

ON FUZZY POINTS IN SEMIGROUPS

KYUNG HO KIM

(Received 4 December 2000)

ABSTRACT. We consider the semigroup \underline{S} of the fuzzy points of a semigroup S , and discuss the relation between the fuzzy interior ideals and the subsets of \underline{S} in an (intra-regular) semigroup S .

2000 Mathematics Subject Classification. 03E72, 20M12.

1. Introduction. After the introduction of the concept of fuzzy sets by Zadeh [8], several researches were conducted on the generalizations of the notion of fuzzy sets. Pu and Liu [5] introduced the notion of fuzzy points. In [6, 7, 8], authors characterized fuzzy ideals as fuzzy points of semigroups. In [1, 2, 3], Kuroki discussed the properties of fuzzy ideals and fuzzy bi-ideals in a semigroup and a regular semigroup. In this paper, we consider the semigroup \underline{S} of the fuzzy points of a semigroup S , and discuss the relation between the fuzzy interior ideals and the subsets of \underline{S} in an (intra-regular) semigroup S .

2. Preliminaries. Let S be a semigroup with a binary operation “ \cdot ”. A nonempty subset A of S is called a *subsemigroup* of S if $A^2 \subseteq A$, a *left* (resp., *right*) *ideal* of S if $SA \subseteq A$ (resp., $AS \subseteq A$), and a *two-sided ideal* (or simply *ideal*) of S if A is both a left and a right ideal of S . A subsemigroup A of S is called a *bi-ideal* of S if $ASA \subseteq A$. Let S be a semigroup. A nonempty subset A of S is called an *interior ideal* of S if $SAS \subseteq A$. A function f from a set X to $[0, 1]$ is called a *fuzzy subset* of X . The set $\{x \in X \mid f(x) > 0\}$ is called the *support*, denoted by $\text{supp } f$, of f . The closed interval $[0, 1]$ is a complete lattice with two binary operations “ \vee ” and “ \wedge ”, where $\alpha \vee \beta = \sup\{\alpha, \beta\}$ and $\alpha \wedge \beta = \inf\{\alpha, \beta\}$ for each $\alpha, \beta \in [0, 1]$. For any $\alpha \in (0, 1]$ and $x \in X$, a fuzzy subset x_α of X is called a *fuzzy point* in X if

$$x_\alpha(y) = \begin{cases} \alpha & \text{if } x = y, \\ 0 & \text{otherwise,} \end{cases} \quad (2.1)$$

for each $y \in X$. If f is a fuzzy subset of X , then a fuzzy point x_α is said to be *contained in* f , denoted by $x_\alpha \in f$, if $\alpha \leq f(x)$. It is clear that $x_\alpha \in f$ for some $\alpha \in (0, 1]$ if and only if $x \in \text{supp } f$.

A fuzzy subset f of a semigroup S is called a *fuzzy subsemigroup* of S if

$$f(xy) \geq f(x) \wedge f(y), \quad (2.2)$$

for all $x, y \in S$, a *fuzzy left* (resp., *right*) *ideal* of S if

$$f(xy) \geq f(y) \text{ (resp., } f(xy) \geq f(x)), \quad (2.3)$$

for all $x, y \in S$, and a *fuzzy ideal* of S if f is both a fuzzy left and a fuzzy right ideal of S . It is clear that f is a fuzzy ideal of a semigroup S if and only if $f(xy) \geq f(x) \vee f(y)$ for all $x, y \in S$, and that every fuzzy left (right, two-sided) ideal of S is a fuzzy subsemigroup of S .

3. Interior ideals of fuzzy points. Let $\mathcal{F}(S)$ be the set of all fuzzy subsets of a semigroup S . For each $f, g \in \mathcal{F}(S)$, the product of f and g is a fuzzy subset $f \circ g$ defined as follows:

$$(f \circ g)(x) = \begin{cases} \bigvee (f(y) \wedge g(z)) & \text{if } x = yz \ (y, z \in S), \\ 0 & \text{otherwise,} \end{cases} \quad (3.1)$$

for each $x \in S$. It is clear that $(f \circ g) \circ h = f \circ (g \circ h)$, and that if $f \subseteq g$, then $f \circ h \subseteq g \circ h$ and $h \circ f \subseteq h \circ g$ for any f, g , and $h \in \mathcal{F}(S)$. Thus $\mathcal{F}(S)$ is a semigroup with the product “ \circ ”.

Let \underline{S} be the set of all fuzzy points in a semigroup S . Then $x_\alpha \circ y_\beta = (xy)_{\alpha \wedge \beta} \in \underline{S}$ and $x_\alpha \circ (y_\beta \circ z_\gamma) = (xyz)_{\alpha \wedge \beta \wedge \gamma} = (x_\alpha \circ y_\beta) \circ z_\gamma$ for any x_α, y_β , and $z_\gamma \in \underline{S}$. Thus \underline{S} is a subsemigroup of $\mathcal{F}(S)$.

For any $f \in \mathcal{F}(S)$, \underline{f} denotes the set of all fuzzy points contained in f , that is, $\underline{f} = \{x_\alpha \in \underline{S} \mid f(x) \geq \alpha\}$. If $x_\alpha \in \underline{f}$, then $\alpha > 0$.

For any $A, B \subseteq \underline{S}$, we define the product of two sets A and B as $A \circ B = \{x_\alpha \circ y_\beta \mid x_\alpha \in A, y_\beta \in B\}$.

LEMMA 3.1 (see [7, Lemma 4.1]). *Let f be a nonzero fuzzy subset of a semigroup S . Then the following conditions are equivalent:*

- (1) f is a fuzzy left (right, two-sided) ideal of S .
- (2) \underline{f} is a left (right, two-sided) ideal of \underline{S} .

LEMMA 3.2 (see [7, Lemma 4.2]). *Let f and g be two fuzzy subsets of a semigroup S . Then*

- (1) $\underline{f \cup g} = \underline{f} \cup \underline{g}$.
- (2) $\underline{f \cap g} = \underline{f} \cap \underline{g}$.
- (3) $\underline{f \circ g} \supseteq \underline{f} \circ \underline{g}$.

A fuzzy subsemigroup f of a semigroup S is called a fuzzy interior ideal of S if $f(xay) \geq f(a)$ for all $x, a, y \in S$.

LEMMA 3.3. *Let f be a nonzero fuzzy subset of a semigroup S . Then the following conditions are equivalent:*

- (1) f is a fuzzy interior ideal of S .
- (2) \underline{f} is an interior ideal of \underline{S} .

PROOF. Let f be a fuzzy interior ideal of S , and let $x_\alpha, z_\gamma \in \underline{S}$ and $y_\beta \in \underline{f}$. Then since $\alpha > 0$, $\gamma > 0$, and $0 < \beta \leq f(y)$, we have

$$0 < \alpha \wedge \beta \wedge \gamma \leq \alpha \wedge f(y) \wedge \gamma \leq f(y) \leq f(xyz). \quad (3.2)$$

Hence $x_\alpha \circ y_\beta \circ z_\gamma = (xyz)_{\alpha \wedge \beta \wedge \gamma} \in \underline{f}$. This implies that $\underline{S} \circ \underline{f} \circ \underline{S} \subseteq \underline{f}$, thus \underline{f} is an interior ideal of \underline{S} . Conversely, suppose that \underline{f} is an interior ideal of \underline{S} . Let $x, y, z \in S$. If $f(y) = 0$, then $f(y) = 0 \leq f(xyz)$. If $f(y) \neq 0$, then $y_{f(y)} \in \underline{f}$ and $x_{f(y)}, z_{f(y)} \in \underline{S}$. Since \underline{f} is an interior ideal of \underline{S} , we have

$$(xyz)_{f(y)} = (xyz)_{f(y) \wedge f(y) \wedge f(y)} = x_{f(y)} \circ y_{f(y)} \circ z_{f(y)} \in \underline{f}. \quad (3.3)$$

This implies that $f(xyz) \geq f(y)$, and hence f is a fuzzy interior ideal of S . \square

It is clear that any ideal of a semigroup S is an interior ideal of S . It is also clear that any fuzzy ideal of S is a fuzzy interior ideal of S . A semigroup S is called regular if, for each element a of S , there exists an element x in S such that $a = axa$.

THEOREM 3.4. *Let f be any fuzzy set in a regular semigroup S . Then the following conditions are equivalent:*

- (1) f is a fuzzy right (resp., left) ideal of S .
- (2) \underline{f} is an interior ideal of \underline{S} .

PROOF. It suffices to show that (2) implies (1). Assume that (2) holds. Let x be any element in S . Then since S is regular, there exists element a in S such that $x = xax$. If $f(x) = 0$, $f(x) = 0 \leq f(xa)$. If $f(x) \neq 0$, then $x_{f(x)} \in \underline{f}$ and $y_{f(x)} \in \underline{S}$. Since \underline{f} is an interior ideal of \underline{S} , we have

$$\begin{aligned} (xy)_{f(x)} &= (xaxy)_{f(x)} \\ &= ((xa)xy)_{f(x) \wedge f(x) \wedge f(x)} \\ &= (xa)_{f(x)} \circ x_{f(x)} \circ y_{f(x)} \in \underline{f}. \end{aligned} \quad (3.4)$$

This implies that $f(xy) \geq f(x)$, and hence f is a fuzzy right ideal of S . \square

THEOREM 3.5 (see [7, Theorem 3.3]). *Let S be a semigroup. If for a fixed $\alpha \in (0, 1]$, $f_\alpha : S \rightarrow \underline{S}$ is a function defined by $f_\alpha(x) = x_\alpha$, then f_α is a one-to-one homomorphism of semigroups.*

From **Theorem 3.5**, we can consider \underline{S} as an extension of a semigroup S .

Let f be a fuzzy subset of a semigroup S . If \mathcal{R}_f is the subset of $\underline{S} \times \underline{S}$ given as following:

$$\mathcal{R}_f = \{(x_\alpha, x_\alpha) \mid x_\alpha \notin \underline{f}\} \cup \{(x_\alpha, x_\beta) \mid x_\alpha, x_\beta \in \underline{f}\}, \quad (3.5)$$

then the set \mathcal{R}_f is an equivalence relation on \underline{S} . We can consider the quotient set $\underline{S}/\mathcal{R}_f$, with the equivalence classes \bar{x}_α for each $x \in S$. We will denote the subset $\{\bar{x}_\alpha \mid x_\alpha \in \underline{f}\}$ of $\underline{S}/\mathcal{R}_f$ by $E(\underline{f})$. If $\bar{x}_\alpha \in E(\underline{f})$, then $\bar{x}_\alpha = \bar{x}_{f(x)} = \{x_\lambda \mid 0 < \lambda \leq f(x)\}$. If $\bar{x}_\alpha \notin E(\underline{f})$, then $\bar{x}_\alpha = \{x_\alpha\}$ (singleton set).

Let f be a fuzzy subsemigroup of S . If the product “ $*$ ” on $E(\underline{f})$ is defined by $\bar{x}_\alpha * \bar{y}_\beta = \overline{(xy)}_{\alpha \wedge \beta}$ for each $\bar{x}_\alpha, \bar{y}_\beta \in E(\underline{f})$, then $E(\underline{f})$ is a semigroup under the operation “ $*$ ”.

THEOREM 3.6. *Let f be a fuzzy interior ideal of S . Then $E(\underline{f})$ is an interior ideal of $(\underline{S}/\mathcal{R}_f, *)$.*

PROOF. Let $\bar{x}_\alpha, \bar{y}_\beta \in \underline{S}/\mathcal{R}_f$ and $\bar{a}_y \in E(\underline{f})$. Then since $x_\alpha, y_\beta \in \underline{S}$, $a_y \in \underline{f}$ and \underline{f} is an interior ideal of \underline{S} , $(x_\alpha y_\beta)_{\alpha \wedge y \wedge \beta} = x_\alpha \circ a_y \circ y_\beta \in \underline{f}$. Hence $\bar{x}_\alpha * \bar{a}_y * \bar{y}_\beta = (\bar{x}_\alpha \bar{a}_y \bar{y}_\beta)_{\alpha \wedge y \wedge \beta} \in E(\underline{f})$. It follows that $E(\underline{f})$ is an interior ideal of $\underline{S}/\mathcal{R}_f$. \square

A semigroup S is called intra-regular if, for each element a of S , there exists elements x and y in S such that $a = xa^2y$.

THEOREM 3.7. *A semigroup S is intra-regular if and only if the semigroup \underline{S} is intra-regular.*

PROOF. Let $a_\alpha \in \underline{S}$. Then since S is intra-regular and $a \in S$, there exist x, y in S such that $a = xa^2y$. Thus $x_\alpha \in \underline{S}$ and $y_\alpha \in \underline{S}$ and

$$x_\alpha \circ a_\alpha \circ a_\alpha \circ y_\alpha = x_\alpha \circ (a^2)_\alpha \circ y_\alpha = (xa^2y)_\alpha = a_\alpha. \quad (3.6)$$

Hence \underline{S} is intra-regular. Conversely, let \underline{S} be intra-regular and $a \in S$. Then for any $\alpha \in (0, 1]$, there exist elements $x_\beta, y_\delta \in \underline{S}$ such that

$$a_\alpha = x_\beta \circ a_\alpha \circ a_\alpha \circ y_\delta = (xa^2y)_{\beta \wedge \alpha \wedge \delta}. \quad (3.7)$$

This implies that $a = xa^2y$ and $x, y \in S$. \square

THEOREM 3.8. *For a fuzzy set f of an intra-regular semigroup S the following conditions are equivalent:*

- (1) f is a right (resp., left) ideal of S .
- (2) \underline{f} is an interior ideal of \underline{S} .

PROOF. It is clear that (1) implies (2). Assume that (2) holds. Let x, y be any elements in S . Then since S is intra-regular, there exist elements a, b in S such that $x = ax^2b$. If $f(x) = 0$, $f(x) = 0 \leq f(xy)$. If $f(x) \neq 0$, then $x_{f(x)} \in \underline{f}$ and $y_{f(x)} \in \underline{S}$. Since \underline{f} is an interior ideal of \underline{S} , we have

$$\begin{aligned} (xy)_{f(x)} &= (ax^2by)_{f(x)} \\ &= ((ax)x(by))_{f(x) \wedge f(x) \wedge f(x)} \\ &= (ax)_{f(x)} \circ x_{f(x)} \circ (by)_{f(x)} \in \underline{f}. \end{aligned} \quad (3.8)$$

This implies that $f(xy) \geq f(x)$, and hence f is a fuzzy right ideal of S . \square

LEMMA 3.9 (see [3, Lemma 4.1]). *For a semigroup S , the following conditions are equivalent:*

- (1) S is intra-regular.
- (2) $L \cap R \subset LR$ holds for every left ideal L and right ideal R of S .

LEMMA 3.10 (see [3, Lemma 4.2]). *For a semigroup S , the following conditions are equivalent:*

- (1) S is intra-regular.
- (2) $f \cap g \subset g \circ f$ holds for every fuzzy right ideal f and fuzzy left ideal g of S .

THEOREM 3.11. *For a semigroup S , the following conditions are equivalent:*

- (1) S is intra-regular.
- (2) $\underline{f} \cap \underline{g} \subset \underline{g} \circ \underline{f}$ for every fuzzy right ideal f and every fuzzy left ideal g of S .

PROOF. Let f be a fuzzy right ideal and g a left ideal of S . Since \underline{S} is intra-regular, \underline{f} is a right ideal, and \underline{g} is a left ideal of \underline{S} , $\underline{f} \cap \underline{g} \subset \underline{g} \circ \underline{f}$ by Lemma 3.9.

Conversely, let f be a fuzzy right ideal and g a fuzzy left ideal of S . Let $x \in S$. If $f(x) = 0$ or $g(x) = 0$, then

$$0 = f(x) \wedge g(x) \subseteq (g \circ f)(x). \quad (3.9)$$

If $f(x) \neq 0$ and $g(x) \neq 0$, then $x_{f(x) \wedge g(x)} \in \underline{f}$ and $x_{f(x) \wedge g(x)} \in \underline{g}$. Hence

$$x_{f(x) \wedge g(x)} \in \underline{f} \cap \underline{g} \subset \underline{g} \circ \underline{f} \subseteq \underline{g} \circ \underline{f}. \quad (3.10)$$

It follows that $f(x) \wedge g(x) \subseteq (g \circ f)(x)$. Hence $(f \cap g)(x) = f(x) \wedge g(x) \subseteq (g \circ f)(x)$ for all $x \in S$ and $f \cap g \subset g \circ f$. By Lemma 3.10, S is intra-regular. \square

LEMMA 3.12 (see [4, Lemma 4.3]). *For a semigroup S the following conditions are equivalent:*

- (1) S is both regular and intra-regular.
- (2) $B^2 = B$ for every bi-ideal B of S .
- (3) $A \cap B \subset AB \cap BA$ for all bi-ideals A and B of S .
- (4) $B \cap L \subset BL \cap LB$ for every bi-ideal B and every left ideal L of S .
- (5) $B \cap R \subset BR \cap RB$ for every bi-ideal B and every right ideal R of S .
- (6) $L \cap R \subset LR \cap RL$ for every right ideal R and every left ideal L of S .

A fuzzy subsemigroup f of S is called a *fuzzy bi-ideal* of S if $f(xyz) \geq f(x) \wedge f(z)$ for all x, y and $z \in S$.

COROLLARY 3.13. *For a semigroup S the following conditions are equivalent:*

- (1) S is both regular and intra-regular.
- (2) $f \circ \underline{f} = \underline{f}$ for every fuzzy bi-ideal f of S .
- (3) $\underline{f} \cap \underline{g} \subset \underline{f} \circ \underline{g} \cap \underline{g} \circ \underline{f}$ for all fuzzy bi-ideals f and g of S .
- (4) $\underline{f} \cap \underline{g} \subset \underline{f} \circ \underline{g} \cap \underline{g} \circ \underline{f}$ for every fuzzy bi-ideal f and every fuzzy left ideal g of S .
- (5) $\underline{f} \cap \underline{g} \subset \underline{f} \circ \underline{g} \cap \underline{g} \circ \underline{f}$ for every fuzzy bi-ideal f and every fuzzy right ideal g of S .
- (6) $\underline{f} \cap \underline{g} \subset \underline{f} \circ \underline{g} \cap \underline{g} \circ \underline{f}$ for every fuzzy right ideal f and every fuzzy left ideal g of S .

REFERENCES

- [1] N. Kuroki, *On fuzzy ideals and fuzzy bi-ideals in semigroups*, Fuzzy Sets and Systems 5 (1981), no. 2, 203–215. [MR 82e:20076](#). [Zbl 452.20060](#).
- [2] ———, *Fuzzy semiprime ideals in semigroups*, Fuzzy Sets and Systems 8 (1982), no. 1, 71–79. [MR 83h:20073](#). [Zbl 488.20049](#).
- [3] ———, *On fuzzy semigroups*, Inform. Sci. 53 (1991), no. 3, 203–236. [MR 91j:20144](#). [Zbl 714.20052](#).
- [4] S. Lajos, *Theorems on (1, 1)-ideals in Semigroups. II*, Department of Mathematics, Karl Marx University for Economics, Budapest, 1974. [MR 51#3333](#). [Zbl 291.20074](#).
- [5] P. M. Pu and Y. M. Liu, *Fuzzy topology. I. Neighborhood structure of a fuzzy point and Moore-Smith convergence*, J. Math. Anal. Appl. 76 (1980), no. 2, 571–599. [MR 82e:54009a](#). [Zbl 447.54006](#).
- [6] X. P. Wang, Z. W. Mo, and W. J. Liu, *Fuzzy ideals generated by fuzzy point in semigroups*, Sichuan Shifan Daxue Xuebao Ziran Kexue Ban 15 (1992), no. 4, 17–24. [MR 94b:20067](#).
- [7] Y. H. Yon, *The semigroups of fuzzy points*, submitted in Comm. Algebra.

[8] L. A. Zadeh, *Fuzzy sets*, Information and Control **8** (1965), 338–353. [MR 36#2509](#).
[Zbl 139.24606](#).

KYUNG HO KIM: DEPARTMENT OF MATHEMATICS, CHUNGJU NATIONAL UNIVERSITY, CHUNGJU 380-702, KOREA

E-mail address: ghkim@gukwon.chungju.ac.kr

Special Issue on Modeling Experimental Nonlinear Dynamics and Chaotic Scenarios

Call for Papers

Thinking about nonlinearity in engineering areas, up to the 70s, was focused on intentionally built nonlinear parts in order to improve the operational characteristics of a device or system. Keying, saturation, hysteretic phenomena, and dead zones were added to existing devices increasing their behavior diversity and precision. In this context, an intrinsic nonlinearity was treated just as a linear approximation, around equilibrium points.

Inspired on the rediscovering of the richness of nonlinear and chaotic phenomena, engineers started using analytical tools from "Qualitative Theory of Differential Equations," allowing more precise analysis and synthesis, in order to produce new vital products and services. Bifurcation theory, dynamical systems and chaos started to be part of the mandatory set of tools for design engineers.

This proposed special edition of the *Mathematical Problems in Engineering* aims to provide a picture of the importance of the bifurcation theory, relating it with nonlinear and chaotic dynamics for natural and engineered systems. Ideas of how this dynamics can be captured through precisely tailored real and numerical experiments and understanding by the combination of specific tools that associate dynamical system theory and geometric tools in a very clever, sophisticated, and at the same time simple and unique analytical environment are the subject of this issue, allowing new methods to design high-precision devices and equipment.

Authors should follow the Mathematical Problems in Engineering manuscript format described at <http://www.hindawi.com/journals/mpe/>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/> according to the following timetable:

Manuscript Due	February 1, 2009
First Round of Reviews	May 1, 2009
Publication Date	August 1, 2009

Guest Editors

José Roberto Castilho Piqueira, Telecommunication and Control Engineering Department, Polytechnic School, The University of São Paulo, 05508-970 São Paulo, Brazil; piqueira@lac.usp.br

Elbert E. Neher Macau, Laboratório Associado de Matemática Aplicada e Computação (LAC), Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, 12227-010 São Paulo, Brazil ; elbert@lac.inpe.br

Celso Grebogi, Department of Physics, King's College, University of Aberdeen, Aberdeen AB24 3UE, UK; grebogi@abdn.ac.uk