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1. Introduction. After the introduction of the concept of fuzzy sets by Zadeh [8],

several researches were conducted on the generalizations of the notion of fuzzy sets.

Pu and Liu [5] introduced the notion of fuzzy points. In [6, 7, 8], authors characterized

fuzzy ideals as fuzzy points of semigroups. In [1, 2, 3], Kuroki discussed the properties

of fuzzy ideals and fuzzy bi-ideals in a semigroup and a regular semigroup. In this

paper, we consider the semigroup S of the fuzzy points of a semigroup S, and discuss

the relation between the fuzzy interior ideals and the subsets of S in an (intra-regular)

semigroup S.

2. Preliminaries. Let S be a semigroup with a binary operation “·”. A nonempty

subset A of S is called a subsemigroup of S if A2 ⊆A, a left (resp., right ) ideal of S if

SA ⊆ A (resp., AS ⊆ A), and a two-sided ideal (or simply ideal) of S if A is both a left

and a right ideal of S. A subsemigroup A of S is called a bi-ideal of S if ASA⊆A. Let S
be a semigroup. A nonempty subset A of S is called an interior ideal of S if SAS ⊆A.

A function f from a set X to [0,1] is called a fuzzy subset of X. The set {x ∈ X |
f(x) > 0} is called the support, denoted by suppf , of f . The closed interval [0,1] is a

complete lattice with two binary operations “∨” and “∧”, where α∨β= sup{α,β} and

α∧β = inf{α,β} for each α,β ∈ [0,1]. For any α ∈ (0,1] and x ∈ X, a fuzzy subset

xα of X is called a fuzzy point in X if

xα(y)=


α if x =y,
0 otherwise,

(2.1)

for eachy ∈X. If f is a fuzzy subset ofX, then a fuzzy point xα is said to be contained

in f , denoted by xα ∈ f , if α≤ f(x). It is clear that xα ∈ f for some α∈ (0,1] if and

only if x ∈ suppf .

A fuzzy subset f of a semigroup S is called a fuzzy subsemigroup of S if

f(xy)≥ f(x)∧f(y), (2.2)

for all x,y ∈ S, a fuzzy left (resp., right ) ideal of S if
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f(xy)≥ f(y) (resp., f(xy)≥ f(x)), (2.3)

for all x,y ∈ S, and a fuzzy ideal of S if f is both a fuzzy left and a fuzzy right

ideal of S. It is clear that f is a fuzzy ideal of a semigroup S if and only if f(xy) ≥
f(x)∨f(y) for all x,y ∈ S, and that every fuzzy left (right, two-sided) ideal of S is a

fuzzy subsemigroup of S.

3. Interior ideals of fuzzy points. Let �(S) be the set of all fuzzy subsets of a

semigroup S. For each f ,g ∈ �(S), the product of f and g is a fuzzy subset f ◦g
defined as follows:

(f ◦g)(x)=



∨(
f(y)∧g(z)) if x =yz (y,z ∈ S),

0 otherwise,
(3.1)

for each x ∈ S. It is clear that (f ◦g)◦h= f ◦(g◦h), and that if f ⊆ g, then f ◦h⊆ g◦h
and h ◦ f ⊆ h ◦ g for any f , g, and h ∈ �(S). Thus �(S) is a semigroup with the

product “◦”.

Let S be the set of all fuzzy points in a semigroup S. Then xα ◦yβ = (xy)α∧β ∈ S
and xα ◦(yβ ◦zγ)= (xyz)α∧β∧γ = (xα ◦yβ)◦zγ for any xα,yβ, and zγ ∈ S. Thus S is

a subsemigroup of �(S).
For any f ∈ �(S), f denotes the set of all fuzzy points contained in f , that is,

f = {xα ∈ S | f(x)≥α}. If xα ∈ S, then α> 0.

For any A,B ⊆ S, we define the product of two sets A and B as A◦B = {xα ◦yβ |
xα ∈A,yβ ∈ B}.

Lemma 3.1 (see [7, Lemma 4.1]). Let f be a nonzero fuzzy subset of a semigroup S.

Then the following conditions are equivalent:

(1) f is a fuzzy left (right, two-sided) ideal of S.

(2) f is a left (right, two-sided) ideal of S.

Lemma 3.2 (see [7, Lemma 4.2]). Let f and g be two fuzzy subsets of a semigroup S.

Then

(1) f ∪g = f ∪g.

(2) f ∩g = f ∩g.

(3) f ◦g ⊇ f ◦g.

A fuzzy subsemigroup f of a semigroup S is called a fuzzy interior ideal of S if

f(xay)≥ f(a) for all x,a,y ∈ S.

Lemma 3.3. Let f be a nonzero fuzzy subset of a semigroup S. Then the following

conditions are equivalent:

(1) f is a fuzzy interior ideal of S.

(2) f is an interior ideal of S.

Proof. Let f be a fuzzy interior ideal of S, and let xα,zγ ∈ S and yβ ∈ f . Then

since α> 0, γ > 0, and 0< β≤ f(y), we have

0<α∧β∧γ ≤α∧f(y)∧γ ≤ f(y)≤ f(xyz). (3.2)
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Hence xα ◦yβ ◦ zγ = (xyz)α∧β∧γ ∈ f . This implies that S ◦ f ◦ S ⊆ f , thus f is an

interior ideal of S. Conversely, suppose that f is an interior ideal of S. Let x,y,z ∈ S.

If f(y)= 0, then f(y)= 0≤ f(xyz). If f(y)≠ 0, then yf(y) ∈ f and xf(y),zf(y) ∈ S.

Since f is an interior ideal of S, we have

(xyz)f(y) = (xyz)f(y)∧f(y)∧f(y) = xf(y) ◦yf(y) ◦zf(y) ∈ f . (3.3)

This implies that f(xyz)≥ f(y), and hence f is a fuzzy interior ideal of S.

It is clear that any ideal of a semigroup S is an interior ideal of S. It is also clear

that any fuzzy ideal of S is a fuzzy interior ideal of S. A semigroup S is called regular

if, for each element a of S, there exists an element x in S such that a= axa.

Theorem 3.4. Let f be any fuzzy set in a regular semigroup S. Then the following

conditions are equivalent:

(1) f is a fuzzy right (resp., left) ideal of S.

(2) f is an interior ideal of S.

Proof. It suffices to show that (2) implies (1). Assume that (2) holds. Let x be any

element in S. Then since S is regular, there exists element a in S such that x = xax.

If f(x) = 0, f(x) = 0 ≤ f(xy). If f(x) ≠ 0, then xf(x) ∈ f and yf(x) ∈ S. Since f is

an interior ideal of S, we have

(xy)f(x) = (xaxy)f(x)
= ((xa)xy)f(x)∧f(x)∧f(x)
= (xa)f(x) ◦xf(x) ◦yf (x)∈ f .

(3.4)

This implies that f(xy)≥ f(x), and hence f is a fuzzy right ideal of S.

Theorem 3.5 (see [7, Theorem 3.3]). Let S be a semigroup. If for a fixed α∈ (0,1],
fα : S → S is a function defined by fα(x)= xα, then fα is a one-to-one homomorphism

of semigroups.

From Theorem 3.5, we can consider S as an extension of a semigroup S.

Let f be a fuzzy subset of a semigroup S. If �f is the subset of S × S given as

following:

�f =
{(
xα,xα

) | xα �∈ f
}∪{(xα,xβ

) | xα, xβ ∈ f
}
, (3.5)

then the set �f is an equivalence relation on S. We can consider the quotient set S/�f ,

with the equivalence classesxα for eachx ∈ S. We will denote the subset {xα | xα ∈ f}
of S/�f by E(f). If xα ∈ E(f), then xα = xf(x) = {xλ | 0 < λ ≤ f(x)}. If xα �∈ E(f),
then xα = {xα} (singleton set).

Let f be a fuzzy subsemigroup of S. If the product “∗” on E(f) is defined by

xα∗yβ = (xy)α∧β for each xα,yβ ∈ E(f), then E(f) is a semigroup under the oper-

ation “∗”.

Theorem 3.6. Let f be a fuzzy interior ideal of S. Then E(f) is an interior ideal

of (S/�f ,∗).
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Proof. Letxα,yβ ∈ S/�f and aγ ∈ E(f). Then sincexα,yβ ∈ S, aγ ∈ f and f is an

interior ideal of S, (xay)α∧γ∧β = xα◦aγ ◦yβ ∈ f . Hence xα∗aγ∗yβ = (xay)α∧γ∧β ∈
E(f). It follows that E(f) is an interior ideal of S/�f .

A semigroup S is called intra-regular if, for each element a of S, there exists ele-

ments x and y in S such that a= xa2y .

Theorem 3.7. A semigroup S is intra-regular if and only if the semigroup S is intra-

regular.

Proof. Let aα ∈ S. Then since S is intra-regular and a ∈ S, there exist x,y in S
such that a= xa2y . Thus xα ∈ S and yα ∈ S and

xα ◦aα ◦aα ◦yα = xα ◦
(
a2)

α ◦yα =
(
xa2y

)
α = aα. (3.6)

Hence S is intra-regular. Conversely, let S be intra-regular and a ∈ S. Then for any

α∈ (0,1], there exist elements xβ,yδ ∈ S such that

aα = xβ ◦aα ◦aα ◦yδ =
(
xa2y

)
β∧α∧δ. (3.7)

This implies that a= xa2y and x,y ∈ S.

Theorem 3.8. For a fuzzy set f of an intra-regular semigroup S the following con-

ditions are equivalent:

(1) f is a right (resp., left) ideal of S.

(2) f is an interior ideal of S.

Proof. It is clear that (1) implies (2). Assume that (2) holds. Letx,y be any elements

in S. Then since S is intra-regular, there exist elements a,b in S such that x = ax2b.

If f(x) = 0, f(x) = 0 ≤ f(xy). If f(x) ≠ 0, then xf(x) ∈ f and yf(x) ∈ S. Since f is

an interior ideal of S, we have

(xy)f(x) =
(
ax2by

)
f(x)

= ((ax)x(by))f(x)∧f(x)∧f(x)
= (ax)f(x) ◦xf(x) ◦(by)f (x)∈ f .

(3.8)

This implies that f(xy)≥ f(x), and hence f is a fuzzy right ideal of S.

Lemma 3.9 (see [3, Lemma 4.1]). For a semigroup S, the following conditions are

equivalent:

(1) S is intra-regular.

(2) L∩R ⊂ LR holds for every left ideal L and right ideal R of S.

Lemma 3.10 (see [3, Lemma 4.2]). For a semigroup S, the following conditions are

equivalent:

(1) S is intra-regular.

(2) f ∩g ⊂ g◦f holds for every fuzzy right ideal f and fuzzy left ideal g of S.

Theorem 3.11. For a semigroup S, the following conditions are equivalent:

(1) S is intra-regular.

(2) f ∩g ⊂ g◦f for every fuzzy right ideal f and every fuzzy left ideal g of S.
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Proof. Let f be a fuzzy right ideal and g a left ideal of S. Since S is intra-regular,

f is a right ideal, and g is a left ideal of S, f ∩g ⊂ g◦f by Lemma 3.9.

Conversely, let f be a fuzzy right ideal and g a fuzzy left ideal of S. Let x ∈ S. If

f(x)= 0 or g(x)= 0, then

0= f(x)∧g(x)⊆ (g◦f)(x). (3.9)

If f(x)≠ 0 and g(x)≠ 0, then xf(x)∧g(x) ∈ f and xf(x)∧g(x) ∈ g. Hence

xf(x)∧g(x) ∈ f ∩g ⊂ g◦f ⊆ g◦f . (3.10)

It follows that f(x)∧g(x)⊆ (g◦f)(x). Hence (f ∩g)(x)= f(x)∧g(x)⊆ (g◦f)(x)
for all x ∈ S and f ∩g ⊂ g◦f . By Lemma 3.10, S is intra-regular.

Lemma 3.12 (see [4, Lemma 4.3]). For a semigroup S the following conditions are

equivalent:

(1) S is both regular and intra-regular.

(2) B2 = B for every bi-ideal B of S.

(3) A∩B ⊂AB∩BA for all bi-ideals A and B of S.

(4) B∩L⊂ BL∩LB for every bi-ideal B and every left ideal L of S.

(5) B∩R ⊂ BR∩RB for every bi-ideal B and every right ideal R of S.

(6) L∩R ⊂ LR∩RL for every right ideal R and every left ideal L of S.

A fuzzy subsemigroup f of S is called a fuzzy bi-ideal of S if f(xyz)≥ f(x)∧f(z)
for all x,y and z ∈ S.

Corollary 3.13. For a semigroup S the following conditions are equivalent:

(1) S is both regular and intra-regular.

(2) f ◦f = f for every fuzzy bi-ideal f of S.

(3) f ∩g ⊂ f ◦g∩g◦f for all fuzzy bi-ideals f and g of S.

(4) f ∩g ⊂ f ◦g∩g◦f for every fuzzy bi-ideal f and every fuzzy left ideal g of S.

(5) f ∩g ⊂ f ◦g∩g◦f for every fuzzy bi-ideal f and every fuzzy right ideal g of S.

(6) f ∩g ⊂ f ◦g∩g◦f for every fuzzy right ideal f and every fuzzy left ideal g of S.
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