2.2)$$

where g is the Riemannian metric in M and \tilde{g} is the induced metric of \tilde{M} .

DEFINITION 2.1. We say that \tilde{M} is an invariant submanifold of M if

- (i) the tangent space $T_p(\Psi(\tilde{M}))$ of the submanifold $\Psi(\tilde{M})$ is invariant by the linear mapping F at each point p of $\Psi(\tilde{M})$,
- (ii) for each $\tilde{X} \in T(\tilde{M})$, we have

$$F^{(K-1)/2}(B\tilde{X}) = B\tilde{X}'. \quad (2.3)$$

DEFINITION 2.2. Let \tilde{F} be a $(1, 1)$ -tensor field defined in \tilde{M} such that $\tilde{F}(\tilde{X}) = \tilde{X}'$ and M is an invariant submanifold, then we have

$$F(B\tilde{X}) = B(\tilde{F}\tilde{X}), \quad (2.4a)$$

$$F^{(K-1)/2}(B\tilde{X}) = B(\tilde{F}^{(K-1)/2}\tilde{X}). \quad (2.4b)$$

We see that there are two cases for any invariant submanifold \tilde{M} . We assume the following cases.

CASE 1. The distribution D_m is never tangential to $\Psi(\tilde{M})$.

CASE 2. The distribution D_m is always tangential to $\Psi(\tilde{M})$.

We will consider **Case 1** and assume that no vector field of the type mX , where $X \in T(\Psi(\tilde{M}))$ is tangential to $\Psi(\tilde{M})$.

THEOREM 2.3. An invariant submanifold \tilde{M} is an almost complex manifold if the following two conditions are satisfied:

- (i) the distribution D_m is never tangential to $\Psi(\tilde{M})$, and
- (ii) \tilde{F} in \tilde{M} defines an induced almost complex structure satisfying $\tilde{F}^{K-1} = (-)^K I$.

PROOF. Applying $F^{(K-1)/2}$ in (2.4), we obtain

$$F^{(K-1)/2}(F^{(K-1)/2}(B\tilde{X})) = F^{(K-1)/2}(B(\tilde{F}^{(K-1)/2}, \tilde{X})). \quad (2.5)$$

Making use of (2.4a) in (2.5), we get

$$F^{K-1}(B\tilde{X}) = B(\tilde{F}^{K-1}\tilde{X}). \quad (2.6)$$

In order to show that vector fields of the type $B\tilde{X}$ belong to the distribution D_ℓ , we suppose that $m(B\tilde{X}) \neq 0$, then using (1.2) we have

$$m(B\tilde{X}) = (I + (-)^{K+1}F^{K-1})B\tilde{X} = B\tilde{X} + (-)^{K+1}F^{K-1}(B\tilde{X}) \quad (2.7)$$

which in view of (2.6) becomes

$$m(B\tilde{X}) = B\tilde{X} + (-)^{K+1}B(\tilde{F}^{K-1}\tilde{X}) = B[\tilde{X} + (-)^{K+1}\tilde{F}^{K-1}\tilde{X}] \quad (2.8)$$

which, contrary to our assumption, shows that $m(B\tilde{X})$ is tangential to $\Psi(\tilde{M})$. Thus $m(B\tilde{X}) = 0$.

Also, in view of (1.4b), (1.3), and (2.6) we obtain

$$\begin{aligned} B(\tilde{F}^{K-1}\tilde{X}) &= F^{K-1}(B\tilde{X}) = (-)^K\ell(B\tilde{X}) = (-)^K(I - m)B\tilde{X} \\ &= (-)^KB\tilde{X} - (-)^KmB\tilde{X}, \\ B(\tilde{F}^{K-1}\tilde{X}) &= (-)^KB\tilde{X}. \end{aligned} \quad (2.9)$$

Since B is an isomorphism, we get

$$\tilde{F}^{K-1} = (-)^KI. \quad (2.10)$$

Let $\mathcal{F}(M)$ be the ring of real-valued differentiable functions on M , and let $\mathcal{X}(M)$ be the module of derivatives of $\mathcal{F}(M)$. Then $\mathcal{X}(M)$ is Lie algebra over the real numbers and the elements of $\mathcal{X}(M)$ are called vector fields. Then M is equipped with $(1,1)$ -tensor field F which is a linear map such that

$$F: \mathcal{X}(M) \longrightarrow \mathcal{X}(M). \quad (2.11)$$

Let M be of degree K and let K be a positive odd integer greater than 2. Then we consider a positive definite Riemannian metric with respect to which D_ℓ and D_m are orthogonal so that

$$g(X, Y) = g(HX, HY) + g(mX, Y), \quad (2.12)$$

where $H = F^{(K-1)/2}$ for all $X, Y \in \mathcal{X}(M)$. \square

DEFINITION 2.4. The induced metric \tilde{g} defined by (2.2) is Hermitian if the following is satisfied:

$$\tilde{g}(H\tilde{X}, H\tilde{Y}) = \tilde{g}(\tilde{X}, \tilde{Y}), \quad \text{where } H = F^{(K-1)/2}. \quad (2.13)$$

THEOREM 2.5. If F -structure manifold has the following two properties, that is,

- (a) \tilde{M} is an invariant submanifold of F -structure manifold M such that distribution D_m is never tangential to $\Psi(\tilde{M})$,
- (b) the Riemannian metric g on M is defined by (2.12).

Then the induced metric \tilde{g} of \tilde{M} defined by (2.2) is Hermitian.

PROOF. In view of (2.2) and (2.13) we obtain

$$\tilde{g}(\tilde{F}^{(K-1)/2}\tilde{X}, \tilde{F}^{(K-1)/2}\tilde{Y}) = g(B\tilde{F}^{(K-1)/2}\tilde{X}, B\tilde{F}^{(K-1)/2}\tilde{Y}). \quad (2.14)$$

Applying (2.4) and (2.12) in (2.14), we get

$$\begin{aligned} \tilde{g}(\tilde{F}^{(K-1)/2}\tilde{X}, \tilde{F}^{(K-1)/2}\tilde{Y}) &= g(F^{(K-1)/2}B\tilde{X}, F^{(K-1)/2}B\tilde{Y}) \\ &= g(B\tilde{X}, B\tilde{Y}) - g(mB\tilde{X}, B\tilde{Y}). \end{aligned} \quad (2.15)$$

Since the distribution D_m is never tangential to $\Psi(\tilde{M})$, on using (2.2) we get

$$\tilde{g}(\tilde{F}^{(K-1)/2}\tilde{X}, \tilde{F}^{(K-1)/2}\tilde{Y}) = g(B\tilde{X}, B\tilde{Y}) = \tilde{g}(\tilde{X}, \tilde{Y}). \quad (2.16)$$

Now, we consider the second case and assume that the distribution D_m is always tangential to $\Psi(\tilde{M})$. In view of [Case 2](#), we have $m(B\tilde{X}) = B\tilde{X}^*$, where $\tilde{X}^* \in T(\tilde{M})$ for some $\tilde{X}^* \in T(\tilde{M})$.

We define (1,1)-tensor fields \tilde{m} and $\tilde{\ell}$ in \tilde{M} as follows:

$$\tilde{\ell} = (-)^K \tilde{F}^{K-1}, \quad \tilde{m} = \tilde{I} + (-)^{K+1} \tilde{F}^{K-1}, \quad (2.17a)$$

$$\tilde{m}\tilde{X} = \tilde{X}^*, \quad m(B\tilde{X}) = B(\tilde{m}\tilde{X}). \quad (2.17b)$$

□

THEOREM 2.6. *We have*

$$B(\tilde{\ell}\tilde{X}) = \ell(B\tilde{X}). \quad (2.18)$$

PROOF. In view of (2.17a), equation (2.18) assumes the following form:

$$B(\tilde{\ell}\tilde{X}) = B((-)^K \tilde{F}^{K-1}\tilde{X}) = (-)^K B(\tilde{F}^{K-1}\tilde{X}). \quad (2.19)$$

Making use of (2.6) and (2.15) in (2.19), we get

$$B(\tilde{\ell}\tilde{X}) = (-)^K \tilde{F}^{K-1}(B\tilde{X}) = \tilde{\ell}(B\tilde{X}). \quad (2.20)$$

□

THEOREM 2.7. *For $\tilde{\ell}$ and \tilde{m} satisfying (2.17a), we have*

$$\tilde{\ell} + \tilde{m} = \tilde{I}, \quad \tilde{\ell}^2 = \tilde{\ell}, \quad \tilde{m}^2 = \tilde{m}. \quad (2.21)$$

PROOF. From (1.3) we have $\ell + m = I$, which can be written as $(\ell + m)B\tilde{X} = B\tilde{X}$, thus we have

$$\ell B\tilde{X} + mB\tilde{X} = B\tilde{X} \quad (2.22)$$

which in view of (2.17b) and (2.18) becomes

$$B(\tilde{\ell}\tilde{X}) + B(\tilde{m}\tilde{X}) = B(\tilde{\ell} + \tilde{m})\tilde{X} = B\tilde{X}. \quad (2.23)$$

Therefore $\tilde{\ell} + \tilde{m} = \tilde{I}$ since B is an isomorphism. Proof of the other relations follows in a similar manner. □

[Theorem 2.7](#) shows that $\tilde{\ell}$ and \tilde{m} defined by (2.17a) are complementary projection operators on \tilde{M} .

THEOREM 2.8. *If F -structure manifold has the following property, that is, \tilde{M} is an invariant submanifold of F -structure manifold M such that distribution D_m is always tangential to $\Psi(\tilde{M})$. Then there exists an induced \tilde{F} -structure manifold which admits a similar Riemannian metric \tilde{g} satisfying*

$$\tilde{g}(\tilde{X}, \tilde{Y}) = \tilde{g}(\tilde{H}\tilde{X}, \tilde{H}\tilde{Y}) + \tilde{g}(\tilde{m}\tilde{X}, \tilde{Y}). \quad (2.24)$$

PROOF. From (2.4b) we get

$$B(\tilde{F}^{(K-1)/2}\tilde{X}) = F^{(K-1)/2}(B\tilde{X}). \quad (2.25)$$

Furthermore,

$$B(\tilde{F}^K\tilde{X}) = F^K(B\tilde{X}) \quad (2.26)$$

which in view of (1.1) and (2.4a) yields

$$B(\tilde{F}^K\tilde{X}) = B(-(-)^{K+1}\tilde{F}\tilde{X}) \quad (2.27)$$

which shows that \tilde{F} defines an \tilde{F} -structure manifold which satisfies

$$\tilde{F}^K + (-)^{K+1}\tilde{F} = 0. \quad (2.28)$$

In consequence of (2.2), (2.4b), and (2.12) we obtain

$$\begin{aligned} \tilde{g}(\tilde{H}, \tilde{X}, \tilde{H}\tilde{Y}) + \tilde{g}(\tilde{m}\tilde{X}, \tilde{Y}) &= g(B\tilde{H}\tilde{X}, B\tilde{H}\tilde{Y}) + g(B\tilde{m}\tilde{X}, B\tilde{Y}) \\ &= g(HB\tilde{X}, HB\tilde{Y}) + g(mB\tilde{X}, B\tilde{Y}) \\ &= g(B\tilde{X}, B\tilde{Y}), \quad \text{where } \tilde{H} = \tilde{F}^{(K-1)/2} \end{aligned} \quad (2.29)$$

which in view of the fact that B is an isomorphism gives

$$\tilde{g}(\tilde{H}, \tilde{X}, \tilde{H}\tilde{Y}) + \tilde{g}(\tilde{m}\tilde{X}, \tilde{Y}) = \tilde{g}(\tilde{X}, \tilde{Y}). \quad (2.30)$$

□

3. Integrability conditions. The Nijenhuis tensor N of the type (1.2) of F satisfying (1.1) in M is given by (see [2])

$$N(X, Y) = [FX, FY] - F[FX, Y] - F[X, F, Y] + F^2[X, Y], \quad (3.1)$$

and the Nijenhuis tensor \tilde{N} of \tilde{F} satisfying (2.28) in \tilde{M} is given by

$$N(\tilde{X}, \tilde{Y}) = [\tilde{F}\tilde{X}, \tilde{F}\tilde{Y}] - \tilde{F}[\tilde{F}\tilde{X}, \tilde{Y}] - \tilde{F}[\tilde{X}\tilde{F}\tilde{Y}] + \tilde{F}^2[\tilde{X}, \tilde{Y}]. \quad (3.2)$$

THEOREM 3.1. *The Nijenhuis tensors N and \tilde{N} of M and \tilde{M} given by (3.1) and (3.2) satisfy the following relation:*

$$N(B\tilde{X}, B\tilde{Y}) = B\tilde{N}(\tilde{X}, \tilde{Y}). \quad (3.3)$$

PROOF. We have

$$N(B\tilde{X}, B\tilde{Y}) = [F(B\tilde{X}), F(B\tilde{Y})] - F[F(B\tilde{X}), B\tilde{Y}] - F[B\tilde{X}, F(B\tilde{Y})] + F^2[B\tilde{X}, B\tilde{Y}] \quad (3.4)$$

which in view of (2.4a) becomes

$$\begin{aligned}
 N(B\tilde{X}, B\tilde{Y}) &= B[\tilde{F}\tilde{X}, \tilde{F}\tilde{Y}] - F[B(\tilde{F}\tilde{X}), B\tilde{Y}] - F[(B\tilde{X}, B\tilde{F}\tilde{Y})] + F^2[B\tilde{X}, B\tilde{Y}] \\
 &= B[\tilde{F}\tilde{X}, \tilde{F}\tilde{Y}] - FB[\tilde{F}\tilde{X}, \tilde{Y}] - FB[\tilde{X}, \tilde{F}\tilde{Y}] + BF^2[\tilde{X}, \tilde{Y}] \\
 &= B[\tilde{F}\tilde{X}, \tilde{F}\tilde{Y}] - B\tilde{F}[\tilde{F}, \tilde{X}, \tilde{Y}] - B\tilde{F}[\tilde{X}, \tilde{F}\tilde{Y}] + B\tilde{F}^2[\tilde{X}, \tilde{Y}] = B\tilde{N}(\tilde{X}, \tilde{Y}). \quad \square
 \end{aligned} \tag{3.5}$$

THEOREM 3.2. *The following identities hold:*

$$\begin{aligned}
 B\tilde{N}(\tilde{\ell}\tilde{X}, \tilde{\ell}\tilde{Y}) &= N(\tilde{\ell}B\tilde{X}, \tilde{\ell}B\tilde{Y}), \quad B\tilde{N}(\tilde{m}\tilde{X}, \tilde{m}\tilde{Y}) = N(\tilde{m}B\tilde{X}, \tilde{m}B\tilde{Y}), \\
 B\{\tilde{m}\tilde{n}(\tilde{X}, \tilde{Y})\} &= mN(B\tilde{X}, B\tilde{Y}).
 \end{aligned} \tag{3.6}$$

PROOF. The proof of (3.6) follows by virtue of [Theorem 3.1](#), equations (1.4a), (2.4a), (2.17a), (2.17b), and (3.3). \square

For \tilde{F} satisfying (2.28), there exists complementary distribution $D_{\tilde{\ell}}$ and $D_{\tilde{m}}$ corresponding to the projection operators $\tilde{\ell}$ and \tilde{m} in \tilde{M} given by (2.17a). Then in view of the integrability conditions of \tilde{F} structure we state the following theorems.

THEOREM 3.3. *If D_{ℓ} is integrable in M , then $D_{\tilde{\ell}}$ is also integrable in \tilde{M} . If D_m is integrable in M , then $D_{\tilde{m}}$ is also integrable in \tilde{M} .*

THEOREM 3.4. *If D_{ℓ} and D_m are both integrable in M , then $D_{\tilde{\ell}}$ and $D_{\tilde{m}}$ are also integrable in \tilde{M} .*

THEOREM 3.5. *If F -structure is integrable in M , then the induced structure \tilde{F} is also integrable in \tilde{M} .*

REFERENCES

- [1] D. E. Blair, G. D. Ludden, and K. Yano, *Semi-invariant immersions*, Kōdai Math. Sem. Rep. **27** (1976), no. 3, 313–319. [MR 53#9074](#). [Zbl 327.53039](#).
- [2] S. Ishihara and K. Yano, *On integrability conditions of a structure f satisfying $f^3 + f = 0$* , Quart. J. Math. Oxford Ser. (2) **15** (1964), 217–222. [MR 29#3991](#). [Zbl 173.23605](#).
- [3] J. B. Kim, *Notes on f -manifolds*, Tensor (N.S.) **29** (1975), no. 3, 299–302. [MR 51#8983](#). [Zbl 304.53031](#).
- [4] Y. Kubo, *Invariant submanifolds of codimension 2 of a manifold with (F, G, u, v, λ) -structure*, Kōdai Math. Sem. Rep. **24** (1972), 50–61. [MR 46#8118](#). [Zbl 245.53042](#).
- [5] H. Nakagawa, *f -structures induced on submanifolds in spaces, almost Hermitian or Kaehlerian*, Kōdai Math. Sem. Rep. **18** (1966), 161–183. [MR 34#736](#). [Zbl 146.17801](#).
- [6] K. Yano and S. Ishihara, *Invariant submanifolds of an almost contact manifold*, Kōdai Math. Sem. Rep. **21** (1969), 350–364. [MR 40#1946](#). [Zbl 197.18403](#).
- [7] K. Yano and M. Okumura, *On (F, g, u, v, λ) -structures*, Kōdai Math. Sem. Rep. **22** (1970), 401–423. [MR 43#2638](#). [Zbl 204.54801](#).
- [8] ———, *Invariant hypersurfaces of a manifold with (f, g, u, v, λ) -structure*, Kōdai Math. Sem. Rep. **23** (1971), 290–304. [MR 45#1066](#). [Zbl 221.53044](#).

LOVEJOY S. DAS: DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, KENT STATE UNIVERSITY, TUSCARAWAS CAMPUS, NEW PHILADELPHIA, OH 44663, USA

E-mail address: 1das@tusc.kent.edu

Special Issue on Decision Support for Intermodal Transport

Call for Papers

Intermodal transport refers to the movement of goods in a single loading unit which uses successive various modes of transport (road, rail, water) without handling the goods during mode transfers. Intermodal transport has become an important policy issue, mainly because it is considered to be one of the means to lower the congestion caused by single-mode road transport and to be more environmentally friendly than the single-mode road transport. Both considerations have been followed by an increase in attention toward intermodal freight transportation research.

Various intermodal freight transport decision problems are in demand of mathematical models of supporting them. As the intermodal transport system is more complex than a single-mode system, this fact offers interesting and challenging opportunities to modelers in applied mathematics. This special issue aims to fill in some gaps in the research agenda of decision-making in intermodal transport.

The mathematical models may be of the optimization type or of the evaluation type to gain an insight in intermodal operations. The mathematical models aim to support decisions on the strategic, tactical, and operational levels. The decision-makers belong to the various players in the intermodal transport world, namely, drayage operators, terminal operators, network operators, or intermodal operators.

Topics of relevance to this type of decision-making both in time horizon as in terms of operators are:

- Intermodal terminal design
- Infrastructure network configuration
- Location of terminals
- Cooperation between drayage companies
- Allocation of shippers/receivers to a terminal
- Pricing strategies
- Capacity levels of equipment and labour
- Operational routines and lay-out structure
- Redistribution of load units, railcars, barges, and so forth
- Scheduling of trips or jobs
- Allocation of capacity to jobs
- Loading orders
- Selection of routing and service

Before submission authors should carefully read over the journal's Author Guidelines, which are located at <http://www.hindawi.com/journals/jamds/guidelines.html>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/>, according to the following timetable:

Manuscript Due	June 1, 2009
First Round of Reviews	September 1, 2009
Publication Date	December 1, 2009

Lead Guest Editor

Gerrit K. Janssens, Transportation Research Institute (IMOB), Hasselt University, Agoralaan, Building D, 3590 Diepenbeek (Hasselt), Belgium; Gerrit.Janssens@uhasselt.be

Guest Editor

Cathy Macharis, Department of Mathematics, Operational Research, Statistics and Information for Systems (MOSI), Transport and Logistics Research Group, Management School, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium; Cathy.Macharis@vub.ac.be