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ABSTRACT. We consider a class of control systems governed by the neutral functional dif-
ferential equation with unbounded delay and study the approximate controllability of the
system. An example is given to illustrate the result.
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1. Introduction. Let % be an abstract phase space. Consider the following nonlinear
control equation:

%{x(t) +F(t,x)} = Ax(t) +G(t,x;) +Bv(t), 0<t<T, xo=@ €, (1.1)
where F,G: [0,T] x% — X are continuous functions, A is the infinitesimal generator
of an analytic semigroup S(-) of bounded linear operators on a Banach space X, the
state function x(t), 0 < t < T, takes values in X, and the control function v (-) is given
in L2(0,T : V), which is a Banach space of admissible control functions, with V as a
Banach space. Also, B is a bounded linear operator from L%(0,T : V) into L%(0,T : X).

The theory of functional differential equations with unbounded delay has been stud-
ied by many authors. Hale and Kato [1] have established the local existence and contin-
uation of solutions for retarded equations with infinite delay with initial values in an
abstract phase space. Henriquez [2] proved the existence of solutions and the periodic
solutions of a class of partial functional differential equations. Recently, Hernandez
and Henriquez [3] have studied the existence problem for partial neutral functional
differential equations with initial values in phase space.

In this paper, we study the approximate controllability of system (1.1) by using
the results of Hernandez and Henriquez [3]. Similar results on controllability and
approximate controllability of linear and nonlinear control systems have been studied
in [5, 6, 8].

To study the nonlinear system (1.1), we assume that the histories x; : (—,0] — X,
xt(0) := x(t+0), belong to some abstract phase space %, that is, a phase space defined
axiomatically. Here, % is a linear space of functions mapping (—o0,0] into X endowed
with a seminorm | - || and % satisfies the following axioms (see [1]):

ANIfx:(—o,0+a) — X,a > 0,is continuous on [0,0 +a), o is fixed, and x, € B,
then for every t € [0,0 +a) the following conditions hold:

(i) xtisin %,
) llx @I < Hllxells,
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(iii) ||x¢llg <K(t—o)sup{llx(s)|l:oc<s<t}+M(t—0)|xs|ls, where H=01is a
constant; K,M : [0,0) — [0,), K is continuous and M is locally bounded,
and H, K, and M are independent of x(-).
(A») For the function x () in (A1), x¢ is a B-valued continuous functionon [0, 0 +a).
(A3) The space % is complete.
Denote by 9% the quotient Banach space %&/| - |l and if @ € B, we write @ for the
coset determined by @. Examples of phase space satisfying the above axioms can be
found in [3, 4].

2. Preliminaries. Let the norm of the space X be denoted by || - || and for the other
spaces we use | - [l20.7:x), Il * lz2¢0,1:v) || - |0, and so on.

We assume the following hypotheses:

(H;) —A is the infinitesimal generator of an analytic semigroup S(-) of bounded
linear operator on X, where the semigroup S (t) is uniformly bounded, ||S(t)| < M for
some constant M > 1 and for every t > 0, and 0 € p(A).

(Hy) There exist constants S € (0,1) and L; =0, such that the function F : [0, T]x% —
X is Xg-valued and satisfies the Lipschitz condition

H(_A)ﬁF(t!wl) _(_A)ﬁF(S!WZ)H SLl{“_S‘ +||‘~ll1 _WZH%}! (2.1)
forevery 0 <s,t <T,and gy, P, € B, and
p=1-Li||[(-A) P[] K|l (2.2)

is positive.
(H3) The nonlinear operator G : [0,T] X% — X satisfies the Lipschitz condition

I|G(s,w1) =G (s,@2)|| < Lo {l|y1 — w2lly ], (2.3)

forevery 0 <s <T,and @,y € B,
(Hy) Let @ € & be a function such that @ (0) € D(A) and F([0,T) x%) < D(A), a.e.
te[0,T) and

t
A(t) = J (—A)S(t—5s)F(s,x;)ds (2.4)
0
is differentiable a.e. on [0, T), that is, A(t) € D(A).
(Hs) The operator B is a bounded linear operator from L2(0,T :V) to L2(0,T : X).

Under the above hypotheses it is well known [3] that for each u € L2(0, T : X) there
exists a unique mild solution

t
x¢(u) =S(t){¢>(0)+F(O,¢)}—F(t,xt(u))—J0 AS(t—s$)F(s,xs(u))ds
(2.5)
t t
+J S(tfs)G(s,xs(u))ds+J S(t—s)u(s)ds.
0 0

The solution mapping W from L%(0,T : X) to C(0,T : X) can be defined by

Wu)(t) =x¢(u)(-). (2.6)
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We also define the continuous linear operator ® from L2(0,T : X) to X by
T
CIJsz S(T-s)p(s)ds, forpeL?0,T:X). (2.7)
0
DEFINITION 2.1. Let the reachable set of the system (1.1) at time T be
Kr(G) = {xr(Bv); v € L?(0,T:V)}, (2.8)

where x;(Bv) is a mild solution which satisfies (2.5) with u = Bv.

DEFINITION 2.2. The system (1.1) is said to be approximate controllable on the
interval [0, T] if K7(G) = X, thatis, for every € > 0 and & € D(A) there exists a control
v € L?(0,T:V) such that

’g—sm{(p(m FF(0,¢)} +F(T,xr(B))
(2.9)
T
+J AS(t—5$)F(s,xs(Bv))ds —®{G(s,xs(Bv))—Bv(s)}| <¢,
0

where x;(Bv) is a solution of (1.1) associated with the nonlinear term G and control
Bv at the time t.

To simplify our task we consider the linear case of F. We introduce the following
assumptions.

For any given € > 0 and p(-) € L?(0,T : X), there exists some v (-) € L?(0,T : V)
such that

(Py) ll@p —PBv|x <€,

(P2) IBv() 201 < a1llp(-)llr2(0,1:x), Where q; is a positive constant independent

of p(+),
(P3) the constant q; satisfies

L
u‘lqlellK\lmMTexp{(%Tﬁ +ML2T) IIKku‘l} <1. (2.10)

3. Approximate controllability. First, we show the approximate controllability of
the corresponding system with G = 0.

LEMMA 3.1. Under hypotheses (H,), (Hz), and (P,), Kt (0) = X.

PROOF. Since the domain D(A) of the operator A is dense in X (see [7]), it is suf-
ficient to prove that D(A) c Kr(0), that is, for any given € > 0 and & € D(A) there
exists a v(-) € L2(0,T : V) such that

—h(T, —®B ,
|E-h(T,p) v|<e 3.1)

T
h(T,p) =S(T){@(0)+F(0,9)} —F(T,xr(Bv)) —JO AS(T—s)F(s,xs(Bv))ds.
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Let E€D(A), then &§ - h(T,@) € D(A). So there exists some p € C'(0,T : X) such that

T
n=J-ﬂT—5nﬂﬂd& (3.2)
0

where n = £€— h(T, ). For instance, if we take p(s) = {1-sA}HE—-h(T,p)}/T, then
the first equality of (3.3) holds, and by hypothesis (P;) there exists a function v(-) €
L2(0,T :V) such that

T T
n=J S(T—s)p(s)ds=f S(T—-s)Bv(s)ds. (3.3)
0 0

Since n = &—-h(T,), then & = h(T,p) +f0TS(T—s)Bv (s)ds.
The denseness of the domain D(A) in X implies the approximate controllability of
the corresponding system with G = 0. O

To prove the approximate controllability of system (1.1), we need the following
lemma.

LEMMA 3.2. Let vy and v» be in L?(0,T : V). Then under hypotheses (H1), (H>), (H3),
and (Hs), the solution mapping W (Bv ) (t) = x;(Bv)of (1.1) satisfies

[|x¢ (Bu1) — x¢ (Bv2)l|.,

X CuLi : (3.4)
su‘AlJT%Xp{<47?7TB+AHQT>HKku‘}HBvl—BvﬂhNQﬁm.

PROOF. let y(-,p); (—o,T] — X be the function defined by

@(1), —o0 <t <0,
t, = 3.5
y(te) {ﬂnmmxtzo. (3-5)

Denote y(t,@) by y(t) with the continuous map t — ;.

Next, for each z € C(0,T : X), z(0) = 0, we denote by Z the function defined by
2(0)=0,for0<0,and 2(t) :=z(t),forO<t < T.

So if x(u)(t) satisfies (2.5), we can decompose it as x(u)(t) = z(u)(t) + y(t), for
0 <t < T, which implies that x;(u) = Z;(u) + y, for 0 <t < T and for each u €
L2(0,T : X) and that the function z(-) satisfies

t
z(t) :S(t)F(O,d))—F(t,Zt(u)+yt)—JOAS(t—s)F(s,ZS(u)erS)dS
(3.6)
t t
+J S(t—s)G(s,éS(u)+yS)ds+J S(t—s)u(s)ds.
0 0

Thus for each vq,v> € L2(0,T:V), itis clear thatfor 0 <t < T,

|lxt (Bu1) —x¢ (Bv2)|| = [{Z: (Bv1) + yi ) — {2 (Bv2) + 1}
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= ||2¢(Bv1) = Z; (Bv2)||

<||F(t,2¢(Bv1) +>¢) = F(t,2¢ (Bv2) + 1) ||

t
+ Jo AS(t—s){F(s,Z2sb(Bvy) +ys) —F(s,2s(Bva) + ys) }ds

; J;S(t—s){G(s,Zs (Buy) +vs) — G(5, 25 (Bua) + ) 1 ds

t
+ L S(t—s){Bvi(s) —Bva(s)}ds

<[[(=A)P||- L1 - IK|lo]|z(Bv1) — z¢ (Bv2)||

Col, TP
+{ “Bl +ML2T}|IK||OO||Z(BU1)—z(Bv2)||oo
+MVT||Bv, _BUZHLZ(U,T:X)-
(3.7)
By Gronwall’s inequality, we have
[|x. (Bv1) —x. (Bv2)||,
Culy (3.8)
su’lM\/Texp{<TT5+ML2T)\IKllmu’l}HBvl—sz||Lz(0_T:X)- O

THEOREM 3.3. Under hypotheses (Hy), (Hz), (H3), (Hy), (Hs), and (P1), (P:), (P3),
K1 (G) = X, that is, system (1.1) is approximately controllable.

PROOF. Since byLemma 3.1, K7 (0) = X, itis sufficient to show that K+ (0) C K7 (G).
Let £ € K7(0). Then for any given € > 0, there exists v € L2(0, T : V) such that

|E-h(T,p) -®Bv| < %
- (3.9)
h(T,cp):S(T){cp(0)+F(0,cp)}—F(T,xT(Bv))—JO AS(T—5s)F(s,xs(Bv))ds.

Assume vy € L?(0,T : V) is arbitrarily given. By hypothesis (P,), there exists some
vy € L?(0,T: V) such that

|®{Bv — G (s,xs (Bv1))} —®Bvy | < % (3.10)
By (3.9) and (3.10), we obtain
|E—h(T, @) -G (s,x:(Bvi)) —®Bv, | < % 3.11)

For v, € L2(0,T : V) thus obtained, we determine w» € L2(0,T : V) by hypotheses (P;)
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and (P») such that
|®{G(s,xs(Bv2)) - G(s,x5(Bv1))} —PBw: | < % (3.12)
and so by (P2) and Lemma 3.2,

HBWZHLZ(O,T:X) <q1||G(-,x.(Bv2)) -G (-, x. (BUI))HLZ(o,T:X)

< @1 LoVT|K | o - ||x. (Bv2) = x. (Bv1) ||«

Culs (3.13)

. T8+ ML T) 1K o |

< ai Lo KM Texp |
x[|Bvz = Bvi||12(0,1:x)-
Thus we may define vz = v, —w» in L2(0, T : V), which has the following property:
|€E—h(T,p)—®G(s,xs(Bv2)) —PBvs]|
= [E—h(T,p) - G(s,xs(Bv1)) — BV, + PBw; (3.14)

~®{G(s,x5(Bv2)) - G(s,xs(Bv1))}| < (7+%>

By induction, it is proved that there exists a sequence v, in L2(0,T : V) such that

1
|E—]’L(T,QD)—CDG(S,XS(BUn))—‘I)BUnH \ < <§+ st onrl

IBUn+1 = Bvnlli2012x) (3.15)

Cali
B

)e, n=1,2,...,

SIflmLzIIKHmMTexp{( TP+ ML, T )||K||oolvlfl)s"Han*an—lﬂ-

By hypothesis (P3), the sequence {Bv, : n = 1, 2,...} is a Cauchy sequence in the Banach
space L?(0,T : X), and there exists some u in L?(0, T : X) such that lim,_.. Bv, = u in
L?(0,T : X). Therefore, for any given € > 0, there exists some integer N, such that

|®Bun 41 — PBUN, | < %

€ —h(T,p)—®G(s,xs(Bun,)) —PBuN, |

(3.16)
< |E-h(T,p)—®G(s,xs(Bun,)) —®BUN+1| + |®(BUN.11) —PBun, |

<(1+ +L)e+le<e
22 2N 277

This means that & € K7 (G). Hence the nonlinear system (1.1) is approximately con-
trollable on [0, T]. O
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4. Example. We consider the boundary value problem

d t ™
eT: [z(t,'r) +J_m Jo b(s—t,r/,'r)z(s,r/)dnds}

2

t
=%z(t,‘r)+[ a(s—t)z(s,t)ds+Bv(t), 0<t<T,0=<T<=<mm, 4.1)

z(t,0) = z(t, ) =0,

z(0,T)=@(0,T), 0<0,0=<T<=<TI.

To represent this problem as a Cauchy problem, we take X = L2([0,7r]) and define
x(t):=z(t,-). Let A: X — X be defined by Af(T) := f” (1) with the domain

D(A) = {f(-) e L*([0,m]) : £ (-) € L*([0,77]), £(0) = f(71) = O}. 4.2)

It is well known that A generates a strongly continuous semigroup 7T (-) which is com-
pact, analytic, and selfadjoint. Furthermore, A has discrete spectrum, the eigenvalues
are —n?, n € N, with corresponding normalized eigenvectors e, (1) := (2/1) /2 sin(n ).
These eigenvectors satisfy the properties stated in [3].

Define an infinite-dimensional space V by

V:{vlv: > vnen with Zvn2<+oo}. 4.3)

n=2 n=2

The norm in V is defined by ||[v|ly = (3_, v,?) /2. Define a mapping B € £(V — X)
as follows:

[ 00

Bv =2vse; + z Unen, forv = z Unen € V. 4.4)

n=2 n=2

ObViously, ”BHSK(V—X) < \/§

Then the operator B is well defined by v (-,-) € L2((0,T) x (0,77)); and by [8], we
know that B satisfies hypotheses (Hs), (P1), (P2), and (P3).

Let ® denote the space C, x L2(g;X) with ¥ = 0, as in [4]. To prove approximate
controllability of the problem (4.1), we assume that conditions (i)-(v) of [4] hold. Con-
sequently, equation (4.1) can be formulated abstractly as

%{x(t) FAL(xe)} = Ax (D) + Ao (x) < Bu(t), 0<t<E, ws)

Xo=@ €B,

where A, A, are linear operators in 9. Using the assumptions stated in [4, pages
471-473], one can see that the system is approximately controllable.
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