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SOME REMARKS ON THE SEVERI VARIETIES OF SURFACES IN P3
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ABSTRACT. Continuing the work of Chiantini and Ciliberto (1999) on the Severi varieties of
curves on surfaces in P3, we complete the proof of the existence of regular components
for such varieties.
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1. Introduction. Let &£ be aline bundle on a smooth surface S. Fix a positive integer
6 and the Severi variety ngé is defined as the subscheme of |£| consisting of irre-
ducible curves in |£| with 6 nodes and no other singularities. This scheme, or some-
times, its closure V¢ s in |£| is called the Severi variety of curves with 6 nodes in |£].
The Severi variety V(f,i(;, if not empty, has the dimension at least max{dim |£| -, -1},
where max{dim |£| -, —1} is called the expected dimension of V§’5. A reduced com-
ponent of V9 s that has the expected dimension is called a regular component of
V9 s.

The Severi varieties of plane curves have been classically extensively studied. It is
natural to study the Severi varieties on other surfaces. The Severi varieties of surfaces
in P3 were studied in [2]. Let S be a smooth surface of degree d in P3 and let |Og(n)|
be the linear series on S cut out by the degree n surfaces in |P3|. We use the notation
VS,é(S ) to denote the Severi variety of curves with 6 nodes in |Og(n)|. It was proved
in [2] that for S general, n > d and all 6 with 0 < § < dim(|0s(n)|), V,‘g,&(_s‘) has at
least one component which is reduced of the expected dimension. That, combined
with a construction of irregular components of V,%(S ) for n > d > 8 and some 9§,
gives examples of reducible Severi varieties on surfaces in P3.

The purpose of this paper is to prove the main theorem in [2] in the case n < d,
which was not covered in that paper. Namely, we show the following theorem.

THEOREM 1.1. For a general surface S of degree d in P3, n < d and all § with
0 <6 < dim(|0s(n)]) = ("§3) — 1, the Severi variety V) 5(S) has at least one regular
component.

2. Proof of Theorem 1.1

2.1. Sketch of the proof. Our construction of the regular component of VS’(;(S)
for n < d is very close to that of Chiantini and Ciliberto in spirit: we take a degen-
eration of degree d surfaces in P? and try to locate a subscheme of |Os,(n)| on the
“degenerated” degree d surface Sy which is the limit of some components of the Severi
varieties on the general fibers; we are done as long as the subscheme we find has the
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expected dimension of the Severi varieties on the general fibers. However, both the
way we degenerate the surfaces and the way we locate those “limiting nodal curves”
are different from those used in [2].

Let X c P3 x A be a pencil of surfaces of degree d in P? whose central fiber X, =
H,UH,U---UH, is a union of d hyperplanes. Suppose that Hy,H>,...,H; are in rela-
tively general position, so no four of them meet at a point. Suppose that the pencil X is
chosen to be general so that it has d(4) distinct base points and none of them is the
intersection of three planes among Hi,H>,...,H;. Then the threefold X has exactly
d(’g) rational double points, which are the base points of the pencil, and no other
singularities. These double points lie on the lines L;; = H;nH; for i # j and 1 < i,
j=d.

There are various ways we may take the limit of the linear series |0y, (n)| as t — 0.
Here we justletlim;_¢ [Ox, (n)| = |Ox,(n)|.Let C = uf:ICi be acurvein |Ox,(n)|, where
Ci cH;fori=1,2,...,d. If C passes through a double point p of X on the line L;;,
and C; and Cj meet L;; transversely at p on H; and H}, respectively, then C can be de-
formed to a curve C; € |Ox, (n)| with p deforming to anode of C; (cf. [1, Theorem 2.2]).
So, to produce 6 nodes of (;, it suffices to let C pass through 6 double points of X.
Notice that we have enough double points to play with since § < ("§3) -1 < d(4) for
d > 4 and d > n. So pick a collection Z of § double points of X and there always exists
C € |0x,(n)| passing through Z. But the catch here is that we have to make sure of
the following things.

(1) Most important of all, we have to choose Z such that Z imposes independent
conditions on |Ox, (n)[, or equivalently, on |Op3 (1)].

(2) A general member C € |Ox,(n)| that passes through Z must be cut out by an
irreducible surface S of degree n in P3.

(3) For a general member C = u?lei € |0x,(n)| that passes through Z, each C;
must meet L;; transversely at points in Z N L;;.

We are not sure whether part (3) is essential. It is conceivable that even if C; fails to
meet L;; transversely at a point p € ZnL;;, it is still possible to deform C to C; with
p becoming a node of C;. However, we will verify (3) anyway since it is quite trivial by
our construction.

2.2. Proof of Theorem 1.1 when n < d —1. First, we look at when Z n H; imposes
independent conditions on |0y, (n)|. In general, we may ask the following question.

QUESTION 2.1. Let Ly,Ly,...,L, be p lines on P2 and let Z be a zero-dimensional
subscheme of P2 which consists of a; points on L;, a» points on Lo,..., and a, points
on L, with none of these points being the intersection of two lines among Ly, Lo,...,Ly.
Fix n < p, we ask that under what conditions does Z impose independent conditions
on the linear series |0(n)|?

To be more specific, if Z imposes independent conditions on |0(n)|, then

(1) What kind of numerical conditions should be satisfied by a1, a»,...,a,?

(2) Should Ly,Lo,...,L, be in general position or could they be arbitrary?

(3) Should the points Zn Ly be in general position on Ly or could they be arbitrary
fork=1,2,...,p?
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For example, itis not hard to obtain a necessary numerical condition on a1, a»,...,a,
by noticing that the linear series cut out by |6(7)| on a union of k lines has dimension
nk—(k2-3k)/2—1for k <n.So ay,a», ...,ap have to satisfy the following condition.

For each k <m and each I C {1,2,...,p} with #I =k,

K23k
2

> ai<nk-

iel

1. (2.1

Although we do not have the answer for Question 2.1 in general, we can prove a
very special case which suffices for our purpose.

LEMMA 2.2. Let Li,L>,...,L,.1 be n+ 1 distinct lines on P? and let Z be a zero-
dimensional subscheme of P?> which consists of a, points on L1, a> points on Ly, ...,
and a1 points on Ly, with none of these points being the intersection of two lines
among Li1,Ly,...,Ly1. Suppose thatay <n+2—k fork =1,2,...,n+1. Then Z imposes
independent conditions on |0(n)|, that is, H' (I;(n)) = 0.

PROOEF. It suffices to show that there is no curve in |0(n)| passing through Z if
ar=n+2-kfork=1,2,...,n+1.

Suppose that ay =n+2—-kfor k =1,2,...,n+1 and there exists a curve C of degree
n passing through Z. Since C passes through n+1 pointson L; and degC =n, L, C C.
Let C = L, uC’.Now C’ passes through n points on L, and degC’ =n—-1.So L, c C. So
inductively we have Ly C C for k = 1, 2,...,n+ 1. Obviously, this is impossible because
degC =n. O

LEMMA 2.3. Let Hi,H>,...,Hp» be n+2 distinct planes in P3 with no three of them
meeting along a line and let L;j = HinHj for 1 <i < j<n+2. Let Z be a zero-
dimensional subscheme of P? which consists of aij pointsonL;j forl <i<j<mn+2.
Suppose thata;j <n+3—jforl <i< j <n+2.ThenZ imposes independent conditions
on |0(n)|.

PROOF. It suffices to show that there are no surfaces in |0(n)| passing through Z
ifajj=n+3-jforl<i<j<n+2.

Suppose thata;; =n+3—jfor1 <i< j<mn+2 and there is a degree n surface S in
P passing through Z. First, we claim that H; € S.If not, C = S " H; is a degree n curve
in H; passing through Z n H;. Notice that Z N H; is a zero-dimensional subscheme of
H; consisting of n + 1 points on L2, n points on L;3,..., and 1 point on Lj 542. So
by Lemma 2.2, there is no degree n curve passing through Z n H;. Contradiction. So
H; ¢ S and let S = H; US’. Next, we claim that H, ¢ S’. If not, C' = S"nH> is a
degree n — 1 curve passing through (Z N H;)\Ly,. Notice that (ZnH;)\L;, is a zero-
dimensional subscheme of H, consisting of n points on L3, 1 —1 points on Loy, ...,
and 1 pointon Ly ,,+2. So by Lemma 2.2, there is no degree n —1 curve passing through
(Z N Hy)\Ly2. Contradiction. So we may carry on this line of argument and finally
conclude that H UH> U - - - UHy41 C S. This is impossible since deg$S = n. O

Now, we go back to the proof of Theorem 1.1 in the case of n < d — 1. It suffices to
prove Theorem 1.1 when § = ("§3) — 1. As in the sketch of the proof, we need to find
a collection Z of 6 double points of the family X such that Z imposes independent
conditions on |Op3 (n)].
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The family X has d(‘g) double points with d points on each L;;. Let Z’ be a collection
of (";3) —1 double points of X with exactly n+3—j oneach L;; for 1 <i<j<mn+2,
and let Z be a subset of Z’ with one point removed on L.

By Lemma 2.3, Z imposes 6 independent conditions on |Op3 (1) |. So dim |Iz(n)| = 0.
Of course, |I7(n)| consists of exactly one surface S.

Next, we need to verify that S is irreducible for a general choice of X. Choose an
irreducible surface S € |Op3 (n)| and a surface S’ € |Op3 (d —n)|. Let X be the pencil of
degree d surfaces given by

FiF;---F4+tGG =0, (2.2)

where Fy,F,,...,F; are the defining equations of Hy,H>,...,H; and G and G’ are the
defining equations of S and S’. Obviously, we may choose Z to consist of points in
SnLijjforl<i<j=<mn+2.Then S € |Iz(n)| and it is irreducible.

Finally, we need to verify that S meets L;; transversely at points in (ZnL;;) for a
general choice of X, which is quite obvious with the construction of X in (2.2). This
concludes the proof of Theorem 1.1 in the case of n <d—1.

2.3. Proof of Theorem 1.1 when n = d — 1. The proof of Theorem 1.1 in the case
of n =d -1 is a little more involved. Again it suffices to prove the theorem when
5= (42) -1,

Let Z' be a collection of (44?) —d double points of X with exactly d +2 — j on each
Lijfor 1 <i<j=<d andlet Z be a subset of Z" with one point removed on L;,.

By Lemma 2.3, Z imposes independent conditions on [Op3(d —1)|. So dim |Iz(d —
1)| = d. Actually, we can very explicitly write down a basis for H(I;(d—1)) as follows.

Since Z’ also imposes independent conditions on |Op3(d — 1)], there exists G €
HOY(I;(d—-1)) such that the surface defined by G = 0 does not contain the line L;». On
the other hand, foreach1 <i <d, Hj#il:'j belongs to H(I;(d—1)), where F,F>,...,F4
are the defining equations of Hi,Ho,...,Hy, respectively. It is easy to see that G and
[1;4Fj (i=1,2,...,d) are linearly independent and hence they span the vector space
HO(Iz(d-1)).

So the restriction |Izny, ® Oy, (d—1)| of |I;(d—1)]| to H; is a pencil of degree d —1
curves generated by G|y, and (H#iFj) |H;. By the same argument as before, we can
show that G defines a general surface of degree d — 1 for a general choice of X. So
the pencil |Izny; ® Oy, (d —1)| contains an isolated irreducible curve C; with exactly
one node. So C = U‘ii:lCi € |0x,(d —1)| has d nodes, passes through (dgl) -d-1
double points of X, and is isolated and cut out by an irreducible surface of degree
d — 1. Therefore, C is the flat limit of an isolated irreducible curve on X; with exactly
& = (432) — 1 nodes. This concludes the proof of Theorem 1.1 when n =d — 1.
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