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ABSTRACT. We give a detailed calculation of the Hochschild and cyclic homology of the
algebra €2 (G) of locally constant, compactly supported functions on a reductive p-adic
group G. We use these calculations to extend to arbitrary elements the definition of the
higher orbital integrals introduced by Blanc and Brylinski (1992) for regular semi-simple
elements. Then we extend to higher orbital integrals some results of Shalika (1972). We
also investigate the effect of the “induction morphism” on Hochschild homology.
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1. Introduction. Orbital integrals play a central role in the harmonic analysis of
reductive p-adic groups; they are, for instance, one of the main ingredients in the
Arthur-Selberg trace formula. An orbital integral on a unimodular group G is an im-
portant particular case of an invariant distribution on G. Invariant distributions have
been used in [3] to prove the irreducibility of certain induced representations of GL,,
over a p-adic field.

Let G be a locally compact, totally disconnected topological group. We denote by
€62 (G) the space of compactly supported, locally constant, and complex valued func-
tions on G. The choice of a Haar measure on G makes €2 (G) an algebra with respect
to the convolution product. We refer to €2 (G) with the convolution product as the
(full) Hecke algebra of G. If G is unimodular, then any invariant distribution on G
defines a trace on €2’ (G), and conversely, any trace on €2’ (G) is obtained in this way
(this well-known fact follows also from Lemma 3.1). Since the space of traces on an
algebra A identifies naturally with the first (i.e., 0th) Hochschild cohomology group
of that algebra A, it is natural to ask what are all the Hochschild cohomology groups
of €2 (G). The Hochschild cohomology and homology groups of an algebra A are de-
noted in this paper by HH%(A) and, respectively, by HH, (A). Since HH? (€2 (G)) is the
algebraic dual of HH, (462 (G)), it is enough to determine the Hochschild homology
groups of €2 (G).

In this paper, G is typically a p-adic group, which, we recall, means that G is the
set of F-rational points of a linear algebraic group G defined over a finite extension F
of the field Q, of p-adic numbers, p being a fixed prime number. The group G does
not have to be reductive, although this is certainly the most interesting case. When
we assume G (or G, by abuse of language) to be reductive, we state this explicitly.
For us, the most important topology to consider on G is the locally compact, totally
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disconnected topology induced from an embedding of G C GL,, (F). Nevertheless, the
Zariski topology on G, which is induced from the Zariski topology of G, also plays a
role in our study.

To state the main result of this paper on the Hochschild homology of the algebra
€¢>(G), we need to introduce first the concepts of a “standard subgroup” and of a
“relatively regular element” of a standard subgroup. For any group G and any subset
A C G, we denote

C(A):={g€G, ga=ag, Va € A}, Ng(A):={g e G, gA=Ag}, (1.1)

W (A) :== Ng(A)/Cs(A), and Z(A) := An Cg(A). This latter notation is used only
when A is a subgroup of G. The subscript G is dropped from the notation whenever
the group G is understood. A commutative subgroup S of G is called standard if S is
the group of semi-simple elements of the center of C(s) for some semi-simple element
s € G. An element s € S with this property is called regular relative to S, or S-regular.
The set of S-regular elements is denoted by S™8.

We fix from now on a p-adic group G. Our results are stated in terms of standard
subgroups of G. We denote by H, the set of unipotent elements of a subgroup H.
Sometimes, the set C(S), is also denoted by 9Ug, in order to avoid having too many
parentheses in our formulae. Let A¢(s) denote the modular function of the group C(S)
and let

(620(%5)5::(620(C(S)u)®Ac(5) (1.2)

be 62 (Us) as a vector space, but with the product C(S)-module structure, that is,
y(f)(u) = Acis) (y)f(y tuy), forall y € C(S), f € 67 (Us)s, and u € Us.

One of the main results of this paper, namely Theorem 3.6, identifies the groups
HH, (62 (G)) in terms of the following data:

(1) the set X of conjugacy classes of standard subgroups S of G;

(2) the subsets S™8 C S of S-regular elements;

(3) the actions of the Weyl groups W(S) on €2 (S); and

(4) the continuous cohomology of the C(S)-modules €2 (Us)s;
where S ranges through a set of representatives of X. More precisely, if G is a p-adic
group defined over a field of characteristic zero, as before, then Theorem 3.6 states
the existence of an isomorphism

HH, (62 (G)) =~ @€z (5%)"Y e H, (C(5),%5 (Us) 5).- (1.3)
Sex

This isomorphism is obtained by identifying the E*-term of an implicit, convergent
spectral sequence, and hence it is not natural. This isomorphism can be made natural
by using a generalization of the Shalika germs. The isomorphism (1.3) is in the spirit
of the results of Karoubi [13] and Burghelea [8]. See also [10].

It is important to relate the determination of the Hochschild homology in (1.3) with
the periodic cyclic homology groups of €2 (G). Let HH{41 := &xez HHg42k. Recall that
an element y € G is called compact, by definition, if it belongs to a compact subgroup
of G. The set of compact elements of G is open and closed and is clearly G-invariant
for the action of G on itself by conjugation. Also, we denote by HH[,4 (€% (G)) comp the
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localization of the homology group HHi41(€°(G)) to the set of compact elements of
G (see [5] or [18]). Then, the periodic cyclic homology of the Hecke algebra €2 (G) is
related to its Hochschild homology by

HP,(62(G)) ~ HHy) (62 (G)) (1.4)

comp*
This relation is implicit in [12]. Consequently, the results of this paper complement
the results on the cyclic homology of p-adic groups in[12, 23]. More precisely, let Scomp
be the set of compact elements of a standard subgroup S and let Hyy) := ®xezHg+2k,
then
HP,(62(G)) =~ DT (Seetn) " @ Hg (C(8),%62 (Us) ). (1.5)
Sex

It is interesting to remark that HP . (€ (G)) can also be related to the admissible
dual (or spectrum) of G, see [15], and hence our results have significance for the
representation theory of p-adic groups. (See also [18] for similar results on the groups
of real points of algebraic groups defined over R.) These periodic cyclic cohomology
groups are seen to be isomorphic to K« (C; (G)) ® C, by combining results from [1, 16]
to those of [12]. See also [15].

Assume for the moment that G is reductive. Then, in order to better understand
the role played by the groups HH. (€2 (G)) and H«(G,€ (Gy)) in the representa-
tion theory of G, we relate Hy(G,€2(Gy)) to the analogous cohomology groups,
Hy (P,%€2 (Py)s) and Hy (M, 62 (My,)s), associated to parabolic subgroups P of G and to
their Levi components M. In particular, we define morphisms between these
Hochschild homology groups that are analogous to the induction and inflation mor-
phisms that play such a prominent role in the representation theory of p-adic groups.
These morphisms are induced by morphisms of algebras.

In [5], Blanc and Brylinski have introduced higher orbital integrals associated to
regular semi-simple elements by proving first that

HH, (62 (G)) = Hy (G, %67 (G)s), (1.6)

a result which they called “the MacLane isomorphism.” (Actually, they did not have to
twist with the modular function, because they worked only with unimodular groups
G, see Lemma 3.1 for the slightly more general version needed in this paper.) Our
approach also starts from the MacLane isomorphism, but after that we rely more on
filtrations of the G-module €2 (G) than on localization. This allows us to define higher
orbital integrals at arbitrary elements. Then, we study the properties of these orbital
integrals and we obtain, in particular, a proof of the existence of abstract Shalika
germs for the higher orbital integrals. Actually, the existence of Shalika germs turns
out to be a consequence of some general homological properties of the ring R*(G)
of (conjugacy) invariant, locally constant functions on the group G. We also use the
techniques developed in [18] in the framework of real algebraic groups. It would be
interesting to relate the results of this paper to those of [2] on the periodic cyclic
homology of Iwahori-Hecke algebras and those of [14] on invariant distributions.

This paper is the revised version of a preprint that was first circulated in February
1999.
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2. Standard subgroups. Our description of the Hochschild homology of Hecke al-
gebras is in terms of “standard” subgroups, a class of commutative groups that we
define and study below. The main role of the standard subgroups is to define a strat-
ification of G by sets invariant with respect to inner automorphisms. This section is
devoted to establishing the basic facts about standard subgroups. We begin by fixing
notation.

If Gisagroup and A C G is a subset, we denote by C¢ (A) the centralizer of A, that is,
the set of elements of G that commute with every element of A. When G is understood,
we omit it from notation. Also, we denote by N;(A) the normalizer of A in G, that is,
the set of elements g € G such that gAg~! = A. We then set Wg(A) := Ng(A)/Cs(A)
and Z(A) := AnCg(A). By Z = Z(G) = C¢(G), we denote the center of G. Again, we
omit G if the group is understood.

Let G be a linear algebraic group defined over a totally disconnected, locally compact
field F of characteristic zero. Thus [ is a finite algebraic extension of Q,, the field of
p-adic numbers. The set G(F) of F-rational points of G is called a p-adic group and is
denoted simply by G. It is known [6] that G = G(F) identifies with a closed subgroup
of GL, (F), and hence it has a natural locally compact topology that makes it a totally
disconnected space.

DEFINITION 2.1. A commutative subgroup S C G is called standard if and only if,
there exists a semi-simple element sy € G such that S is the group of semi-simple
elements of the center of C(sy), the centralizer of sy in G. A semi-simple element
So € S with this property will be called regular relative to S or, simply, S-regular. The
set of S-regular elements s € S is denoted by S™8.

Clearly, every standard subgroup is commutative. More properties of standard sub-
groups are summarized in Proposition 2.2.
We denote by Hy, the subset of semi-simple elements of a group H.

PROPOSITION 2.2. Let S be a standard subgroup and s, € S™8.
(i) The group S is the set of F-rational points of a subgroup S C G defined over the
field F.
(ii) We have that C(S) = C(sg), S0 S = Z(C(50))ss and N(C(S)) = N(S).
(iii) Every semi-simple element y € G is S-regular for one, and only one, standard
subgroup S.
(iv) The set S*™¢ is a Zariski open subset of S.

PROOF. (i) We identify the group G with its set of F-rational points, for some al-
gebraically closed extension of F. Let T be the Galois group of F over F. Then I acts
on G and G can be identified with the set of fixed points of this action because F is a
perfect field.

Let 5o be a semi-simple element of G. From the above identification, we easily obtain
that Cg (s0), the centralizer of s¢ in G, is invariant with respect to I'. From this it follows
that Cg(so) is defined over F and C(sg) := Cg(so) is the set of F-rational points of
Cs(sp). Let S be the center of Cg(sp). Then we see, using the same reasoning, that S
is defined over [ and that S is the set of its F-rational points.
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(i) We have C(sg) D C(S) because sy € S. But, S ¢ Z(C(sg)), so C(S) c C(sp), too.
By definition, S = Z(C(sg)), so S = Z(C(S)). The last part follows because N(H) C
N(Z(H)) and N(H) c N(C(H)), for any group H.

(iii) Let y € G be a semi-simple element. Define S(y) := Z(C(y))ss- Then S(y) is
a standard subgroup, by definition, and y is regular relative to S(y). Clearly, if y is
S-regular, then S = S(y).

(iv) Let S ¢ G. We may assume that G ¢ GL,(F) and that G = G n GL,(F). The
statement is obvious if G = GL, (F). In general, the result follows because Cg(s) =
CoL, () (s)NG. O

For any p-adic group H, we denote by H,, the set of unipotent elements of H, and
call it the unipotent variety of H. In the particular case of H = C(S), where S Cc G is a
standard subgroup, we also denote C(S), =Us.

We now define a natural Adg-invariant stratification of G, called the standard strat-
ification of G.

Let g be the Lie algebra of G in the sense of linear algebraic groups. Denote by a;(g)
the coefficients of the polynomial det(t+1—Ady),

det(t+1-Ady) = > ai(g)t' € F[t]. (2.1)
i=0

Let a, be the first nonzero coefficient a;, and define

Vi={9€G, ar(g) =ar1(9) = =ar-1(g9) =0} (2.2)

Thus Vj = G, by convention, and G\V; = G’, the set of regular elements of G if G is
reductive. Also, V.1 = @ because a,, = 1. We observe that the functions a;(g) are
G-invariant polynomial functions on G, and that they depend only on the semi-simple
part of g.

In order to proceed further, recall that the Jordan decomposition of an element
g € Gis g = gsgu, where g, is semi-simple, g, is unipotent, and g;g, = gugs. This
decomposition is unique [6]. Let S C G be a standard subgroup. If g = g;gy is the
Jordan decomposition of g € G and if g; € §™¢, then g,, € Us := C(S),, by definition,
and hence g € S™80.

Fix now a standard subgroup S C G, and let

Fs = Adg (S™8),  F¥ = Adg (S™#L) (2.3)

be the set of semi-simple elements of G conjugated to an element of S™¢ and, respec-
tively, the set of elements g € G conjugated to an element of S™50lg (i.e., the set of
elements g € S such whose semi-simple part is in Fy).

Also,let N(S) := {g € G, gSg~! = S} be the normalizer of S and W (S) = N(S)/C(S).
Since N(S) leaves S™2 invariant and is actually the normalizer of this set, it follows
that the quotient W (S) can be identified with a set of automorphisms of S. Since N(S)
is the set of F-rational points of an algebraic group, the rigidity of tori (see [6, page
117]) shows that W(S) is finite.

The natural map (g,s) — gsg~' descends to a map

(G xS™8)

. -1
bs: NGS) >(g,8) — gsg ~ €Fs. (2.4)
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Similarly, we obtain a map

(G x STe#aLg)

. -1 u
NGS) > (g,5u) gsug  €Fg. (2.5)

P

In Proposition 2.3 consider the locally compact (and Hausdorff) topology of G, and
not the Zariski topology. Recall that we denote by G, the set of semi-simple elements
of G.

PROPOSITION 2.3. Let S be a standard subgroup of G. Using the above notation, we
have

(i) The set Fs is an analytic submanifold of G, and the maps ¢s and ¢§ are home-
omorphisms.

(ii) For each k, the set Vi \ Vi1 is the disjoint union of the sets F¢ that have a
nonempty intersection with Vi \ V.1, and each F¢ C Vi \ Vi1 is an open subset of
ViNViir.

(iii) Similarly, the set Ggs N (Vi \ Viy1) is a disjoint union of the sets Fs that have
a nonempty intersection with Vi \ Vi.1, and each Fs C Vi \ Vi.1 is an open subset of
Gss N (Vk N Vk+1)-

PROOF. (i) First we check that ¢s and ¢¥§ are injective. Indeed, assume that
915197 " = 925295, for some s, s, € S8, Then, if g = g;' g1, we have

gC(s1)g ™' =C(s2) = gC(S)g™ ' =C(S) = gSg™' =8, (2.6)

and hence g € N(S). Consequently, we have (gi1,s1) = (g29,9 '529) = 97 1(g2,52),
with g € N(S), as desired. The same argument shows that if Fs¢ and F¢- have a point
in common, then the standard subgroups S and S’ are conjugated in G.

The injectivity of ¢¥ follows from the injectivity of ¢ys, indeed, if g1 (s;u;)g;! =
g> (szuz)ggl, letg = gz’lgl as above, and conclude that gs;g~! = s,, by the uniqueness
of the Jordan decomposition. As above, this implies that g € N(S).

Since the differential d¢s is a linear isomorphism onto its image (i.e., it is injective)
and ¢s is injective, it follows that ¢s is a local homeomorphism onto its image (for
the locally compact topologies), and that its image is an analytic submanifold (see
[22, Theorem 2.3, page 38]). The set G4 N (Vi \ Vi41) is an algebraic variety on which
G acts with orbits of the same dimension, and hence ¢ is proper [6]. This proves
that ¢s is a homeomorphism. Using an inverse for ¢s, we obtain that ¢¥¢ is also a
homeomorphism.

Now to prove (ii), consider a standard subgroup S C G, and let d be the dimension
of C(S). Then ap =a; = -+ =ag-1 =0 on S, and S™8 is an open component of
Sn{ag # 0}. It follows that, if s € (Vi \ Vii1) NS™8, then Fs C Vi \ Vi,1. This shows
that Ggs N (Vi \ Vi41) is a union of sets of the form Fs. This must then be a disjoint
union because the sets Fs are either equal or disjoint, as proved above.

Now, if g € Vi \ Vi1 has semi-simple part s, then s € Fg C Ggs N (Vi \ Viy1), for
some standard subgroup S, and hence g € F¢ C Vi \ V1. The sets F¢ are open in
the induced topology because the map Vi \ Vi1 — Ggs N (Vi \ Vi41) is continuous. See
also [27]. O
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3. Homology of Hecke algebras. In this section, we obtain a first identification of
the Hochschild homology groups of Hecke algebras of p-adic groups. To this end, we
use several general results on Hochschild homology of algebras, on algebraic groups,
and on the continuous cohomology of totally disconnected groups. Good references
are [6, 7, 17], for the general theory, and [15] for questions related to Hochschild
homology.

Let G be a p-adic group on which we fix a Haar measure dg. Consider now the space
€ (G) of compactly supported, locally constant functions on G. Fix a Haar measure
dh on G. Then the convolution product, denoted x, is defined by

fik f2(g) = Lf1<h>fz(h-1g)dh. 3.1)

The convolution product makes €2 (G) an algebra, called the Hecke algebra of G. It is
important in representation theory to determine the (Ad¢-)invariant linear functionals
on €2(G). If G is unimodular, the space of invariant linear functionals on €2 (G)
coincides with the space of traces on 62 (G). The space of traces of €2 (G) identifies
with HH® (€2 (G)), the first Hochschild cohomology group of €2 (G). It is reasonable
then to ask, what are all Hochschild cohomology groups of €2 (G)? Since Hochschild
cohomology is the algebraic dual of Hochschild homology, it is enough to concentrate
on the latter.
We first recall the definition of the Hochschild homology groups of the algebra
€2 (G). Let
€T (G1) =€ (G) 6T (G)® - - - 9€X(G), (3.2)

(q +1)-times, be the usual (algebraic) tensor product of vector spaces. The Hochschild
differential b : €2 (G1+2) — 62 (G9*1) is given by

a
(bf)(QO;gly---:gq) = Z(il)‘] JGf(gO;---1gj—1|y|yilgjlgj-#h---;gq)d}/
Jj=0 (3.3)

+(=1)at! JGf(y‘lgo,gl,...,gq,y) dy.

By definition, the gth Hochschild homology group of €2 (G), denoted by HH, (€2 (G)),
is the gth homology group of the complex (62 (G4*!),b). Hochschild homology can
be defined for any algebra. Our definition takes into account the particular structure
of €2 (G), in particular, that it is an inductive limit of unital algebras, so there is no
need to first adjoin a unit in order to define Hochschild homology. The computation
of the groups HH, (€ (G)) is the main purpose of this paper.

The group G acts by conjugation on 62’ (G ), and we denote by €2 (G) a4 the G-module
defined by this action. Also, let A denote the modular function of G, which, we recall,
is defined by the relation

AG(mLf(gh) dg = Lf(g)dg. (3.4)

We are especially interested in the G-module €2 (G) s obtained from €2 (G)aq by twist-
ing it with the modular function. More precisely, let €2 (G)s = 62 (G) as vector spaces,
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and let the action of G on functions be given by the formula

y-NH@ =2 f(ygy), fe€X(G)s. (3.5)

The reason for this twisting is that, for G nonunimodular, the traces of € (G) are the
G-invariant functionals on €2 (G)s, not on €2 (G) (this is an immediate consequence
of Lemma 3.1). More generally, our approach to the Hochschild homology of €2 (G)
is based on Lemma 3.1.

Before stating and proving Lemma 3.1, we need to introduce some notation. First, if
M is an arbitrary G-module, we denote by M ® A the tensor product of the G-modules
M and C, where the action on C is given by the multiplication with the modular func-
tion of G. (In particular, 62 (G)s = €2 (G) ® Ag.)

If M is aright G-module and M’ is a left G-module, then M ®; M’ is defined as the
quotient of M ® M’ by the submodule generated by mg®m’ —m ® gm’. For example,
if H c G is a closed subgroup and if X is a left H-space, then we have an isomorphism
of G-spaces

€ (G)®u (62 (X)®Ay) =67 (GxuX), (3.6)

where G x X is the quotient (G x X)/H for the action h(g,x) = (gh~!,hx). This iso-
morphism is obtained by observing that the natural map

tx 162 (G) @6 (X) = 62 (Gx X) — 62 (G xp X),

. (3.7)
() ((@30) = | Flahh'x)an,
passes to the quotient to give the desired isomorphism. Sometimes it will be conve-
nient to regard a left G-module as a right G-module by replacing g with g~!. Equation
(3.6) is one of the main reasons why we need to consider the modular function.
Also, recall that a G-module M is smooth if and only if the stabilizer of each element
of M is open in G. The continuous homology groups of G with coefficients in the
smooth module M, denoted H (G, M), can be defined using tensor products as follows.
Let B,4(G) = 62 (G1*1),q = 0,1,..., be the Bar complex of the group G, with differential

q+1

(Adf)(90,91,---.9q) = > (—l)fLf(go,---,gjflyy,gj,---,gq)dy- (3.8)
j=0

Then the complex (%,,d) gives a resolution of C with projective €2 (G)-modules, and

the complex
RBqa(G)®cM (3.9)

computes H, (G,M). See [4, 7].
We need the following extension of a result from [5].

LEMMA 3.1. Let 62 (G)s = 62(G) ® A be the G-module obtained by twisting the
adjoint action of G on € (G) by the modular function. Then we have a natural isomor-
phism

HH, (62 (G)) = Hy (G, 62 (G)s). (3.10)
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PrROOF. Consider the complex (3.9), which computes the continuous cohomology
of M =42 (G)s, and let

he :Ba(G) 6T (G)s =~ €2 (G)@6X (G1T) =6X (G172) — 62 (G)®4T! (3.11)

be the map

he(f) (90, 91,---,9q) = JGf(g’lhg,g’lgo,g’lgogl,...,g*lgogl -+ gq)dg,

3.12)
h=gog1---9a-
As in (3.6), the map h¢ descends to the quotient to induce an isomorphism
he By (G) @ ET (G)s =~ 62 (G12) @6 C = €2 (G)®4+! (3.13)

of complexes, that is, hgo(d®c1) = bo hg, which establishes the isomorphism
H;(G,€2(G)s) =~ HHy (62 (G)), as desired. O

To better justify the twisting of the module €2 (G) by the modular function in
Lemma 3.1, note that the trivial representation of G gives rise to an obvious mor-
phism 119 : €2 (G) — C, by 1o (f) = [ .f(g) dg, which hence defines a trace on 62 (G).
However, 11y is not G-invariant for the usual action of G, but is invariant if we twist
the adjoint action of G by the modular function, as indicated.

We proceed now to a detailed study of the G-module €2 (G)s using the standard
stratification introduced in the previous section.

Let R®(G) be the ring of locally constant Adg-invariant functions on G with the
pointwise product, which we regard as a subset of the set of endomorphisms of the
G-module 62 (G)s = 62 (G) ® Ag. Let det(t + 1 — Ady) = X" ai(g)t, as before. For
eachk > 1, denote by I; C R*(G) theideal generated by functions f : G — C of the form

f=¢(aryar+ly---;ar+k—l)y (3.14)

where ¢ is a locally constant function ¢ : F¥ — C such that ¢(0,0,...,0) = 0. (Recall
that each of the polynomials ay,...,a,_1 is the zero polynomial.) By convention, we
set Ip = (0); also, it follows that I,,,1 = R®(G).

Fix now k, and let ¢, : F¥ — C be 1 on the set

{€=(8o,..., &-1) € F¥, max|&;| = q "}, (3.15)

and vanishes outside this set. (Here g is the number of elements of the residual field
of F, and the non-Archimedean norm “| |” is normalized such that its range is {0} U
{q", n € 7}.) Also, let py, = pn(ar,ars1,...,Ar+k-1) € Ix. Then py, = p2 = pupn+1 and
Iy = UpnR*(G).

For further reference, we state as a lemma a basic property of the constructions we
have introduced.

LEMMA 3.2. If M is an R®(G)-module, then M = Up,, M.

As a consequence of the above lemma, we obtain the following result.
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COROLLARY 3.3. Consider the G-modules,

Ik+1) Ik+1‘€2°(G)5
M=( QR (G) 6o (G)s =~ ————. 3.16
k I R=(G) 62 (G)s €= (G)s (3.16)
Then, for each q > 0, we have an isomorphism
m
H, (G,€Z (G)s) =~ D H, (G, My) (3.17)
k=0
of vector spaces.
PROOF. There exists a (not natural) isomorphism
teolki1Hy (G, €2 (G
Hy (G, €2 (G)g) ~ Dizo Tt Ha (G2 (G)s) (3.18)

ItH, (G, %8 (G)s)

of vector spaces.
By Lemma 3.2, the inclusion of I}€Z (G)s — €2 (G)s of G-modules induces natural
isomorphisms

H, (G, 17 (G)5) ~Hy (G limp, 67 (G)s)
zli{nanq(G,cﬁf(G)(s) (3.19)
=~ [ Hy (G,62(G)s),

because the functor H, is compatible with inductive limits and with direct sums.
The naturality of these isomorphisms and Lemma 6.1 shows that

G, Ik1 €2 (G)s _ Irs1Hq (G, 62 (G)s)

H ~ .
T e (G)s IkH, (G, 62 (G)s)

(3.20)

This is enough to complete the proof. O

If X is a totally disconnected, locally compact space X, we denote by €2 (X) the
space of compactly supported, locally constant, complex valued functions on X. Recall
that, if U C X is an open subset of X as above, then restriction defines an isomorphism

€ (X)
e (U)
We now study the homology of the subquotients

=6 (X\U). (3.21)

k162 (G)s

M = ~@G7 (Vi \V] 3.22
k= 1€ (0)s S (Vie\ Vi) (3.22)

by identifying them with induced modules. Let X be a set of representatives of con-
jugacy classes of standard subgroups S such that Fs C Vi \ Vi, (or, equivalently,
Fgﬁl C Vi \ Vk+1).

LEMMA 3.4. Using the above notation, we have [;62 (G) = €2 (G \ Vi) and
Ix 162 (G)s
—_— " ~ @2 (FY). 3.23
IkC@gO(G)(S @ c ( S) ( )

Sely
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PROOF. It follows from the definition of Iy that, if f € It'¢>°(G)s, then f vanishes
in a neighborhood of V. Conversely, if f is in €27 (G \ Vi), then we can find some
polynomial a;, with i < v + k— 1, such that |a;| is bounded from below on the sup-
port of f by, say, g ", then p, f = f. The second isomorphism follows from the first
isomorphism using (3.21) and Lemma 3.2. O

If H C G is a closed subgroup and M is a smooth (left) H-module (i.e., the stabilizer
of each m € M is an open subgroup of M), we denote

62 (G)eM
{fhem-feohm, he H}’

ind% (M) = €2 (G) @y M = (3.24)
where the right H-module structure on €2 (G) is (fh)(g) = f(gh~'). Then Shapiro’s
lemma, see [9], states that

Hy (G,ind% (M) ® Ag) ~ Hy(H,M). (3.25)

(A proof of Shapiro’s lemma for nonunimodular groups is contained in the proof of
Theorem 6.2.)

The basic examples of induced modules are obtained from H-spaces. If X is an
H-space (we agree that H acts on X from the left), then

%zo(G;(IX) ~ indj (67 (X) ® Apr) = ind; (€7 (X)5) (3.26)

as G-modules, where H acts on G x X by h(g,x) = (gh~!, hx). For example, Proposition
2.3 identifies €2 (F¢') with an induced module:

€ (F§') = indgm (62 (S™8Us) ® An(s)) = ind}(\;](S) (62 (S™5Us) 5)- (3.27)

Shapiro’s lemma is an easy consequence of the Serre-Hochschild spectral sequence,
see [9], which states the following. Let M be a smooth G-module and H C G be anormal
subgroup. Then the action of G on H,; (H,M) descends to an action of G/H, and there
exists a spectral sequence with E,f,’q =H,(G/H,H,(H,M)), convergent to H,,4(G,M).

Let My = I +1€2 (G) 5/ Ix€2 (G) s, as before.

PROPOSITION 3.5. Using the above notation, we have

Hy (G, M) = @ €2 (5%)" o H, (C(5),%62 (Us) ), (3.28)
(SyeSy

a natural isomorphism of R® (G)-modules.
PROOF. Let S be a standard subgroup of G. Recall first that W(S) = N(S)/C(S) is
a finite group that acts freely on S™¢, which gives an N (§)-equivariant isomorphism
G2 (S™5Ug) s =62 (Us) s @62 (S™5). (3.29)
Let M be a smooth N(S)-module. The Hochschild-Serre spectral sequence applied

to the module M and the normal subgroup C(S) C N(S) gives natural isomorphisms

)W(S)

H, (N(S),M) ~Hy (W (S),H, (C(S),M)) ~H, (C(S),M (3.30)



140 VICTOR NISTOR

Combining these two isomorphisms, we obtain
Hi (G, 62 (F§)5) =~ Hi (G, indfs) (67 (S™5Us) 5) 5)
=~ Hi (N(S), 67 (S™®Us) 5)

= (Hi (C(8), %2 (Us) 5) 06 (57%))" oy
=62 (57%)" 9 Hy (C(S), 62 (Us) ).
The result then follows from Lemma 3.4, which implies directly that
My = ®ses, 6% (FY) s (3.32)
The proof is now complete. O

Combining Proposition 3.5 with Corollary 3.3, we obtain the main result of this
section. Recall that a p-adic group G = G(F) is the set of F-rational points of a linear
algebraic group G defined over a non-Archimedean, nondiscrete, locally compact field
[ of characteristic zero. Also, recall that g is the set of unipotent elements commut-
ing with the standard subgroup S, and that the action of C(S) on €2 (Us) is twisted
by the modular function of C(S), yielding the module €2 (Us)s = 62 (Us) ® Ac(s)-

THEOREM 3.6. Let G be a p-adic group. Let 3. be a set of representative of conjugacy
classes of standard subgroups of S C G and W(S) = N(S)/C(S), then we have an
isomorphism

HH, (42(G)) = = (s™8)"® e H, (C(S),%6 (Us) ). (3.33)
Sex
REMARK 3.7. The isomorphism of Theorem 3.6 is not natural. A natural description
of HH, (62 (G)) will be obtained in one of the following sections by considering higher
orbital integrals and their Shalika germs.

4. Higher orbital integrals and their Shalika germs. Proposition 3.5 allows us to
determine the structure of the localized cohomology groups HHy (€2 (G))m, Where
m is a maximal ideal of R®(G). This will lead to an extension of the higher orbital
integrals introduced by Blanc and Brylinski in [5] and to a generalization of some
results of Shalika [24] to higher orbital integrals, all discussed in this section. In this
way, we also obtain a new, more natural description of the groups HH, (€2 (G)).

First recall the following result.

PROPOSITION 4.1. Let G be a reductive p-adic group over a field of characteristic 0,
and let S C G be a standard subgroup, and y € S (i.e., y is a semi-simple element such
that C(S) = C(y)). Then there exists an N (S)-invariant closed and open neighborhood
U of y in C(S) such that

GxU>3(g,h) —ghg'leG 4.1)

defines a homeomorphism of G Xns) U := (GXU)/N(S) onto a G-invariant, closed, and
open subset V C G containing y.
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PROOF. The result follows from Luna’s lemma. For p-adic groups, Luna’s lemma is
proved in [19, page 109, Properties “C” and “D”]. O

For any maximal ideal m ¢ R*(G) and any R®(G)-module M, we denote by M,
the localization of M at m, that is, My =~ S~'M, where S is the multiplicative subset
R®(G)\m.

From Proposition 4.1 we obtain the following consequences for the ring R*(G).

COROLLARY 4.2. Lety € S, U, andV be as in Proposition 4.1.
(i) TheringR*(G) decomposes as the direct sum4® (V)¢ a€* (V)6 and€¢*(V)C =
@2 (U)NS) c €= (C(S))NS) = R®(C(S))VS), (Here V¢ is the complement of V in G.)
(ii) For any two semi-simple elements y,y’ € G, if ¢p(y) = ¢p(y’) for all functions
¢ €R”(G), theny and y' are conjugated in G.
(iii) Letm € R*(G) be the maximal ideal consisting of functions that vanish at a semi-
simple element y € G. Then p is generated by an increasing sequence of projections,
and My, ~ M /mM, for any R* (G)-module M.

PROOF. (i) is an immediate consequence of Proposition 4.1.

(ii) follows from [19, Proposition 2.5].

To prove (iii), observe that the maximal ideal m is generated by an increasing se-
quence of projections p,, that is, m = Up, R (G), with p% =pn and pPp+1Pn = Pn-

We know from Proposition 2.5 of [19] that R*(G) is isomorphic to C® (X), for some
locally compact, totally disconnected topological space X. Moreover, if M is a C*(X)-
module and m is the maximal ideal of functions vanishing at x, for some fixed point
X0 € X, then €% (X)ym =~ 6*°(X)/mé>*(X), and hence
M®¢ex)6"(X) M

me(X) mM’

Since X is metrizable, we can choose a basis V,, of compact open neighborhoods of
Xo in X. If we let p, to be the characteristic function of V¢, then p, are projections
generating m. By choosing V,, to be decreasing, we obtain an increasing sequence of
projections py,. O

My = M ®«¢e (x) 6% (X)m = 4.2)

We now consider for each maximal ideal m ¢ R® = R*(G) the localization
HH, (€2 (G))um.

PROPOSITION 4.3. Letm be a maximal ideal of R® (G). If m consists of the functions
that vanish at the semi-simple element y € G and S C G is a standard subgroup such
that y € S™8, then

HH, (62 (G)),, = Hg (C(S), 62 (Us)5)- (4.3)

For all other maximal ideals m C R*(G), we have HH, (€2 (G))m = 0.
Note that H; (C(S), 62 (Us)) = Hy(C(y), 62 (C(y)u)).

PROOF. Letm, := {f € R*(G), f(y) = 0}. The vanishing of HH (€’ (G))w in the
last part of Proposition 4.4 because €2 (G)n = 0 for all maximal ideals m that are not
of the form m,, for some semi-simple element y € G.

Assume now that m = m,,. The localization functor V — Vy, is exact by standard
homological algebra. Let (0) =Ip CI; C --- C I, CIjn+1 = R®°(G) be the sequence of
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ideals introduced shortly after Lemma 3.1. The sequence of ideals (Ix)n is an increas-
ing sequence satisfying (Ip)m =~ 0 and (I;,+1)m = C. Choose k such that (Ix)n ~ 0 and
(Ix+1)m = C. (This happens if and only if y € Vi \ Vi,1.) It follows that

(4.4)

G, k162 (G
H, (G, €5 (G)s)y =~ Hy (kl()a)

L6 (G)s

Since all the isomorphisms of Proposition 3.5 are compatible with the localization
functor, we obtain that

HHy (67 (G)) = Hy (G, 65 (G)5)m

~ @ Hy (€)% (Us)y) @
(S)yeZy

( @ (Sreg)W(S) ) (4.5)

meee (Sreg)"S)

The only quotient 62 (578)"(S) /m@ (STe8)W(S) that does not vanish is the one con-
taining (a conjugate of) y, and then it is isomorphic to C. This completes the proof.

O
An alternative proof of Proposition 4.3 can be obtained by writing
© N © N G, 62 (G)5>

Hy (662 (G)s)y = Ha (G.€2 (G)am) = Hy (0557 ), (4.6)

and then observing that €2 (G)s/m€2 (G)s =~ €2 (Us), by Corollary 4.2(iii). However
our first proof is more convenient when dealing with orbital integrals. See also [18],
which was first circulated in 1990 as a preprint of the Mathematical Institute of the
Romanian Academy (INCREST) No. 18, March 1990, and where the localization tech-
niques were first introduced.

We now extend the definition of higher orbital integrals introduced by Blanc and
Brylinski [5] to cover nonregular semi-simple elements also. Fix a standard subgroup
S C G, and let k be such that §™ C Vi \ Vi41. As in the above proof, Proposition 3.5
gives a natural R® (G)-linear, degree preserving, surjective morphism

H, (G,Ik+1<6§°(G)5

Pl ) ez () L (C)E (Us)), @D)

and hence a linear map
Lot HH, (€5 (G)) = Hy (G, I 162 (G)5) — 62 (5™8)" ) @ H, (C(S), %2 (Us)5). (4.8)
Fix c e H1(C(S),%62 (Us)s) and y € S™8, and let
Oy =05 Iy 1 HHg (€2(G)) — C (4.9)

be the evaluation of the map at y and c in (4.8). We obtain, in particular, that for
any f € Ix+1 HHg (€2 (G)), the function y — 0, .(f) is a locally constant, compactly
supported function on $™. The function 0, . can then be extended to the whole group
HH, (€2 (G)) using a simple observation as follows. By Lemma 3.2, we know that for
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any y € S™8 there exists a locally constant function ¢ € I, such that ¢(y) = 1.
Then let

Oy (f):=0yc(PS), (4.10)

which is independent of ¢. It follows from the definition of 0, that, for any f €
HH, (€2 (G)), the function y — 0, (f) is a locally constant function on S$™¢, but not
necessarily compactly supported. We thus obtain the following result.

PROPOSITION 4.4. Let S C G be a standard subgroup. Then there exists a degree-
preserving, R® (G)-linear map

05 :HH, (62 (G)) — € (578)" ¥ @ H, (C($),6 (Us) ), @.11)

which is an isomorphism when localized at any maximal ideal m = my, C R*(G), con-
sisting of functions vanishing at some element y € S™5.

We call the maps 0% and 0,, . = ©§/,c “higher orbital integrals” because they generalize
the usual notion of orbital integral. (If ¢ is a cocycle of dimension g, we call 0, an
order g higher orbital integral.) Indeed, assume that G and C(S) are unimodular. Let
co=1¢€ HO(C(S),<6§° (Us)s) be the evaluation at the identity element e € G, and let
fe€62(G) =HHp(62(G)). Then

O (F)=Opa(H) = | Flava™)da, @12)

where dg is the induced measure on G/C(S).
If y € G is a semi-simple element and S is a standard subgroup of G such that
C(y) =C(S), (i.e., y € §T8), then restriction at y defines a map

0y =05 :HHy (47 (G)) — Hy (C(S), 62 (Us) 5) (4.13)

such that c(0y (f)) = 0y, (f), for all c e H*(C(S),462 (Us)s). The localization of 0, at
y vields the isomorphism of Proposition 4.4.

A word on notation, whenever we write @f,‘c or @f,, we assume that y € §™8, which
actually determines S. This means that we can omit S from notation. However, if we
want to write that 0, . = 0 . is obtained by evaluating

05 :HH. (67 (G)) — €~ (™) @ H,. (C($), 67 (Us) 5) (4.14)
to a point y € S™¢ and then by pairing with c, that is,
03 (f) = (¥ (HH(y)e), (4.15)

then it is obviously better to include S in the notation.

Let y € G be a semi-simple element. We want now to investigate the behavior orbital
integrals 0,4 with g in a small neighborhood of y. Fix a standard subgroup S C G
such that y is in the closure of Adg(S™8), but is not in Ads(S™8), and a class ¢ €
H(C(S),62 (Us)). More precisely, we want to study the germ of the function g —
Og,c(f) at an element y, where f € HH, (62 (G)) is arbitrary. The germ of a function
h at y will be denoted by h,.



144 VICTOR NISTOR

The following theorem extends one of the basic properties of Shalika germs from
usual orbital integrals to higher orbital integrals.

THEOREM 4.5. Let S € G be a standard subgroup and lety € S be an element in the
closure of S™8, such that y ¢ S™8. Then there exists a degree preserving linear map

05 1 Hy (C(y), € (C(y)u)s) — € (578) ) @ H, (C(S), €2 (Us) ), (4.16)
such that
05 (f)y = 03 (0, (), (4.17)
for all f € HH, (€2 (G)).

Note that, in the notation for the maps 0'35 , the standard subgroup S is no longer
determined by y.

PROOF. By the definition of the localization of a module, the map
05 :HH, (€% (G)) — €= (5"%) ) ®H, (C(5),%% (Us) 5) (4.18)
factors through a map
F:HH, (67 (G)), — €~ (™))" @ H, (C(S),6F (Us) 5)- (4.19)

Since 0y, : HHy (62 (G))y — Hyx (C(y),€2 (C(y)wu)s) is an isomorphism, by Proposition
4.3, we may define
oy =Fo0,", (4.20)

and all desired properties for 05 will be satisfied. O

Let y € S\ 8™ be such that y is in the closure of S™¢, as above, and also let

c € H1(C(S),%> (Us)s). Then a consequence of Theorem 4.5 is that the germ at y

of the higher orbital integrals ©§,c depends only on 0,. More precisely, if g € 5™,

f € HH4 (€2 (G)), and we regard @fm (f) as a function of g, then its germ at y, denoted
05 - (f)y, is given by

Og.c(Ny = (07 (0y(f)),c). (4.21)

This observation allows us to relate Theorem 4.5 with results of Shalika [24] and
Vigneras [27]. So assume now that G is reductive and let & € Ho(C(y), €2 (C(¥)u)s)
be the basis dual to the basis of H*(C(y),%>(C(y)u)s) given by the orbital integrals
over the orbits of yu, for u nilpotent in C(y). If we let Ff = cr}f(éi), then we recover
the usual definition of Shalika germs. Due to this fact, we call the maps 05,9 , introduced
in Theorem 4.5, the higher Shalika germs.

We can now characterize the range of the higher orbital integrals. Combining all
higher orbital integrals for S C G ranging through a set X of representatives of stan-
dard subgroups of G, we obtain a map

0:HH, (€7 (G)) — @¢=(5™%)"¥ o H, (C(S),%> (Us)). (4.22)
sex
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THEOREM 4.6. Let X be a set of representatives of standard subgroups of G and 05
be the maps introduced in Theorem 4.5 for y € ST\ S™8, Also, let

Fc Pe~(s™8) @ Hy (C(S), € (Us) 5) (4.23)
Sex

be the space of sections § satisfying &, = o-§ (&(y)) for all standard subgroups S and
all y € S™&\ S™8, Then O establishes an R* (G)-linear isomorphism

0:HH, (67 (G)) — . (4.24)

PROOF. Note first that the map O is well defined, that is, its range is contained in
%, by Theorem 4.5.

To prove that 0 is an isomorphism, filter both HH (62 (G)) and ¥ by the subgroups
It HH, (62 (G)) and, respectively, by I} %, using the ideals Iy introduced in Section 3.
Since 0 is R* (G)-linear, it preserves this filtration and induces maps

Ik+1HH>s< (%?(G)) . Ik+19’7
Iy HH, (62 (G)) ILF

(4.25)

These maps are, by construction, exactly the isomorphisms of Proposition 3.5. Stan-
dard homological algebra then implies that O itself is an isomorphism, as desired.
O

A consequence of the above result is the following “density” corollary.

COROLLARY 4.7. Let a € HH, (€2 (G)). If all order q, higher orbital integrals of a
vanish, then a = 0.

We also need certain specific cocycles below. Let To be the trace To(f) = f(e) on
%2 (G), G unimodular, obtained by evaluating f at the identity e of G. Let G¢ be the
kernel of all characters of G that are equal to 1 on all compact subgroups of G. Then
G/Go = Z", where 7 is the rank of a split component of G. Let p; : G — Z be the
morphisms obtained by considering the jth component of Z". Then

6;(f)g) =pia)f(g) (4.26)

defines a derivation of 62 (G). Moreover, we can identify H* (G) with A*C", the exterior
algebra with generators 61,...,68,. Fix ¢ € H*(G). It is enough to assume that ¢ =
81 A -+ Adg, and then we define the map D, : 62 (G)®9+! — 6 (G) by the formula

De(foreerfq) = (@)™t > €(0) fodo) (1)o@ (f2) - Sowa (fa)- (4.27)

TES,
Then 1, = 190 D¢ (fo,...,.f;) defines a Hochschild g cocycle on € (G), and
Te = Oec, (4.28)

if we naturally identify ¢ with an element of the cohomology group H* (G, %62 (G,)).
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5. The cohomology of the unipotent variety. It follows from the main result of
Section 3, Theorem 3.6, that in order to obtain a more precise description of the
Hochschild homology of €2 (G), we need to understand the continuous cohomology
of the H-module €2 (H,, ) s, where H ranges through the set of centralizers of standard
subgroups of G and H,, is the variety of unipotent elements in H. We call the vari-
ety H, the unipotent variety of H, as it is usually customary. Since the cohomology
groups Hy (H, 62 (Hy,)s) depend only on H (i.e., they do not depend on G), it is enough
to consider the case H = G. Motivated by this, in this section, we gather some results
on the groups H; (G, 62 (Gy)s).

We first need to recall the computation of the groups H, (G) = H« (G, C), see for
example [7]. More generally, we also need to compute H. (G,Cy), where x : G — C*
is a character of G and C, = C as a vector space, but with G-action given by the
character .

Assume first that G = S is a commutative p-adic group, and let Sy be the union of all
compact-open subgroups of S. Then S is a subgroup of S and §/S is a free Abelian
subgroup, whose rank we denote by rk(S). For this group, we then have

Hi (S) :Hk(s%,() =~ AkCTS), (5.1)
Moreover, Hi (S,Cy) = 0if x : § — C* is a nontrivial character of S.

For an arbitrary p-adic group G, we may identify the cohomology groups H;(G)
with those of a commutative p-adic group. Indeed, if G° is the connected component
of G (in the sense of algebraic groups) then G/GV is finite, and hence Hg (G) = Hg(G?),
by the Hochschild-Serre spectral sequence. This tells us that we may assume G to be
connected as an algebraic group. Choose then a Levi decomposition G = MN, where
N is the unipotent radical of G, M is a reductive subgroup, uniquely determined up
to conjugation, and the product MN is a semi-direct product. Since H;(N) = 0 for
q > 0, it follows that H; (G) = Hy (M) by another application of the Serre-Hochschild
spectral sequence.

Let M, C M be the commutator subgroup of M, which is also a p-adic group, see
[6]. The cohomology groups H, (M7) were computed in [5, Proposition 6.1, page 316],
or [7] and they also vanish for g > 0 (recall that the crucial idea of this proof is that
the fundamental domain of the building of M; is a simplex). All in all, we obtain that

H,(G) = Hy (M) =~ H, (M?), (5.2)

where M2 = M /M, is the abelianization of M.
We summarize the above discussion in the following well-known statement.

LEMMA 5.1. Let G be a p-adic group, not necessarily reductive, and let v be the rank
of a split component of the reductive quotient of G. Then

H,(G) = Hy(G,C) =~ AIC". (5.3)

Moreover, Hy(G,Cy) = 0, if x is a nontrivial character of G.

We continue by discussing first a few elementary properties of Hy (G, 62 (Gy)s)-
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REMARK 5.2. If G; — G is a surjective morphism with finite kernel F, then there ex-
ists a natural homeomorphism G, ~ G, of the unipotent varieties of the two groups.
Since the kernel F acts trivially on G1,, using the Hochschild-Serre spectral sequence
we obtain an isomorphism

Hy (G1,%62 (Giu) ) = Hik (G1,%45 (Gu)) = Hi (G, %67 (Gu)). (5.4)

REMARK 5.3. If G C G; is a normal p-adic subgroup with F ~ G, /G finite, then we
again have a natural homeomorphism G, = G,. This gives

Hi (G1,%62 (Gu) ) = Hi (G1,%63 (Gu) ) = Hie (G, %2 (Gu) ), (5.5)
using once again the Hochschild-Serre spectral sequence. In particular, if the charac-
teristic morphism F — Aut(G)/Inn(G) is trivial, then we get a natural isomorphism
Hi (G,67 (Gu)s) =~ Hi(G1,62 (Gru)s).

REMARK 5.4. If G = G’ XG", then G, = G, X G,, naturally, and hence 42 (G,) =
€2 (G,) ®€2(G,,). This gives

Hi (G, €7 (Gu)s) = D Hi (G, €7 (Gy,)) ®H; (G762 (G)). (5.6)

i+j=k
REMARK 5.5. If Z is a commutative p-adic group of split rank 7, then
Hy (2,62 (Zy) 5) = €2 (Zy) @ AKC. (5.7)

REMARK 5.6. The above isomorphisms reduce the computation of Hi (G,€% (Gy)s)
for G reductive, to the computation of the cohomology groups corresponding to its
semi-simple quotient H := G/Z(G):

Hi (G, €2 (Gu)s) = Hi (G, €5 (Gw)) = €D Hi (H, €% (Hu)s) ® AICT, (5.8)
i+j=k

where 7 is the rank of a split component of G. Let Ty be the trace obtained by evaluating
at the identity. Using To, we obtain an injection H(G) > ¢ — To®c € HI(G,%62 (Gy)).

In order to obtain more precise results on Hy (G, 462 (G,)s), we need to take a closer
look at the structure of €2 (G,,) as a G-module. For a G-space X, we denote by (X) the
quotient space X /G with the induced topology, which may be non-Hausdorff. Thus
(Gy) is the set of unipotent conjugacy classes of G.

Assume now that (G, ) is a finite set. (This happens, for example, if G is reductive,
because the ground field [ has characteristic zero.) Then the space G, can be written
as an increasing union of open G-invariant sets U; C G, U-; = &, such that each
difference set U; \ U;_; is a disjoint union of open and closed G-orbits,

U~NUp-1 = UXLJ‘. (5.9)

A filtration U; with these properties will be called “nice.” There may be several nice
filtrations of G,.
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A nice filtration of G,, as above, gives rise, by standard arguments, to a spectral
sequence converging to Hyx (G,€2 (Gy)s), as follows. First, let (g) € (Gy) be the orbit
through an element g € G4. Also, let C(g) denote the centralizer of g € G, and 74
denote the rank of a split component of C(g) if C(g) is unimodular, 74 = 0 otherwise.
This definition of 7, is such that Hx(C(g),Ac(g)) = AKC's.

PROPOSITION 5.7. Let G be a p-adic group with finitely many unipotent orbits (i.e.,
(Gy,) is finite). Then, for any nice filtration (U;) of G, by open G-invariant subsets, there
exists a natural spectral sequence with

Epq= b arvacr, (5.10)
(W) e(Up\Up-1)

convergent to Hy 4 (G, 62 (Gy)s).

PROOF. The argument is standard and goes as follows. Recall first that any fil-
tration 0 = Fp C F; C - -+ C Fxy = €2 (Gy)s by G-submodules gives rise to a spectral
sequence with E},,q =Hp14(G,Fp/Fp_1), convergent to Hy,4(G, 67 (Gy)s).

Now, associated to the open sets U; of a nice filtration, there exists an increasing
filtration F; = €2 (Up)s C €2 (Gy)s by G-submodules such that

e Wls P ez (xi))s, (5.11)
J

@ (U-1) s
where each X; ; is the orbit of a unipotent element (because U; \ U;-; has the topology
given by the disjoint union of the orbits X; ;). Fix [ and j, and let u be a unipotent
element in X, ; (so that then X ; is the orbit through u), which implies that € (X}, ;) =
indg(u) (Acq)- Finally, from Shapiro’s lemma we obtain that

Hy (G,62 (X1,)5) = Hi (C(w),Acquy) = A*C™, (5.12)
and this completes the proof. O

We expect this spectral sequence to converge for G reductive. This is the case, for
example, for G = GL,, (F) and for SL,, (F). See Section 7. The convergence of the spectral
sequence implies, in particular, the convergence of the orbital integrals of unipotent
elements in reductive groups (which is a well-known fact due to Deligne and Rao
[20]). In general, the convergence of the spectral sequence of Proposition 5.7 can be
interpreted as the convergence of “higher orbital integrals.”

6. Induction and the unipotent variety. We assume from now on in this section
that G is reductive. We fix a parabolic subgroup P C G, P # G, and a Levi subgroup
M cC P, so that P = MN, where N is the unipotent radical of P, and the product is
a semi-direct product. In this section, we relate the groups Hy (G,€ (Gy)s) to the
groups, Hy (P, 462 (Py)s) and Hy (M, 462 (My,)s). Since P is nonunimodular, this justifies
the consideration of such groups in the previous sections.

Let K be a “good” maximal compact subgroup of G (see [11, Theorem 5]), so that
G = KP. This decomposition shows that the map

KxP>(k,p) —kpkleG 6.1)
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is proper, and hence the map GxpP := (GXP)/P 2 (g,p) — gpg~* € G is also proper.
This gives a map

62 (G)s =62 (G) — 62 (G xpP) = ind§ (67 (P) @ Ap) = indf (€ (P)5) (6.2)

of G-modules. This map of G-modules and the standard identification of Hochschild
homology with continuous cohomology, equation (3.10), then give a morphism

ind$ : HH, (42 (G)) — HH, (€2 (P)), (6.3)
defined as the composition of the following sequence of morphisms:

HH, (62 (G)) = Hy (G,%2(G)s) — Hy (G,ind$ (€2 (P)5) ® Ag)

(6.4)
~Hy (P,6Z (P)s) =~ HH, (€7 (P))

of Hochschild homology groups. The main result of this section states that indg is
induced by a morphism of algebras, which we now proceed to define.

Let dk be the normalized Haar measure on the maximal compact subgroup K, nor-
malized such that K has volume 1. The composition of kernels

T Ty (ky ko) = jG/P Ty (kn, k) To (k. ko) dk 6.5)

defines on ¢~ (K x K) an algebra structure. Let
D5 162 (G) — €~ (KX K) @62 (P) (6.6)

be defined by ¢$ (f) (k1,k2,p) = f(kipks?).

Recall [11] that the push-forward of the product dp dk of Haar measure on P XK,
via the multiplication map P XK > (p,k) — pk € G, is a left invariant measure on G,
and hence a multiple Adg of the Haar measure dg on G. Suppose that the measure dk
of K is the restriction of dg to K, and has total mass 1. Then the Haar measures on G
and P are called compatible if A = 1. We need the following result of Harish Chandra
(implicitly stated in [25]).

LEMMA 6.1. Suppose the Haar measures on G and P are compatible. Then the linear
map ¢S, defined in (6.6), is a morphism of algebras.

PROOF. The product on€®(KxK)®%>(P) =42 (KxK XxP) is given by the formula

(hih) (k1 ko, p) = L JP i (kn k@) ho (K ko, g~ p) dq dk. 6.7)

Let * denote the multiplication (i.e., convolution product) on €2 (G). Thus, we need
to prove that

frefalkipks) = || fikiak ) fo(ka ' pks') dadk, 6.8)

for all f1, f> € 62 (G). Consider the map P xK > (q,k) — g:= gk™! € G, and let du be
the push-forward of the measure dq dk. Then the right-hand side of (6.8) becomes

| | fitaak D faka vk dadk = | fikig) S0 pks ). 69
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We know that du = dg, by assumptions (see the discussion before the statement of
this lemma), and then

Lfl(klg)fz (97 'pka")du(g) = Lfl @) f2(g ' kipkat) du(g)

(6.10)

= fix fa(kipky'),
by the invariance of the Haar measure. The lemma is proved. O

The trace 6* (K xK) — C induces an isomorphism
T:HH, (6 (K XK) @€ (P)) ~ HH, (€2 (P)). (6.11)
Explicitly, this isomorphism is given at the level of chains by
T(fo® fi®:-®f4)(po,P1,...,Pq)
(6.12)
= KqﬂfO(kO=k1spO)f1(kl,k2,pl) o falkg, ko, pg) dko - - - dky.

This isomorphism combines with d)? to give a morphism

(6§), :HH, (62 (G)) — HH, (6 (P)). (6.13)

THEOREM 6.2. Let P be a parabolic subgroup of a reductive p-adic group G. Con-
sider the morphisms (4)1‘5)* and indg : HH, (62 (G)) — HH4 (€2 (P)), defined above
(equations (6.3) and (6.13)). Then ($$) 4 = ind§.

PROOF. Let M; and M; be two left G-modules. We can regard M; as a right mod-
ule, and then the tensor product M; ®¢ M is the quotient of M; ® M, by the group
generated by the elements gm; ® gm, — m; ® mo, as before. Alternatively, we can
think of M; ®  M» as (M; ® M») ®¢ C. This justifies the notation f ®; 1 for a morphism
M, ®c M, — M| ®¢ M5 induced by a morphism

f:f1®f2:M1®M2—>Mi®Mé. (6.14)

We prove the theorem by an explicit computation. To this end, we use the results
and notation (h¢ and h¢ = hg ®¢ 1) of Lemma 3.1.
By a direct computation using (6.12), we see that the morphism

Todf 16T (G)% — 62 (P)®a*! (6.15)
between Hochschild complexes, is given by the formula

Todp§ () (Po,p1,-..,Pa)
(6.16)
= KQHf(kopokf‘,klplkz‘l,...,kqqual)dkodkl - dky.

We now want to realize the map indg :HH4 (€2 (G)) — HH4 (€2 (P)), at the level of
complexes. In the process, it is convenient to identify the smooth G-module €2 ((G X
P)/P) ~ indg (62 (P)s) with a subspace of the space of functions on G x P, using the
projection GXP — (GXP)/P.
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Consider the G-morphism
L:B,(G) @62 (G) — B,(G) ®ind$ (€5 (P)s) (6.17)
induced by the morphism
2 (G) — ind§ (€2 (P)s) C €™ (G xP). (6.18)
Explicitly,

L(f)(90,91,---,94,9,P) = f(90,91,---,90,9PF ). (6.19)

Then the resulting morphism
l®g1:Hy (G,62(G)s) =Hy (G,62(G)s) — Hy (G,ind$ (€2 (P)s)) (6.20)

is the morphism H; (G, €2 (G)s) — Hq(G,indg (€2 (P)s)) on homology corresponding
to the G-morphism €2 (G) — ind$ (€2 (P)s).
The G-morphism

¥ :B4(G) ®indS (€ (P)s) — indS (B, (P) 86 (P)s)

(6.21)
= €2 (G)®p (By(P) @€ (P)s) C €~ (Gx PI*2)

given by the formula

r(f)(g,vo,m,...,pq,v)=JWf(gvokfl,gmkgl,....gpnkal,g,v)dk, (6.22)

(dk = dko - - - dkg) is well defined and commutes with the differentials of the two com-
plexes. Moreover, it induces an isomorphism in homology, because the only nonzero
homology groups are in dimension 0, and they are both isomorphic to indg (€2 (P)s).
We have an isomorphism

x:ind$ (B,(P) @62 (P)5) ®6 C — (B4(P) 86 (P)5) ®p C (6.23)

of complexes. This shows that the homology of the complex indg (€2 (P)s) ®c Cis
isomorphic to Hy (P,62 (P)s), and that the map induced on homology, that is,

X(reG1) :Hy (G,ind§ (6 (P)5)) — Hy (P62 (P)5) (6.24)

is also an isomorphism (the Shapiro isomorphism).

Below, where convenient, we drop the composition sign o, for example, we write vl
instead of v o l.

Recall now that the isomorphism H, (G, €2 (G)s) = HH,; (€2 (G)) is induced by the
morphism of complexes hq defined in Lemma 3.1, equation (3.10). From the definition
of the morphism indg : HH, (€2 (G)) — HH,. (€2 (P)) and the above discussion, we
obtain the equality of the morphisms H,(G,€2(G)s) — Hy(P, €2 (P)s) induced by
xo (rlegl) and h;l oind§ o h¢. Thus, in order to complete the proof, it would be
enough to check that hpoxo (rl®g1) = Tod$ o hg at the level of complexes. Let

t:B,(G)®ind§ (€2 (P)s) — B,(G) ®cind§ (€ (P)s) (6.25)
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be the natural projection. Since the map hg is surjective, it is also enough to check
that hpoxo (reg1)tl="Tod$ohg.
Let

r’(f)(po,m,...,r’q,v):J f K pokit k' pikyt,... k' pukot k', p) Ak’ dk, (6.26)

KxKa+1

where dk = dky - - - dkg, as before. Then »’ induces a morphism
¥ 1By (G) ®indg (62(P)s) — Bg(P) @6 (P)s (6.27)

of complexes satisfying hpov’ = hpoxo (¥ ®¢ 1)t. Directly from the definitions we
obtain then that hpot'ol=To d)g o h¢. This completes the proof. O

For simplicity, we have stated and proved the above result only for G reductive,
however, it extends to arbitrary G and P such that G/P is compact, by including the
modular function of G, where appropriate.

In order to better understand the effect of the morphism

ind$ = (¢$), :HH, (42 (G)) — HH, (€2 (P)), (6.28)

it is sometimes useful to look at its action on the geometric fibers of the group
HH, (€2 (G)) regarded as an R® (G)-module. This is especially useful because the ac-
tion on the geometric fibers also recovers some classical results on the characters of
induced representations.

First we observe that restriction defines a morphism pf;; :R®(G) — R*(P).Let M be
a Levi component of the parabolic group P. Because the group G is reductive, we also
have R®(P) ~ R®(M).

LEMMA 6.3. Let P be a parabolic subgroup of a reductive p-adic group G, and let
pg :R*(G) — R*(P) be the morphism induced by restriction, used to define an R® (G)-
module structure on HH (€2 (P)). Then

ind$ : HH, (€% (G)) — HH, (€2 (P)) (6.29)

is R® (G)-linear, in the sense that indIG,(f‘g”) =p§ (f)indg(g), for all f € R*(G) and all
& € HH. (62 (G)).

PROOF. The result of the lemma follows from the fact that the map
€= (G) — ind$ (€5 (P)s) (6.30)
is R®(G)-linear and the isomorphism of Shapiro’s lemma,
H, (G,indj (€7 (P)5)) = Hy (P62 (P)5), (6.31)

is natural.
Alternatively, one can use the explicit formula of (6.16). O

If m = my, C R¥(G) is the maximal ideal of functions vanishing at a semi-simple
element y € G, then its image (pg)*(m) = pS(M)R®(P) ¢ R®(P) = R*(M) is the
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ideal of functions vanishing at all g € M that are conjugated to y in G. If y is ellip-
tic, then m = R®(P). If y € M, then (p§)«(m) need not, in general, be maximal. Let
Y1,Y2,---,Y1 € M be representatives of the conjugacy classes of M that are contained
in the conjugacy class of y. Then (p§) « (m) = my, Nmy, N - - -Nm,,, and hence we obtain
a morphism

G\ . P _R°°(G)_, R*M)
(pp)y.C_R (G)y = (pﬁ)*(m) ~(C. (6.32)
We are ready now to study the morphisms
oy ey HHG(€2(G)
(mdp)y :HH, (62 (G))y = mHH, (67 (G)) HH, (6 (P))y
HH, (€2 (P)) : ©6:33)

= ‘6‘” p
(pS), (m)HH, (€= (P)) @ P))y

Let Cp(y;) be the centralizer of y; in P and C;(y;) = Cg(y) be the centralizer of
y; in G. Then Cp(yj), identifies with a subspace of C¢(y)y, which gives rise to a
continuous proper map Cg(y) Xcp(y) Cp(¥)u — Cs(y)u, and hence to a morphism

62 (Ce(y)u) — indgi ) (62 (Co (i) 5) (6.34)
of Cs(y)-modules. Passing to cohomology, we obtain using Shapiro’s lemma a mor-
phism

;1 Hg (Co(¥),62 (Co (¥)u)) — Ha (Cp(y),€5 (Cp(¥1) ) 5)- (6.35)

Recall that Proposition 4.3 gives isomorphisms

HH, (62(G)), =Hq (Ce(y),6Z (Ce(¥)u)),

6.36
HH, (67 (P)), = Hq (Co (7,), 62 (Co (¥),))- (©:59)

PROPOSITION 6.4. Let y € G be a semi-simple element and M C P be as above.
If the conjugacy class of y does not intersect M, then HH, (€2 (P)), = 0, and hence
(indg)y = 0. Otherwise, using notation (6.35), we have

(indf ), = ®'_ 1}, :HH, (€ (G)), — '_ HH, (€2 (P)),, = HHy (67 (P)),. (6.37)
PROOF. This follows from definitions if we observe that, in the sequence of maps

GxpPXcpyy (YiCr(¥i)y) = G Xceiyn Co (i) Xepyp (ViCr(¥i)y)

(6.38)
— GXcatyn (YiCo(yi) ),

the second map is induced by C¢ (y:) Xcp(y;) Cp(¥Yi)u — Cg(yi)w and their composition
induces on homology the direct summand L;’ﬁj of the map (indg)y. O

Another morphism that is likely to play an important role is the “inflation mor-
phism,” which we now define. Let N C P be the unipotent radical of an algebraic p-adic
group, and let M = P/N be its reductive quotient. Then integration over N defines an
algebra morphism

Wl 16T (P) — €= (M), Wl (f)(m) = ijmm) dn. 6.39)
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Integration over N also defines a G-morphism €2 (P)s — €2 (M), and since N is a
union of compact groups, we finally obtain morphisms

HHy (67 (P)) = Hy (P, (P)s) — Hy (P,%Z (M))

6.40
~ Hy (M, 6% (M)) = HHy (€5 (M), (6.40)

whose composition we denote inf},.

THEOREM 6.5. If M is a Levi component of a p-adic group P, as above. Then we have
P
(wh), = 1ﬁf :HH, (42 (P)) — HH, (€2 (M)). (6.41)
PROOF. Integration over N defines a morphism
S iRB(P)®€C; (P)s — B(M) @€Y (M), (6.42)

which commutes with the action of P. Then f ®p 1 coincides with the morphism of
complexes induced by ¥,

Consider now the maps h¢ defined in the proof of Lemma 3.1. Then @4 o hp =
haro f, and hence @, o hp = hyo (f ®p 1), from which the result follows. O

We now want to proceed by analogy and establish the explicit form of the action of
inf}, on the geometric fibers of the groups HH, (€% (P)) and HH, (6% (M)). Fix y € M.
Integration over the nilpotent radical of Cp(y), the centralizer of y in P, induces a
morphism

@2 (Cr(Y)u)s =2 (Cr(Y)u) ® Acy(y) — €2 (Cu(Y)u) (6.43)
of P-modules. Let

Jy tHH4 (62 (P)),, = Hy (Cp(¥),62 (Cp(¥)u) s) — Ha (Cp(¥),6Z (Crr (¥)u))

~Hy (Cu(y), 62 (Crr (¥)u)) (6.44)
= HH, (62 (M)),

be the induced morphism.

PROPOSITION 6.6. Let P be a p-adic group, let M C P be a Levi component, and
y € M be a semi-simple element. Let d(y) be the determinant of Ad;,1 —1 acting on
Lie(N)/ker(Ad;1 —1). Then, using localization at the maximal ideal defined by y in
R*®(G) = R*(P) and notation (6.44), we have

P
(inf) = 1a) 171 gy HEHL (6 (P)), — HEL (67 (M), (6.45)
Y

PROOF. Fix y € G, not necessarily semi-simple and let Ny be the subgroup of ele-
ments of N commuting with y. We choose a complement V), of Lie(N,) in Lie(N) and
we use the exponential map to identify V, with a subset of N. Then the Jacobian of
the map

VyxNy 3 (n,n') — y 'nyn~'n’ e N=V,N, (6.46)
is d(y), and from this the result follows. O

This result is compatible with the results of van Dijk on characters of induced
representations, see [26].
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7. Examples. The results of the previous sections can be used to obtain some ex-
plicit calculations of the groups HH (€2 (G)) for particular groups G.

EXAMPLE 7.1. Let Z be a commutative p-adic group of split rank * (so that Hy(Z) =
A4C", for all g > 0). Then

HH, (€5 (2)) ~ €5 (Z2) @ AIC". (7.1)

EXAMPLE 7.2. Let P be the (parabolic) subgroup of upper triangular matrices in
SL,>(F), and A C P be the subgroup of diagonal matrices. Then inflation defines a
morphism

irEf :HH, (62 (P)) — HH, (62 (A)) =62 (A) ® A*C (7.2)

whose range is €2 (A) @ €7 (A \ {£I}), with I the identity matrix of SL,(F). (We see
this by localizing at each y € A.) To describe the kernel of infﬁ, let

1 b
ub—[o 1}. (7.3)

Then, if we choose b to range through =, a set of representative of F*/F*2, the set of
elements 1, forms a set of representatives of the set of nontrivial conjugacy classes
of unipotent elements of P (a unipotent element is nontrivial if it is different from
the identity). Recall that F has characteristic zero, so X, is a discrete set. Let 0y, be
the orbital integral associated to up, and let 0_,,, be the orbital integral associated to
—Up, then the two maps

F. = @p0.y, 167 (G) — C (7.4)

can be used to identify the kernel of infﬁ as follows. The map
P
F.®F_:ker (igf) — C*2u (7.5)

is injective, and the range of each of the two morphisms F. is the set of elements with
Zero sum.
All in all, we consider the map & = inff\ oF oF_,

® : HHy (62 (P)) — (65 (A) @ C*4) o) @ (67 (AN {£1})) (1), (7.6)

where the lower index (i) represents the degree. Then ® is surjective in degree 1,
and, in degree 0, its range consists of (f,Ap¢), f € 67 (A), Apc € C, for e € {1} and
b €3, = F*/F*?, such that >, Ay = f(el), for € = =1.

The following example is also discussed in [1, 5], but from a different perspective.
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EXAMPLE 7.3. Consider now the group G = SL,(F), where [ is a p-adic field of
characteristic zero. Let F; be the residual field of F (thus g denotes the number of
elements of F; and is the power of the prime number p). We choose € in the valuation
ring of [, such that its image in F; is not a square. Also, let T be a generator of the
(unique) maximal ideal of the valuation ring of F. Fix ag € [ not in the image of the
norm map N : F[0]* — F*. We use the notation of [21], so let 6 € {¢,T,eT} and let Ty
and T} be the elliptic tori defined by

To={[aij], an1=az, ax =0ai.}, Ty ={[aij], a1 =az, ax =0a3a.}. (7.7)

We distinguish two cases, first the case where —1 is a square in F and then the case
where it is not a square in F. If —1 is a square, then the Weyl group of each of the
tori Ty or Tg has order 2 (and will be denoted by S»). Otherwise W (T) = {1}, for each
torus T = Ty or T = T, but Tp and Tg are conjugate for each fixed 6.

Let X = Ug(Ty/S» U Tg/Sz), if —1 is a square, and X = UyTy otherwise. We endow
X with the induced topology. Then X \ {+1} identifies with the set of elliptic conju-
gacy classes of SL,(F). Denote by A C SL,(F) the set of diagonal matrices in SL, ([F).
Let W(A) = S act on 62 (A) ® A*C by conjugation on €2 (A) and by the nontrivial
character on C.

Recall that the set up, b € F/(F*)?, parameterizes the set of conjugacy classes of
unipotent elements of SL, (F). Consequently, the set u, b € F*/(F*)?2, parameterizes
the set of conjugacy classes of nontrivial unipotent elements of SL; (F). Let [ be the
number of elements of F*/(F*)2. Then we have the following proposition.

PROPOSITION 7.4. Let P C SL»(F) be the subgroup of upper triangular matrices. The
composition

¢ :=inf A” o indf : HH,. (€7 (SL2(F))) — HH.. (67 (4)) = €7 (A) @ A*C  (7.8)

has range consisting of W (A)-invariant elements. The kernel of ¢ is isomorphic to
@R (X N {£I}) e C2L, via orbital integrals with respect to elliptic elements and orbital
integrals with respect to =uy, b € F/(F*)2. The factor C3 corresponds to the fact
that there are L + 1 conjugacy classes of unipotent elements of SL,(F) but the or-
bital integral associated +uy, satisfy > peg+ 5+)2 Ocu, (f) = P(f) (€), if f € ker(¢p) and
ce{+1}.

PROOEF. First of all, it is clear that the composition ¢ = inf} oind$ is invariant
with respect to the Weyl group W(A), and hence its range consists of W(A)-invariant
elements.

The localization of ¢ at aregular, diagonal conjugacy class y is onto by Proposition
4.3. Next, we know that every orbital integral extends to €2° (SL»(F)), and this implies
directly that the spectral sequence of Proposition 5.7 collapses at the E2 term. This
proves that the localization of ¢ at y = 1 is also onto, and hence ¢ is onto. The rest
of the proposition follows also from Proposition 5.7 by localization. O

We also have the following alternative description of HH, (62 (SL2([F))).
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COROLLARY 7.5. The morphism indg :HH,. (€2 (SLp(F))) — HH4 (62 (P)) has image
consisting of those elements whose image through the morphism

iriif :HH,, (€ (P)) — HH, (62 (A)) (7.9)

is W (A)-invariant. The kernel ofindg is isomorphic to 6> (X).

EXAMPLE 7.6. We end this section with a description of the ingredients enter-
ing in the formula (1.3) for the Hochschild homology of €2 (G), if G = GL,(F). Let
y € G be a semi-simple element. The minimal polynomial Q, of y decomposes as
Qy = p1p2 - - - pr into irreducible polynomials with coefficients in F. (We assume, for
simplicity, that each polynomial p; is a monic polynomial.) Also, let Py, = pil péz - pi’
be the characteristic polynomial of y. Then the algebra generated by y is

Fiyl=K,@---0kK,, (7.10)

where K; = F[t]/(p;(t)) are not necessarily distinct fields. The commutant {y}’ of y
in M, (F) is the commutant of this algebra, and hence

v} =M, (Ki) e My, (Kz) @ - -- oM, (Ky),

C(}/)ZHGLli(Ki), S:=Z(C(y)) HK

Sres ~ { S ]_[ K} F[x;] and the minimal polynomials of x; are dlStll’lCt}

(7.11)
By the Skolem-Noether theorem, the Weyl group W (S) = N(S)/C(S) coincides with
the group of algebra automorphisms of {y}’. This group has as quotient a group
isomorphic to the subgroup IT ¢ N(S) which permutes the algebras M, (K;). Then
IT =Sy, X+ XSy, thatis, ITis a product of symmetric groups. We denote the kernel
of this morphism by Wy (S). It is isomorphic to HLlAut[F(Ki) (again by the Skolem-
Noether theorem). The group W(S) is then the semi-direct product of W, (S) by I1. We
hence obtain exact sequences

1— No(S) —N(S)—1I—1,
(7.12)
1 — C(§) — No(§) — Wo(S) — 1.

According to (1.3), the only other ingredients necessary to compute HHy (€2 (G))
are the groups Hy (C(S),€2 (Us)).

Now, the unipotent variety of C(S) is the product of the unipotent varieties of
GL, (K;), i = 1,7, and the subgroup C(S) preserves this product decomposition. We
see then that in order to prove that the spectral sequence of Proposition 5.7 collapses
(for any choice of open subsets U;), it is enough to check this for the spectral sequence
converging to the cohomology of €2 (GL,(K),), for an arbitrary characteristic zero
p-adic field K.
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Fix a unipotent element y € GL, (K). Define then Vy = 0, V; = ker(y —1)! ¢ K", if
1 > 0. Also, choose W, such that V; = V;_; @ W}, and define

P={yeGLy(K), yVicVi}, M={yeGLu(K), yW; =Wy, (7.13)
Then P is a parabolic subgroup with unipotent radical
N = {y € GLn(K), (y -1V, C V1], (7.14)

and M is a Levi component of P. It is easy to check, from definition, that the P-orbit
of u in N is dense. The centralizer of u is then contained in P and has split rank less
than or equal to the split rank of P. Fix a maximal split torus A in the centralizer of
u. We can assume that this split torus is contained in M. From the definition and by
direct inspection, the map H, (A) — Hy (M) is injective, and hence the map

H* (M) — H*(A) = H* (C(u)) (7.15)

is surjective.

Fix now a cohomology class c¢o € H*(C(y)) =~ H?(A) and choose a cohomology class
¢ € H1(M) that maps to ¢y under the above restriction map. Also, let T be the trace on
To(f) = f(e) on €Y (M) (obtained by evaluation at the identity e). Then the formula

bo(fo,---»Sqa) = To(De (fo,---,.0a)) (7.16)

defines a Hochschild cyclic cocycle on €2 (M). Consequently,
P G
b = ¢pooinfoindy (7.17)

defines a Hochschild cocycle on €2 (G). For any filtration U; of G, by open, invariant
open sets, such that each U; \ U;_; consists of a single orbit. Suppose that the orbit
U\ U;_ is the orbit of y € GL,,(F) considered above. Then the cocycle ¢ will vanish
on €2 (Up) and represent the cohomology class

c €H(C(y)) ~H% (G, 6= (U \Ui-1)). (7.18)

From this it follows that the spectral sequence of Proposition 5.7 degenerates at E2.
Itis very likely that the above argument extends to arbitrary reductive G by choosing
M and P as in [20].
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