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Abstract. We give the matrix characterizations from Nakano vector-valued sequence
space �(X,p) and Fr (X,p) into the sequence spaces Er , �∞, �∞(q), bs, and cs, where
p = (pk) and q = (qk) are bounded sequences of positive real numbers such that pk > 1
for all k∈N and r ≥ 0.
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1. Introduction. Let (X,‖ · ‖) be a Banach space, r ≥ 0 and p = (pk) a bounded

sequence of positive real numbers. We write x = (xk) with xk in X for all k ∈N. The

X-valued sequence spaces c0(X,p), c(X,p), �∞(X,p), �(X,p), Er (X,p), Fr (X,p), and

�∞(X,p) are defined as

c0(X,p)=
{
x = (xk) : lim

k→∞

∥∥xk∥∥pk = 0
}
,

c(X,p)=
{
x = (xk) : lim

k→∞

∥∥xk−a∥∥pk = 0, for some a∈X
}
,

�∞(X,p)=
{
x = (xk) : sup

k

∥∥xk∥∥pk <∞
}
,

�(X,p)=
{
x = (xk) :

∞∑
k=1

∥∥xk∥∥pk <∞
}
,

Er (X,p)=
{
x = (xk) : sup

k

∥∥xk∥∥pk
kr

<∞
}
,

Fr (X,p)=
{
x = (xk) :

∞∑
k=1

kr
∥∥xk∥∥pk <∞

}
,

�∞(X,p)=
∞⋂
n=1

{
x = (xk) : sup

k

∥∥xk∥∥n1/pk
}
.

(1.1)

When X = K, the scalar field of X, the corresponding spaces are written as c0(p),
c(p), �∞(p), �(p), Er (p), Fr (p), and �∞(p), respectively. The spaces c0(p), c(p), and

�∞(p) are known as the sequence spaces of Maddox. These spaces were first intro-

duced and studied by Simons [7] and Maddox [4, 5]. The space �(p) was first defined

by Nakano [6] and it is known as the Nakano sequence space and the space �(X,p)
is known as the Nakano vector-valued sequence space. When pk = 1 for all k∈N,

the spaces Er (p) and Fr (p) are written as Er and Fr , respectively. These two
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sequence spaces were first introduced by Cooke [1]. The space �∞(p) was first defined

by Grosse-Erdmann [2] and he has given in [3] characterizations of infinite matrices

mapping between scalar-valued sequence spaces of Maddox. Wu and Liu [10] gave

necessary and sufficient conditions for infinite matrices mapping from c0(X,p) and

�∞(X,p) into c0(q) and �∞(q). Suantai [8] has given characterizations of infinite ma-

trices mapping �(X,p) into �∞ and �∞(q) when pk ≤ 1 for all k ∈ N and he has also

given in [9] characterizations of those infinite matrices mapping from �(X,p) into the

sequence space Er when pk ≤ 1 for all k∈N.

In this paper, we extend the results of [8, 9] in case pk > 1 for all k∈N. Moreover,

we also give the matrix characterizations from �(X,p) and Fr (X,p) into the sequence

spaces bs and cs.

2. Notations and definitions. Let (X,‖·‖) be a Banach space, the space of all se-

quences in X is denoted by W(X), and Φ(X) denotes the space of all finite sequences

in X. When X = K, the scalar field of X, the corresponding spaces are written as w
and Φ.

A sequence space in X is a linear subspace ofW(X). Let E be an X-valued sequence

space. For x ∈ E and k∈N, xk stands for the kth term of x. For k∈N, we denote by

ek the sequence (0,0, . . . ,0,1,0, . . .) with 1 in the kth position and by e the sequence

(1,1,1, . . .). For x ∈ X and k ∈ N, let ek(x) be the sequence (0,0, . . . ,0,x,0, . . .) with

x in the kth position and let e(x) be the sequence (x,x,x, . . .). We call a sequence

space E normal if (tkxk) ∈ E for all x = (xk) ∈ E and tk ∈ K with |tk| = 1 for all

tk ∈ N. A normed sequence space (E,‖·‖) is said to be norm monotone if x = (xk),
y = (yk) ∈ E with ‖xk‖ ≤ ‖yk‖ for all k ∈ N we have ‖x‖ ≤ ‖y‖. For a fixed scalar

sequence µ = (µk), the sequence space Eµ is defined as

Eµ =
{
x ∈W(X) :

(
µkxk

)∈ E}. (2.1)

Let A = (fnk ) with fnk in X′, the topological dual of X. Suppose that E is a space

of X-valued sequences and F a space of scalar-valued sequences. Then A is said to

map E into F , written by A : E → F , if for each x = (xk) ∈ E, An(x) =
∑∞
k=1f

n
k (xk)

converges for each n ∈N, and the sequence Ax = (An(x)) ∈ F . Let (E,F) denote the

set of all infinite matrices mapping from E into F .

Suppose that the X-valued sequence space E is endowed with some linear topology

τ . Then E is called a K-space if for each k∈N, the kth coordinate mapping pk : E→X,

defined by pk(x)= xk, is continuous on E. If, in addition, (E,τ) is a Fréchet (Banach)

space, then E is called an FK- (BK-) space. Now, suppose that E contains Φ(X). Then E
is said to have property AB if the set {∑n

k=1 ek(xk) :n∈N} is bounded in E for every

x = (xk)∈ E. It is said to have property AK if
∑n
k=1 ek(xk)→ x in E as n→∞ for every

x = (xk)∈ E. It has property AD if Φ(X) is dense in E.

It is known that the Nakano sequence space �(X,p) is an FK-space with property AK

under the paranorm g(x) = (∑∞
k=1‖xk‖pk)1/M , where M =max{1,supkpk}. If pk > 1

for all k∈N, then �(X,p) is a BK-space with the Luxemburg norm defined by

∥∥(xk)∥∥= inf


ε > 0 :

∞∑
k=1

∥∥∥∥xkε
∥∥∥∥
pk
≤ 1


. (2.2)
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3. Main results. We first give a characterization of an infinite matrix mapping from

�(X,p) into Er when pk > 1 for all k∈N. To do this, we need the following lemma.

Lemma 3.1. Let E be an X-valued BK-space which is normal and norm monotone and

let A= (fnk ) be an infinite matrix. Then A : E→ Er if and only if supn
∑∞
k=1 |fnk (xk)|/nr

<∞ for every x = (xk)∈ E.

Proof. If the condition holds true, it follows that

sup
n

∣∣∑∞
k=1f

n
k
(
xk
)∣∣

nr
≤ sup

n

∞∑
k=1

∣∣fnk
(
xk
)∣∣

nr
<∞ (3.1)

for every x = (xk)∈ E, hence A : E→ Er .

Conversely, assume that A : E → Er . Since E and Er are BK-spaces, by Zeller’s

theorem, A : E→ Er is bounded, so there exists M > 0 such that

sup
n∈N

‖(xk)‖≤1

∣∣∑∞
k=1f

n
k
(
xk
)∣∣

nr
≤M. (3.2)

Let x = (xk)∈ E be such that ‖x‖ = 1. For eachn∈N, we can choose a scalar sequence

(tk) with |tk| = 1 and fnk (tkxk) = |fnk (xk)| for all k ∈ N. Since E is normal and norm

monotone, we have (tkxk)∈ E and ‖(tkxk)‖ ≤ 1. It follows from (3.2) that

∞∑
k=1

∣∣fnk
(
xk
)∣∣

nr
=
∣∣∑∞

k=1f
n
k
(
tkxk

)∣∣
nr

≤M, (3.3)

which implies

sup
n∈N

∞∑
k=1

∣∣fnk
(
xk
)∣∣

nr
≤M. (3.4)

It follows from (3.4) that for every x = (xk)∈ E,

sup
n∈N

∞∑
k=1

∣∣fnk
(
xk
)∣∣

nr
≤M‖x‖. (3.5)

This completes the proof.

Theorem 3.2. Let p = (pk) be a bounded sequence of positive real numbers with

pk > 1 for all k ∈ N and 1/pk+1/qk = 1 for all k ∈ N, and let r ≥ 0. For an infinite

matrix A= (fnk ), A∈ (�(X,p),Er ) if and only if there is m0 ∈N such that

sup
n

∞∑
k=1

∥∥fnk
∥∥qkn−rqkm−qk

0 <∞. (3.6)

Proof. Let x = (xk)∈ �(X,p). By (3.6), there are m0 ∈N and K > 1 such that

∞∑
k=1

∥∥fnk
∥∥qkn−rqkm−qk

0 <K, ∀n∈N. (3.7)

Note that for a,b ≥ 0, we have

ab ≤ apk+bqk . (3.8)
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It follows by (3.7) and (3.8) that for n∈N,

n−r
∣∣∣∣∣∣
∞∑
k=1

fnk
(
xk
)
∣∣∣∣∣∣=n

−r

∣∣∣∣∣∣
∞∑
k=1

fnk
(
m−1

0 ·m0xk
)
∣∣∣∣∣∣

≤
∞∑
k=1

(
n−rm−1

0

∥∥fnk
∥∥)(∥∥m0xk

∥∥)

≤
∞∑
k=1

n−rqkm−qk
0

∥∥fnk
∥∥qk+mα

0

∞∑
k=1

∥∥xk∥∥pk

≤K+mα
0

∞∑
k=1

∥∥xk∥∥pk , where α= sup
k
pk.

(3.9)

Hence supn−r |∑∞
k=1f

n
k (xk)|<∞, so that Ax ∈ Er .

For necessity, assume thatA∈(�(X,p),Er). For each k∈N, we have supnn−r |fnk (x)|
<∞ for all x ∈X since e(k)(x)∈ �(X,p). It follows by the uniform bounded principle

that for each k∈N there is Ck > 1 such that

sup
n
n−r

∥∥fnk
∥∥≤ Ck. (3.10)

Suppose that (3.6) is not true. Then

sup
n

∞∑
k=1

∥∥fnk
∥∥qkn−rqkm−qk =∞, ∀m∈N. (3.11)

For n∈N, we have by (3.10) that for k,m∈N,

∞∑
j=1

∥∥∥fnj
∥∥∥qjn−rqjm−qj =

k∑
j=1

∥∥∥fnj
∥∥∥qjn−rqjm−qj +

∑
j>k

∥∥∥fnj
∥∥∥qjn−rqjm−qj

≤
k∑
j=1

C
qj
j m

−qj +
∑
j>k

∥∥∥fnj
∥∥∥qjn−rqjm−qj .

(3.12)

This together with (3.11) give

sup
n

∑
j>k

∥∥∥fnj
∥∥∥qjn−rqjm−qj =∞, ∀k,m∈N. (3.13)

By (3.13) we can choose 0 = k0 < k1 < k2 < ··· , m1 < m2 < ··· , mi > 4i and a

subsequence (ni) of positive integers such that for all i≥ 1,

∑
ki−1<j≤ki

∥∥∥fnij
∥∥∥qjn−rqji m

−qj
i > 2i. (3.14)

For each i∈N, we can choose xj ∈X with ‖xj‖ = 1, for ki−1 < j ≤ ki such that

∑
ki−1<j≤ki

∣∣∣fnij
(
xj
)∣∣∣qjn−rqji m

−qj
i > 2i. (3.15)
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For each i∈N, let Fi : (0,∞)→ (0,∞) be defined by

Fi(M)=
∑

ki−1<j≤ki

∣∣∣fnij
(
xj
)∣∣∣qjn−rqji M−qj . (3.16)

Then Fi is continuous and non-increasing such that F(M)→ 0 as M →∞. Thus there

exists Mi > 0 such that Mi >mi and

F
(
Mi
)= ∑

ki−1<j≤ki

∣∣∣fnij
(
xj
)∣∣∣qjn−rqji M

−qj
i = 2i. (3.17)

Put

y = (yj), yj = 4−iM
−(qj−1)
i n

−rqj/pj
i

∣∣∣fnij
(
xj
)∣∣∣qj−1

xj for ki−1 < j ≤ ki. (3.18)

Thus

∞∑
j=1

∥∥yj∥∥pj =
∞∑
i=1

∑
ki−1<j≤ki

4−ipjM
−pj(qj−1)
i n

−rqj
i

∣∣∣fnij
(
xj
)∣∣∣pj(qj−1)

≤
∞∑
i=1

4−i
∑

ki−1<j≤ki
M
−qj
i n

−rqj
i

∣∣∣fnij
(
xj
)∣∣∣qj

=
∞∑
i=1

4−i ·2i

=
∞∑
i=1

1
2i
= 1.

(3.19)

Thus y = (yj)∈ �(X,p). Since �(X,p) is a BK-space which is normal and norm mono-

tone under the Luxemburg norm, by Lemma 3.1, we obtain that

sup
n

∞∑
k=1

∣∣fnk
(
yk
)∣∣

nr
<∞. (3.20)

But we have

sup
n

∞∑
j=1

∣∣∣fnj
(
yj
)∣∣∣

nr
≥ sup

i

∞∑
j=1

∣∣∣fnij
(
yj
)∣∣∣

nri
≥ sup

i

∑
ki−1<j≤ki

∣∣∣fnij
(
yj
)∣∣∣

nri

= sup
i

∑
ki−1<j≤ki

4−iM
−(qj−1)
i n

−r(qj/pj+1)
i

∣∣∣fnij
(
xj
)∣∣∣qj

= sup
i

∑
ki−1<j≤ki

4−iM
−(qj−1)
i n

−rqj
i

∣∣∣fnij
(
xj
)∣∣∣qj

= sup
i

∑
ki−1<j≤ki

(∣∣∣fnij
(
xj
)∣∣∣qjn−rqji M

−qj
i

)
4−iMi

≥ sup
i

2i =∞, because Mi > 4i.

(3.21)

This is contradictory with (3.20). Therefore (3.6) is satisfied.
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Theorem 3.3. Let p = (pk) be a bounded sequence of positive real numbers such

that pk > 1 for all k ∈ N, 1/pk+1/qk = 1 for all k ∈ N, r ≥ 0 and s ≥ 0. Then for an

infinite matrix A= (fnk ), A∈ (Fr (X,p),Es) if and only if there is m0 ∈N such that

sup
n

∞∑
k=1

(
k−rqk/pk

∥∥fnk
∥∥qkn−sqkm−qk

0

)
<∞. (3.22)

Proof. Since Fr (X,p)= �(X,p)(kr/pk ), it is easy to see that

A∈ (Fr (X,p),Es)⇐⇒ (k−r/pkfnk
)
n,k ∈

(
�(X,p)Es

)
. (3.23)

By Theorem 3.2, we have (k−r/pkfnk )n,k ∈ (�(X,p)Es) if and only if there is m0 ∈ N
such that

sup
n

∞∑
k=1

(
k−rqk/pk

∥∥fnk
∥∥qkn−sqkm−qk

0

)
<∞. (3.24)

Thus the theorem is proved.

Since E0 = �∞, the following two results are obtained directly from Theorems 3.2

and 3.3, respectively.

Corollary 3.4. Let p = (pk) be a bounded sequence of positive real numbers with

pk > 1 for all k ∈ N and let 1/pk+1/qk = 1 for all k ∈ N. Then for an infinite matrix

A= (fnk ), A∈ (�(X,p),�∞) if and only if there is m0 ∈N such that

sup
n

∞∑
k=1

∥∥fnk
∥∥qkm−qk

0 <∞. (3.25)

Corollary 3.5. Let p = (pk) be a bounded sequence of positive real numbers with

pk > 1 for all k ∈ N and let 1/pk+1/qk = 1 for all k ∈ N. Then for an infinite matrix

A= (fnk ), A∈ (Fr (X,p),�∞) if and only if there is m0 ∈N such that

sup
n

∞∑
k=1

(
k−rqk/pk

∥∥fnk
∥∥qkm−qk

0

)
<∞. (3.26)

Theorem 3.6. Let p = (pk) and q = (qk) be bounded sequences of positive real

numbers with pk > 1 for all k ∈ N and let 1/pk+1/tk = 1 for all k ∈ N. Then for an

infinite matrix A = (fnk ), A ∈ (�(X,p),�∞(q)) if and only if for each r ∈ N, there is

mr ∈N such that

sup
n,k

∞∑
k=1

r tk/qn
∥∥fnk

∥∥tkm−tk
r <∞. (3.27)

Proof. Since �∞(q)=∩∞r=1�∞(r1/qk ), it follows that

A∈ (�(X,p),�∞(q))⇐⇒A∈
(
�(X,p),�∞(r1/qk )

)
, ∀r ∈N. (3.28)

It is easy to show that for r ∈N,

A∈
(
�(X,p),�∞(r1/qk )

)
⇐⇒ (r 1/qnfnk

)
n,k ∈

(
�(X,p),�∞

)
. (3.29)
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We obtain by Corollary 3.4 that for r ∈ N, (r 1/qnfnk )n,k ∈ (�(X,p),�∞) if and only if

there is mr ∈N such that

sup
n

∞∑
k=1

r tk/qn
∥∥fnk

∥∥tkm−tk
r <∞. (3.30)

Thus the theorem is proved.

Theorem 3.7. Let p = (pk) and q = (qk) be bounded sequences of positive real

numbers with pk > 1 for all k∈N and let 1/pk+1/tk = 1 for all k∈N. For an infinite

matrix A = (fnk ), A ∈ (Fr (X,p),�∞(q)) if and only if for each i ∈ N, there is mi ∈ N
such that

sup
n

∞∑
k=1

itk/qnk−rtk/pk
∥∥fnk

∥∥tkm−tk
i <∞. (3.31)

Proof. Since Fr (X,p)= �(X,p)(kr/pk ), it implies that

A∈ (Fr (X,p),�∞(q))⇐⇒ (k−r/pkfnk
)
n,k ∈

(
�(X,p),�∞(q)

)
. (3.32)

It follows from Theorem 3.6 that A ∈ (Fr (X,p),�∞(q)) if and only if for each i ∈ N,

there is mi ∈N such that

sup
n

∞∑
k=1

itk/qnk−rtk/pk
∥∥fnk

∥∥tkm−tk
i <∞. (3.33)

Theorem 3.8. Let p = (pk) be bounded sequence of positive real numbers with

pk > 1 for all n ∈ N and let 1/pk+1/qk = 1 for all k ∈ N. Then for an infinite matrix

A= (fnk ), A∈ (�(X,p),bs) if and only if there is m0 ∈N such that

sup
n

∞∑
k=1

∥∥∥∥∥∥
n∑
i=1

f ik

∥∥∥∥∥∥
qk

m−qk
0 <∞. (3.34)

Proof. For an infinite matrix A= (fnk ), we can easily show that

A∈ (�(X,p),bs)⇐⇒

 n∑
i=1

f ik



n,k

∈ (�(X,p),�∞). (3.35)

This implies by Corollary 3.4 that A ∈ (�(X,p),bs) if and only if there is m0 ∈ N
such that

sup
n

∞∑
k=1

∥∥∥∥∥∥
n∑
i=1

f ik

∥∥∥∥∥∥
qk

m−qk
0 <∞. (3.36)

Theorem 3.9. Let p = (pk) be a bounded sequence of positive real numbers with

pk > 1 for all k ∈ N and let 1/pk+1/qk = 1 for all k ∈ N. Then for an infinite matrix

A= (fnk ), A∈ (�(X,p),cs) if and only if

(1) there is m0 ∈N such that supn
∑∞
k=1‖

∑n
i=1f

i
k‖qkm

−qk
0 <∞ and

(2) for each k∈N and x ∈X,
∑∞
n=1f

n
k (x) converges.
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Proof. The necessity is obtained by Theorem 3.8 and by the fact that e(k)(x) ∈
�(X,p) for every k∈N and x ∈X.

Now, suppose that (1) and (2) hold. By Theorem 3.8, we haveA : �(X,p)→ bs. Letx =
(xk) ∈ �(X,p). Since �(X,p) has the AK property, we have x = limn→∞

∑n
k=1 e(k)(xk).

By Zeller’s theorem, A : �(X,p)→ bs is continuous. It implies that

Ax = lim
n→∞

n∑
k=1

Ae(k)
(
xk
)
. (3.37)

By (2), Ae(k)(xk)∈ cs for all k∈N. Since cs is a closed subspace of bs, it implies that

Ax ∈ cs, that is, A : �(X,p)→ cs.
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