

ANALYTIC FUNCTIONS OF NON-BAZILEVIĆ TYPE AND STARLIKENESS

MILUTIN OBRADOVIĆ and SHIGEYOSHI OWA

(Received 23 October 2000)

ABSTRACT. Two classes $\bar{\mathcal{B}}_n(\mu, \alpha, \lambda)$ and $\bar{\mathcal{P}}_n(\mu, \alpha, \lambda)$ of analytic functions which are not Bazilević type in the open unit disk \mathbb{U} are introduced. The object of the present paper is to consider the starlikeness of functions belonging to the classes $\bar{\mathcal{B}}_n(\mu, \alpha, \lambda)$ and $\bar{\mathcal{P}}_n(\mu, \alpha, \lambda)$.

2000 Mathematics Subject Classification. 30C45.

1. Introduction. Let $\mathbb{U} = \{z \in \mathbb{C} : |z| < 1\}$ denote the open unit disk in the complex plane \mathbb{C} . For $n \geq 1$, we define

$$\mathcal{A}_n = \left\{ f : f(z) = z + \sum_{n+1}^{\infty} a_j z^j \text{ analytic in } \mathbb{U} \right\}. \quad (1.1)$$

Also, we need the following notations and definitions. Let

$$\mathcal{G}^* = \left\{ f \in \mathcal{A}_1 : \operatorname{Re} \left\{ \frac{zf'(z)}{f(z)} \right\} > 0, z \in \mathbb{U} \right\} \quad (1.2)$$

be the class of starlike functions (with respect to the origin) in \mathbb{U} , and let

$$\mathcal{T}_\lambda = \left\{ f \in \mathcal{A}_1 : \left| \frac{zf'(z)}{f(z)} - 1 \right| < \lambda, 0 < \lambda \leq 1, z \in \mathbb{U} \right\} \quad (1.3)$$

be the subclass of \mathcal{G}^* . Further we define

$$\mathcal{B}(\mu, \lambda) = \left\{ f \in \mathcal{A}_1 : \left| f'(z) \left(\frac{f(z)}{z} \right)^{\mu-1} - 1 \right| < \lambda, \mu > 0, 0 < \lambda \leq 1, z \in \mathbb{U} \right\} \quad (1.4)$$

which is the subclass of Bazilević class of univalent functions (cf. [1]). Ponnusamy [8] has considered the starlikeness and other properties of functions $f(z)$ in the class $\mathcal{B}(\mu, \lambda)$. For negative μ , that is, for $-1 < \mu < 0$, which is better to write (with $0 < \mu < 1$) in the form

$$\bar{\mathcal{B}}(\mu, \lambda) = \left\{ f \in \mathcal{A}_1 : \left| f'(z) \left(\frac{z}{f(z)} \right)^{1+\mu} - 1 \right| < \lambda, 0 < \mu < 1, 0 < \lambda < 1, z \in \mathbb{U} \right\}, \quad (1.5)$$

we obtain the class which was considered earlier by Obradović [3, 4], Obradović and Owa [5], and Obradović and Tuneski [6].

For the limit case $\mu = 0$, this class becomes the class \mathcal{T}_λ . When $\mu = 1$, this class

becomes the class of univalent functions $f(z)$ satisfying

$$\left| \frac{z^2 f'(z)}{f(z)^2} - 1 \right| < \lambda, \quad (1.6)$$

which was studied by Ozaki and Nunokawa [7].

Next, for $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_k) \in \mathbb{R}^k$ with $\alpha_j \in \mathbb{R}$, we define the operator D_α by

$$D_\alpha = 1 + \alpha_1 z \frac{d}{dz} + \alpha_2 z^2 \frac{d^2}{dz^2} + \dots + \alpha_k z^k \frac{d^k}{dz^k}, \quad (1.7)$$

and, by virtue of the operator D_α , the subclasses

$$\bar{\mathcal{B}}_n(\mu, \alpha, \lambda) = \left\{ f \in \mathcal{A}_n : \left| D_\alpha \left(f'(z) \left(\frac{z}{f(z)} \right)^{1+\mu} \right) - 1 \right| < \lambda, 0 < \mu < 1, 0 < \lambda < 1, z \in \mathbb{U} \right\}, \quad (1.8)$$

$$\bar{\mathcal{P}}_n(\mu, \alpha, \lambda) = \left\{ f \in \mathcal{A}_n : \left| D_\alpha \left[\left(f'(z) \left(\frac{z}{f(z)} \right)^{1+\mu} \right)' \right] \right| < \lambda, 0 < \mu < 1, 0 < \lambda < 1, z \in \mathbb{U} \right\} \quad (1.9)$$

of \mathcal{A}_n .

Samaris [9] has investigated the appropriate classes for the case (1.4), and has obtained results which are stronger than those given earlier and in several cases sharp ones. By using the method by Samaris [9], we will generalize some results given in [3, 4], and we will obtain some new results. We also note that we cannot directly apply some nice estimates given by Samaris [9].

For $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_k) \in \mathbb{R}^k$, we define the polynomial $P_\alpha(x)$ by

$$P_\alpha(x) = 1 + \alpha_1 x + \alpha_2 x(x-1) + \dots + \alpha_k x(x-1) \dots (x-k+1). \quad (1.10)$$

In this paper, we will use the classes such that $\alpha = 0$ ($P_\alpha(x) = 1$) or $P_\alpha(x)$ has non-positive real zeros given by ρ_j ($j = 1, 2, 3, \dots, k$). In this case, we can write

$$P_\alpha(x) = \alpha_k \prod_{j=1}^k (x - \rho_j) \quad (1.11)$$

with

$$\alpha_k \prod_{j=1}^k (-\rho_j) = 1. \quad (1.12)$$

Further, for $t = (t_1, t_2, \dots, t_k) \in (0, 1)^k$ such that $t_j \in (0, 1)$, we denote t_α by

$$t_\alpha = t_1^{-1/\rho_1} t_2^{-1/\rho_2} \dots t_k^{-1/\rho_k} = \prod_{j=1}^k t_j^{-1/\rho_j}. \quad (1.13)$$

If $P_\alpha(x) = 1$, then we define $t_\alpha = 1$. Also if $n = 1, 2, 3, \dots$, then we denote by \mathcal{W}_α the class of analytic functions $w(z)$ in \mathbb{U} for which $|w(z)| \leq |z|^n$ ($z \in \mathbb{U}$).

2. Starlikeness of the classes $\bar{\mathcal{B}}_n(\mu, \alpha, \lambda)$ and $\bar{\mathcal{P}}_n(\mu, \alpha, \lambda)$. Our first result is contained in the following theorem.

THEOREM 2.1. Let $\bar{\mathcal{B}}_n(\mu, \alpha, \lambda)$ be the class defined by (1.8) for which $(n-\mu)P_\alpha(n) - \lambda n > 0$ ($n = 1, 2, 3, \dots$), $0 < \mu < 1$.

- (i) If $\lambda n / ((n-\mu)P_\alpha(n) - \lambda n) \leq r$, then $\bar{\mathcal{B}}_n(\mu, \alpha, \lambda) \subset \mathcal{T}_r$,
- (ii) if $\lambda \leq P_\alpha(n)((n-\mu)/(n+\mu))$, then $\bar{\mathcal{B}}_n(\mu, \alpha, \lambda) \subset \mathcal{T}_1$.

PROOF. From

$$D_\alpha \left(f'(z) \left(\frac{z}{f(z)} \right)^{1+\mu} \right) = 1 + \lambda w(z) = 1 + \lambda \sum_{n=1}^{\infty} w_n z^n \quad (w \in \mathcal{W}_n), \quad (2.1)$$

we obtain

$$\begin{aligned} f'(z) \left(\frac{z}{f(z)} \right)^{1+\mu} &= 1 + \lambda \sum_{n=1}^{\infty} w_n \frac{z^n}{P_\alpha(n)}, \\ \left(\frac{z}{f(z)} \right)^\mu &= 1 - \lambda \sum_{n=1}^{\infty} w_n \left(\frac{\mu}{n-\mu} \right) \frac{z^n}{P_\alpha(n)}. \end{aligned} \quad (2.2)$$

Since

$$\frac{1}{P_\alpha(n)} = \int_{[0,1]^k} t_\alpha^n, \quad \frac{\mu}{P_\alpha(n)(n-\mu)} = \int_{[0,1]^{k+1}} t_\alpha^n t_{k+1}^{n/\mu-2}, \quad (2.3)$$

using (2.2), we have

$$\begin{aligned} f'(z) \left(\frac{z}{f(z)} \right)^{1+\mu} &= 1 + \lambda \int_{[0,1]^k} w(t_\alpha z), \\ \left(\frac{z}{f(z)} \right)^\mu &= 1 - \lambda \int_{[0,1]^{k+1}} w(t_\alpha t_{k+1}^{1/\mu} z) t_{k+1}^{-2}. \end{aligned} \quad (2.4)$$

From (2.4), we easily obtain that

$$\frac{zf'(z)}{f(z)} = \frac{1 + \lambda \int_{[0,1]^k} w(t_\alpha z)}{1 - \lambda \int_{[0,1]^{k+1}} w(t_\alpha t_{k+1}^{1/\mu} z) t_{k+1}^{-2}}, \quad (2.5)$$

and from here

$$\begin{aligned} \left| \frac{zf'(z)}{f(z)} - 1 \right| &\leq \lambda \frac{\int_{[0,1]^k} |w(t_\alpha z)| + \int_{[0,1]^{k+1}} |w(t_\alpha t_{k+1}^{1/\mu} z)| t_{k+1}^{-2}}{1 - \lambda \int_{[0,1]^{k+1}} |w(t_\alpha t_{k+1}^{1/\mu} z)| t_{k+1}^{-2}} \\ &< \lambda \frac{\int_{[0,1]^k} t_\alpha^n + \int_{[0,1]^{k+1}} t_\alpha^n t_{k+1}^{n/\mu-2}}{1 - \lambda \int_{[0,1]^{k+1}} t_\alpha^n t_{k+1}^{n/\mu-2}} = \frac{\lambda n}{(n-\mu)P_\alpha(n) - \lambda \mu}, \end{aligned} \quad (2.6)$$

from which the conclusion of the theorem easily follows. \square

REMARK 2.2. For $n = 1$ and $P_\alpha = 1$ from Theorem 2.1, we have the result given by Obradović [3].

REMARK 2.3. From (2.5), similar to the proof of Theorem 2.1, for the class $\bar{\mathcal{B}}_n(\mu, \alpha, \lambda)$ we have

$$\left| \frac{zf'(z)}{f(z)} - t \right| \leq |1-t| + \frac{\lambda n}{(n-\mu)P_\alpha(n) - \lambda \mu} \quad (t > 0). \quad (2.7)$$

If $\lambda_1 = \lambda n / ((n - \mu)P_\alpha(n) - \lambda\mu) < 1$ and $t \geq (1 + \lambda_1)/2$, then we have

$$\bar{\mathcal{B}}_n(\mu, \alpha, \lambda) \subset (\mathcal{S}^*)_t, \quad (2.8)$$

where

$$(\mathcal{S}^*)_t = \left\{ f \in \mathcal{A}_1 : \left| \frac{zf'(z)}{f(z)} - t \right| < t, z \in \mathbb{U} \right\}. \quad (2.9)$$

Especially, for $n = 1$ and $\alpha = 0$, we have

$$\bar{\mathcal{B}}(\mu, \lambda) \subset (\mathcal{S}^*)_t \quad (2.10)$$

for $\lambda/(1 - \mu - \lambda) < 1$ and $t \geq 1/2 + \lambda/(2(1 - \mu - \lambda))$.

In the next theorem for the class $\bar{\mathcal{B}}(\mu, \lambda) \cap \mathcal{A}_n = \bar{\mathcal{B}}_n(\mu, 0, \lambda)$, we will prove that the appropriate results are the best possible.

THEOREM 2.4. *Let $\bar{\mathcal{B}}(\mu, \lambda) \cap \mathcal{A}_n$ be the class for which $n - \mu - \lambda\mu > 0$. Then*

- (i) $\bar{\mathcal{B}}(\mu, \lambda) \cap \mathcal{A}_n \subset \mathcal{T}_r$ if and only if $\lambda n / (n - \mu - \lambda\mu) \leq r$ and
- (ii) $\bar{\mathcal{B}}(\mu, \lambda) \cap \mathcal{A}_n \subset \mathcal{S}^*$ if and only if $\lambda \leq (n - \mu) / \sqrt{(n - \mu)^2 + \mu^2}$.

PROOF. For $t_1 \in \mathbb{R}$ and $t_2 \in \mathbb{R}$, with the lemma by Fournier [2], there exists a sequence of functions $\phi_k(z)$ analytic in the closed unit disk $\bar{\mathbb{U}}$ such that $|\phi_k(z)| \leq |z|$, $\lim_{k \rightarrow \infty} \phi_k(z) = ze^{it_1}$, $\lim_{k \rightarrow \infty} \phi_k(1) = e^{it_2}$ uniformly on compact subsets of \mathbb{U} . If $w_k(z) = z^{n-1} \phi_k(z)$, then we consider the sequence $f_k(z) \in \bar{\mathcal{B}}(\mu, \lambda) \cap \mathcal{A}_n$ which is given by

$$f_k'(z) \left(\frac{z}{f_k(z)} \right)^{1+\mu} = 1 + \lambda w_k(z), \quad (2.11)$$

or

$$\frac{zf_k'(z)}{f_k(z)} = \frac{1 + \lambda w_k(z)}{1 - \lambda \int_0^1 w_k(t^{1/\mu} z) t^{-2} dt}. \quad (2.12)$$

Since $\lim_{k \rightarrow \infty} w_k(z) = z^n e^{it_1}$ and $\lim_{k \rightarrow \infty} w_k(1) = e^{it_2}$, we see that

$$\lim_{k \rightarrow \infty} \lim_{z \rightarrow 1} \frac{zf_k'(z)}{f_k(z)} = \frac{1 + \lambda e^{it_1}}{1 - \lambda(\mu / (n - \mu)) e^{it_2}}. \quad (2.13)$$

For $t_1 = 0$ and $t_2 = 0$, we get

$$\lim_{k \rightarrow \infty} \lim_{z \rightarrow 1} \left| \frac{zf_k'(z)}{f_k(z)} - 1 \right| = \frac{\lambda n}{n - \mu - \lambda\mu}. \quad (2.14)$$

Let $0 < \lambda < 1$ and $q_1 \in [0, \pi/2]$, $q_2 \in [0, \pi/2]$ such that $\sin q_1 = \lambda$, $\sin q_2 = \lambda\mu / (n - \mu)$. If we choose $t_1 = q_1 + \pi/2$, $t_2 = \pi/2 - q_2$, then we obtain

$$\arg(1 + \lambda e^{it_1}) = q_1, \quad \arg\left(1 - \frac{\lambda\mu}{n - \mu} e^{it_2}\right) = -q_2, \quad (2.15)$$

and therefore

$$\lim_{k \rightarrow \infty} \lim_{z \rightarrow 1} \left| \arg\left(\frac{zf_k'(z)}{f_k(z)}\right) \right| = q_1 + q_2. \quad (2.16)$$

From $\cos(q_1 + q_2) \geq 0$ or $\sin^2 q_1 + \sin^2 q_2 - 1 \leq 0$, we have the statement (ii) (one part) of the theorem. We note that the “if” part of the theorem follows from the result of [Theorem 2.1](#) and from the result given by Obradović and Owa [\[5\]](#). \square

THEOREM 2.5. *Let $\bar{\mathcal{P}}_n(\mu, \alpha, \lambda)$ be the class defined by (1.9) such that $n(n-\mu)P_\alpha(n-1) - \lambda n > 0$ ($n = 1, 2, 3, \dots$), $0 < \mu < 1$. If*

$$\frac{\lambda n}{n(n-\mu)P_\alpha(n-1) - \lambda \mu} \leq r, \quad (2.17)$$

then

$$\bar{\mathcal{P}}_n(\mu, \alpha, \lambda) \subset \mathcal{T}_r. \quad (2.18)$$

PROOF. The proof of this theorem is similar to that of [Theorem 2.1](#). By virtue of

$$D_\alpha \left\{ \left(f'(z) \left(\frac{z}{f(z)} \right)^{1+\mu} \right)' \right\} = \lambda w(z) \quad (w \in \mathcal{W}_{n-1}), \quad (2.19)$$

we have

$$\begin{aligned} \left\{ f'(z) \left(\frac{z}{f(z)} \right)^{1+\mu} \right\}' &= \lambda \int_{[0,1]^k} w(t_\alpha z), \\ f'(z) \left(\frac{z}{f(z)} \right)^{1+\mu} &= 1 + \lambda \int_{[0,1]^{k+1}} w(t_\alpha t_{k+1} z) z. \end{aligned} \quad (2.20)$$

From the last relation, we see that

$$\left(\frac{z}{f(z)} \right)^\mu = 1 - \lambda \int_{[0,1]^{k+2}} w(t_\alpha t_{k+1} t_{k+2}^{1/\mu} z) t_{k+2}^{-2} z, \quad (2.21)$$

and so

$$\frac{zf'(z)}{f(z)} = \frac{1 + \lambda \int_{[0,1]^{k+1}} w(t_\alpha t_{k+1} z) z}{1 - \lambda \int_{[0,1]^{k+2}} w(t_\alpha t_{k+1} t_{k+2}^{1/\mu} z) t_{k+2}^{-2} z}. \quad (2.22)$$

By using (2.22), as in the proof of [Theorem 2.1](#), we easily obtain that

$$\left| \frac{zf'(z)}{f(z)} - 1 \right| \leq \frac{\lambda n}{n(n-\mu)P_\alpha(n-1) - \lambda \mu}. \quad (2.23)$$

The statement of this theorem follows from the above inequality. \square

Finally we give the following example of the theorem.

EXAMPLE 2.6. For $P_\alpha = 1 + t$ and $0 < \mu < 1$, $0 < \lambda < 1$, if $f(z) \in \mathcal{A}_n$ satisfies

$$\left| \left(f'(z) \left(\frac{z}{f(z)} \right)^{1+\mu} \right)' + z \left(f'(z) \left(\frac{z}{f(z)} \right)^{1+\mu} \right)'' \right| < \lambda \quad (2.24)$$

implies that

$$\left| \frac{zf'(z)}{f(z)} - 1 \right| \leq \frac{\lambda n}{n^2(n-\mu) - \lambda \mu}. \quad (2.25)$$

REFERENCES

- [1] I. E. Bazilevič, *Ueber einen Fall der Integrierbarkeit der Loewner-Kufarevschen Gleichungen durch Quadraturen* [On a case of integrability in quadratures of the Loewner-Kufarev equation], Mat. Sb. (N.S.) **37**(79) (1955), 471–476 (Russian). [MR 17,356e](#). [Zbl 065.31002](#).
- [2] R. Fournier, *On integrals of bounded analytic functions in the closed unit disc*, Complex Variables Theory Appl. **11** (1989), no. 2, 125–133. [MR 90f:30014](#). [Zbl 639.30016](#).
- [3] M. Obradović, *A class of univalent functions*, Hokkaido Math. J. **27** (1998), no. 2, 329–335. [MR 2000i:30028](#). [Zbl 908.30009](#).
- [4] ———, *A class of univalent functions. II*, Hokkaido Math. J. **28** (1999), no. 3, 557–562. [MR 2000i:30029](#). [Zbl 938.30008](#).
- [5] M. Obradović and S. Owa, *Some sufficient conditions for strongly starlikeness*, Int. J. Math. Math. Sci. **24** (2000), no. 9, 643–647. [CMP 1 793 994](#). [Zbl 992.14925](#).
- [6] M. Obradović and N. Tuneski, *On certain properties of a class of univalent functions*, Filomat (1999), no. 13, 59–65. [CMP 1 803 013](#).
- [7] S. Ozaki and M. Nunokawa, *The Schwarzian derivative and univalent functions*, Proc. Amer. Math. Soc. **33** (1972), 392–394. [MR 45#8821](#). [Zbl 233.30011](#).
- [8] S. Ponnusamy, *Pólya-Schoenberg conjecture for Carathéodory functions*, J. London Math. Soc. (2) **51** (1995), no. 1, 93–104. [MR 96b:30036](#). [Zbl 814.30017](#).
- [9] N. Samaris, *Differential inequalities and starlike functions*, in preparation.

MILUTIN OBRADOVIĆ: DEPARTMENT OF MATHEMATICS, FACULTY OF TECHNOLOGY AND METALLURGY, UNIVERSITY OF BELGRADE, 4 KARNEGJEEVA STREET, 11000 BELGRADE, YUGOSLAVIA
E-mail address: obrad@elab.tmf.bg.ac.yu

SHIGEYOSHI OWA: DEPARTMENT OF MATHEMATICS, KINKI UNIVERSITY, HIGASHI-OOSAKA, OSAKA 577-8502, JAPAN
E-mail address: owa@math.kindai.ac.jp

Special Issue on Time-Dependent Billiards

Call for Papers

This subject has been extensively studied in the past years for one-, two-, and three-dimensional space. Additionally, such dynamical systems can exhibit a very important and still unexplained phenomenon, called as the Fermi acceleration phenomenon. Basically, the phenomenon of Fermi acceleration (FA) is a process in which a classical particle can acquire unbounded energy from collisions with a heavy moving wall. This phenomenon was originally proposed by Enrico Fermi in 1949 as a possible explanation of the origin of the large energies of the cosmic particles. His original model was then modified and considered under different approaches and using many versions. Moreover, applications of FA have been of a large broad interest in many different fields of science including plasma physics, astrophysics, atomic physics, optics, and time-dependent billiard problems and they are useful for controlling chaos in Engineering and dynamical systems exhibiting chaos (both conservative and dissipative chaos).

We intend to publish in this special issue papers reporting research on time-dependent billiards. The topic includes both conservative and dissipative dynamics. Papers discussing dynamical properties, statistical and mathematical results, stability investigation of the phase space structure, the phenomenon of Fermi acceleration, conditions for having suppression of Fermi acceleration, and computational and numerical methods for exploring these structures and applications are welcome.

To be acceptable for publication in the special issue of Mathematical Problems in Engineering, papers must make significant, original, and correct contributions to one or more of the topics above mentioned. Mathematical papers regarding the topics above are also welcome.

Authors should follow the Mathematical Problems in Engineering manuscript format described at <http://www.hindawi.com/journals/mpe/>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/> according to the following timetable:

Manuscript Due	March 1, 2009
First Round of Reviews	June 1, 2009
Publication Date	September 1, 2009

Guest Editors

Edson Denis Leonel, Department of Statistics, Applied Mathematics and Computing, Institute of Geosciences and Exact Sciences, State University of São Paulo at Rio Claro, Avenida 24A, 1515 Bela Vista, 13506-700 Rio Claro, SP, Brazil; edleonel@rc.unesp.br

Alexander Loskutov, Physics Faculty, Moscow State University, Vorob'evy Gory, Moscow 119992, Russia; loskutov@chaos.phys.msu.ru