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ABSTRACT. We consider the semigroup S of the fuzzy points of a semigroup S, and discuss
the relation between the fuzzy interior ideals and the subsets of S in an (intra-regular)
semigroup S.
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1. Introduction. After the introduction of the concept of fuzzy sets by Zadeh [8],
several researches were conducted on the generalizations of the notion of fuzzy sets.
Pu and Liu [5] introduced the notion of fuzzy points. In [6, 7, 8], authors characterized
fuzzy ideals as fuzzy points of semigroups. In[1, 2, 3], Kuroki discussed the properties
of fuzzy ideals and fuzzy bi-ideals in a semigroup and a regular semigroup. In this
paper, we consider the semigroup S of the fuzzy points of a semigroup S, and discuss
the relation between the fuzzy interior ideals and the subsets of S in an (intra-regular)
semigroup S.

2. Preliminaries. Let S be a semigroup with a binary operation “-”. A nonempty
subset A of S is called a subsemigroup of S if A% c A, a left (resp., right) ideal of S if
SA c A (resp., AS € A), and a two-sided ideal (or simply ideal) of S if A is both a left
and a right ideal of S. A subsemigroup A of S is called a bi-ideal of S if ASAc A.Let S
be a semigroup. A nonempty subset A of S is called an interior ideal of S if SAS < A.
A function f from a set X to [0,1] is called a fuzzy subset of X. The set {x € X |
f(x) > 0} is called the support, denoted by supp f, of f. The closed interval [0,1] is a
complete lattice with two binary operations “v” and “A”, where « Vv B = sup{«, 8} and
x A B =inf{«x, B} for each o, € [0,1]. For any « € (0,1] and x € X, a fuzzy subset
x« of X is called a fuzzy point in X if

xaly) =X Hx=, 2.1)
0 otherwise,

foreach v € X.If f is afuzzy subset of X, then a fuzzy point x is said to be contained
in f, denoted by x4 € f, if @ < f(x). Itis clear that x € f for some « € (0,1] if and
only if x € supp f.

A fuzzy subset f of a semigroup S is called a fuzzy subsemigroup of S if

Sfxy) = f)AF(y), (2.2)

for all x,y € S, a fuzzy left (resp., right) ideal of S if
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f(xy) = f(y) (resp., f(xy) = f(x)), (2.3)

for all x,y € S, and a fuzzy ideal of S if f is both a fuzzy left and a fuzzy right
ideal of S. It is clear that f is a fuzzy ideal of a semigroup S if and only if f(xy) >
f(x)v f(y) forall x,y €S, and that every fuzzy left (right, two-sided) ideal of S is a
fuzzy subsemigroup of S.

3. Interior ideals of fuzzy points. Let %(S) be the set of all fuzzy subsets of a
semigroup S. For each f,g € %(S), the product of f and g is a fuzzy subset fog
defined as follows:

(fog)(x) =

{V(f(y)Ag(z)) if x=yz (y,z€S), o

otherwise,

for each x € S.Itis clear that (fog)oh = fo(goh),and thatif f = g,then fohcgoh
and ho f € hog for any f, g, and h € F(S). Thus F(S) is a semigroup with the
product “o”,

Let S be the set of all fuzzy points in a semigroup S. Then xx°yg = (XY)anp €S
and xxo (¥gozy) = (X¥Z)anpay = (Xa©yg) 02y for any x«, s, and z, € S. Thus S is
a subsemigroup of F(S).

For any f € %(S), f denotes the set of all fuzzy points contained in f, that is,
f=1xa €S| f(x)za}.If xq €S, then ot > 0.

For any A,B < S, we define the product of two sets A and B as AoB = {xyo g |
X« € A,yg €B}.

LEMMA 3.1 (see [7, Lemma 4.1]). Let f be a nonzero fuzzy subset of a semigroup S.
Then the following conditions are equivalent:

(1) f is a fuzzy left (right, two-sided) ideal of S.

(2) f is a left (right, two-sided) ideal of S.

LEMMA 3.2 (see [7, Lemma 4.2]). Let f and g be two fuzzy subsets of a semigroup S.
Then

(D fug=rfug.
@ fng=fng.
(3) feg=2fog.

A fuzzy subsemigroup f of a semigroup S is called a fuzzy interior ideal of S if
f(xay) = f(a) for all x,a,y € S.

LEMMA 3.3. Let f be a nonzero fuzzy subset of a semigroup S. Then the following
conditions are equivalent:

(1) f is a fuzzy interior ideal of S.

(2) f is an interior ideal of S.

PROOF. Let f be a fuzzy interior ideal of S, and let x4,z, € S and yg € f. Then
since x>0,y >0,and 0 < B < f(y»), we have

O<anBry<anfy)ny=<f(y)<flxyz). (3.2)
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Hence xy o ygozy = (X¥Z)angnay € f. This implies that So foS < f, thus f is an
interior ideal of S. Conversely, suppose that f is an interior ideal of S. Let x,y,z € S.
If f(v)=0,then f(y) =0 < f(xyz).If f(¥) #0, then ys(,) € f and xf(,),Zf(y) € S.

Since f is an interior ideal of S, we have

(X¥2) fy) = (XVZ) fornfnf() = Xf(3) ° VF() ° Zf() € f- (3.3)

This implies that f(xyz) > f(»), and hence f is a fuzzy interior ideal of S. O

It is clear that any ideal of a semigroup S is an interior ideal of S. It is also clear
that any fuzzy ideal of S is a fuzzy interior ideal of S. A semigroup S is called regular
if, for each element a of S, there exists an element x in S such that a = axa.

THEOREM 3.4. Let f be any fuzzy set in a regular semigroup S. Then the following
conditions are equivalent:

(1) f is a fuzzy right (vesp., left) ideal of S.

(2) f is an interior ideal of S.

PROOF. It suffices to show that (2) implies (1). Assume that (2) holds. Let x be any
element in S. Then since S is regular, there exists element a in S such that x = xax.
If f(x)=0, f(x)=0=< f(xy).If f(x)#0, then Xy € f and yyx) € S. Since f is
an interior ideal of S, we have

(XY) fix) = (XaXY) ()

= ((XA)XY) faynfeonfx) (3.4)
=(xa) fx) o Xpx) o Vr(x) € f.

This implies that f(xy) = f(x), and hence f is a fuzzy right ideal of S. O

THEOREM 3.5 (see [7, Theorem 3.3]). Let S be a semigroup. If for a fixed «x € (0,1],
fo:S — S is a function defined by fy(x) = x«, then fy is a one-to-one homomorphism
of semigroups.

From Theorem 3.5, we can consider S as an extension of a semigroup S.
Let f be a fuzzy subset of a semigroup S. If %y is the subset of S xS given as
following:

%f:{(xaaxa) | X« ¢i}U{(Xa,X[3) | X, Xp Ei}: (3.5)

then the set R is an equivalence relation on S. We can consider the quotient set S/%® 7,
with the equivalence classes X for each x € S. We will denote the subset {X, | x« € i }
of /Ry by E(f). If Xy € E(f), then Xo = Xp(xy) = {xa | 0 <A < fQ)}. If Xo € E(Sf),
then Xy = {x«} (singleton set).

Let f be a fuzzy subsemigroup of S. If the product “x” on E(f) is defined by
Xok Vg = (X)) ynp for each Xo, 34 € E(f), then E(f) is a semigroup under the oper-

TRl

ation “x”.

THEOREM 3.6. Let f be a fuzzy interior ideal of S. Then E(f) is an interior ideal
of (S/Rp,*).



710 KYUNG HO KIM

PROOE. LetXy,Yp€S/Ryanday € E(f). Thensince x4,y € S,ay € fand fisan
interior ideal of S, (xaY)aaynp = Xaoayoyp € f.Hence Xo*ay %Yy = (xaY) qryrp €
E(f). It follows that E(f) is an interior ideal of S/%Ry. O

A semigroup S is called intra-regular if, for each element a of S, there exists ele-
ments x and 7y in S such that a = xa®y.

THEOREM 3.7. A semigroup S is intra-regular if and only if the semigroup S is intra-
regular.

PROOF. lLet ay € S. Then since S is intra-regular and a € S, there exist x,y in §
such that a = xa®y. Thus x4 € S and y4 € S and

Xa0An©An0 Vo= X0 (a%)yoVa = (xa’y), = aq. (3.6)

Hence S is intra-regular. Conversely, let S be intra-regular and a € S. Then for any
« € (0,1], there exist elements xg,ys € S such that

Ay =XgoagoanoYs = (xa®y) (3.7)

BAXAG"
This implies that a = xa®y and x,y € S. O

THEOREM 3.8. For a fuzzy set f of an intra-regular semigroup S the following con-
ditions are equivalent:

(1) f is a right (resp., left) ideal of S.

(2) f is an interior ideal of S.

PRrROOF. Itisclear that (1)implies (2). Assume that (2) holds. Let x, y be any elements
in S. Then since S is intra-regular, there exist elements a,b in S such that x = ax?b.
If f(x)=0, f(x)=0< f(xy).If f(x)#0, then xy) € f and yfx) € S. Since f is
an interior ideal of S, we have

(X)) fix) = (axzby)f(x>
= ((@x)x (b)) f ey afxrafix) (3.8)
= (ax)fx)oXfix) o (by)r(x) € f.

This implies that f(xy) > f(x), and hence f is a fuzzy right ideal of S. O

LEMMA 3.9 (see [3, Lemma 4.1]). For a semigroup S, the following conditions are
equivalent:

(1) S is intra-regular.

(2) LnR C LR holds for every left ideal L and right ideal R of S.

LEMMA 3.10 (see [3, Lemma 4.2]). For a semigroup S, the following conditions are
equivalent:

(1) S is intra-regular.

(2) fng C go f holds for every fuzzy right ideal f and fuzzy left ideal g of S.

THEOREM 3.11. For a semigroup S, the following conditions are equivalent:
(1) S is intra-regular.
(2) fng C gof forevery fuzzy right ideal f and every fuzzy left ideal g of S.
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PROOF. Let f be a fuzzy right ideal and g a left ideal of S. Since S is intra-regular,
f is aright ideal, and g is a left ideal of S, fng C go f by Lemma 3.9.

Conversely, let f be a fuzzy right ideal and g a fuzzy left ideal of S. Let x € S. If
f(x)=0or g(x) =0, then

0=Ff(x)Ag(x)<c(gof)(x). (3.9)

If f(x)+0and g(x) # 0, then X(x)rgx) € f and X rx)rg(x) € g. Hence

Xf(x)/\g(x)EiﬁgCQOiEgOf. (3.10)

It follows that f(x) Ag(x) € (gof)(x).Hence (fng)(x)=f(x)rg(x) < (gof)(x)
forall x € S and fng C go f.By Lemma 3.10, S is intra-regular. O

LEMMA 3.12 (see [4, Lemma 4.3]). For a semigroup S the following conditions are
equivalent:

(1) S is both regular and intra-regular.

(2) B? = B for every bi-ideal B of S.

(3) AnB C ABN BA for all bi-ideals A and B of S.

(4) BNL c BLNLB for every bi-ideal B and every left ideal L of S.

(5) BNR C BRNRB for every bi-ideal B and every right ideal R of S.

(6) LNR C LRNRL for every right ideal R and every left ideal L of S.

A fuzzy subsemigroup f of S is called a fuzzy bi-ideal of S if f(xyz) = f(x) A f(2)
for all x,y and z € S.

COROLLARY 3.13. For a semigroup S the following conditions are equivalent:

(1) S is both regular and intra-regular.

(2) fof = f for every fuzzy bi-ideal f of S.

() fngc fogngof forall fuzzy bi-ideals f and g of S.

(4) fngcC fogngof forevery fuzzy bi-ideal f and every fuzzy left ideal g of S.
(5) fng C fogngof forevery fuzzy bi-ideal f and every fuzzy right ideal g of S.
(6) fng C fogngof forevery fuzzy right ideal f and every fuzzy left ideal g of S.
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