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Abstract. The purpose of this work is to give a continuous convex function, for which
we can characterize the subdifferential, in order to reformulate a variational inequality
problem: find u = (u1,u2) ∈ K such that for all v = (v1,v2) ∈ K,

∫
Ω∇u1∇(v1 −u1)+∫

Ω∇u2∇(v2−u2)+(f ,v−u)≥ 0 as a system of independent equations, where f belongs
to L2(Ω)×L2(Ω) and K = {v ∈H10(Ω)×H10(Ω) : v1 ≥ v2 a.e. in Ω}.
2000 Mathematics Subject Classification. Primary 35J85.

1. Introduction. We are interested in the following variational inequality problem:
find u= (u1,u2)∈K such that for all v = (v1,v2)∈K,∫

Ω
∇u1∇

(
v1−u1

)+
∫
Ω
∇u2∇

(
v2−u2

)+(f ,v−u)≥ 0, (1.1)

where f belongs to L2(Ω)× L2(Ω) and K is a closed convex set of H1
0(Ω)×H1

0(Ω)
defined by

K = {v = (v1,v2)∈H1
0(Ω)×H1

0(Ω) : v1 ≥ v2 a.e. in Ω
}
. (1.2)

Thanks to the orthogonal projection of the space L2(Ω)× L2(Ω) onto the cone �

defined by
�= {v = (v1,v2)∈ L2(Ω)×L2(Ω) : v1 ≥ v2 a.e. in Ω}, (1.3)

we construct a functionalϕ for whichwe can characterize the subdifferential at a point
u, in order to reformulate problem (1.1) to a variational inequality without constraints;
that is, find u= (u1,u2)∈H1

0(Ω)×H1
0(Ω) such that for all v ∈H1

0(Ω)×H1
0(Ω),∫

Ω
∇u1∇

(
v1−u1

)+
∫
Ω
∇u2∇

(
v2−u2

)+ϕ(v)−ϕ(u)+(h,v−u)≥ 0, (1.4)

whereϕ is a continuous convex function fromH1
0(Ω)×H1

0(Ω) toR andh is an element
of L2(Ω)×L2(Ω) depending only on f .
We prove that the solution u = (u1,u2) can be obtained as a solution of a system

of independent two Dirichlet problems

u1,u2 ∈H1
0(Ω), ∆u1 = g1, ∆u2 = g2 in Ω, (1.5)

where g1 and g2 are two functions of L2(Ω) determined in terms of f1 and f2. We will
give an algorithm for computing these functions.
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This approach can be applied to study a variational inequality arising from a prob-
lem of two membranes [2].

2. Formulation of the problem. Let Ω be an open bounded set of Rn with smooth
boundary ∂Ω. We equip H1

0(Ω)×H1
0(Ω) with the norm

a(u,v)=
∫
Ω
∇u1∇v1+

∫
Ω
∇u2∇v2, (2.1)

where
u= (u1,u2), v = (v1,v2)∈H1

0(Ω)×H1
0(Ω). (2.2)

For r ∈ L2(Ω), we let

r+ =max{r ,0}, r− =min{r ,0}. (2.3)

For f = (f1,f2)∈ L2(Ω)×L2(Ω), we let

f+ = (f+1 ,f−2 ), f− = (f−1 ,f+2 ). (2.4)

For v = (v1,v2)∈H1
0(Ω)×H1

0(Ω), we let

v+ =
(
v1+

(
v2−v1

)+
2

,v2−
(
v2−v1

)+
2

)
, v− =

(
−
(
v2−v1

)+
2

,
(
v2−v1

)+
2

)
(2.5)

the projection of v onto the cone � given by (1.3) with respect to the scalar product
of L2(Ω)×L2(Ω) (respectively, the projection with respect to the scalar product of
L2(Ω)×L2(Ω) on the polar cone of � defined by �0 = {v = (−r ,r) ∈ L2(Ω)×L2(Ω) :
r ≥ 0 a.e. on Ω}). We easily verify that

a
(
v+,v−

)= 0 (2.6)

for all v ∈ H1
0(Ω)×H1

0(Ω). A function ϕ defined from H1
0(Ω)×H1

0(Ω) to R is called
lower semi-continuous (l.s.c.) if its epigraph defined by

epi(ϕ)= {v = (v1,v2)∈H1
0(Ω)×H1

0(Ω), λ∈R :ϕ(v)≤ λ
}

(2.7)

is closed in H1
0(Ω)×H1

0(Ω)×R. Let u ∈ H1
0(Ω)×H1

0(Ω), we denote by ∂ϕ(u) the
subdifferential of ϕ at u, defined by

∂ϕ(u)= {µ ∈H−1(Ω)×H−1(Ω) :ϕ(u)−ϕ(v)≤ 〈µ,u−v〉 ∀v ∈H1
0(Ω)×H1

0(Ω)
}
.

(2.8)
If ϕ is a convex l.s.c. function, then for all v ∈H1

0(Ω)×H1
0(Ω), ∂ϕ(v)≠ ∅.

Let f = (f1,f2) ∈ L2(Ω)×L2(Ω). We denote by (·,·) and ‖ · ‖ the scalar product
and the norm of L2(Ω)×L2(Ω), respectively. We consider the following variational
inequality problem: find u= (u1,u2)∈K such that

a(u,v−u)+(f ,v−u)≥ 0 ∀v = (v1,v2)∈K. (2.9)

It admits a unique solution. The functional ϕ defined from L2(Ω)×L2(Ω) to R by
v � (f+,v+) is continuous on H1

0(Ω)×H1
0(Ω) and convex.
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Proposition 2.1. u = (u1,u2) is a solution of the problem (2.9) if and only if u is
the solution of the following problem: find u= (u1,u2)∈H1

0(Ω)×H1
0(Ω) such that

a(u,v−u)+ϕ(v)−ϕ(u)+(f−,v−u)≥ 0 ∀v ∈H1
0(Ω)×H1

0(Ω). (2.10)

Proof. It is well known in the general theory of variational inequalities that prob-
lem (2.10) admits a unique solution. So, it is sufficient to show that the solution u of
(2.10) is an element of K. Let v =u+, then the inequality of (2.10) becomes

a
(
u,−u−

)+ϕ(u)−ϕ(u)+(f−,−u−)≥ 0. (2.11)

By the relation (2.6) we deduce that u− = 0, hence u∈K.
Proposition 2.2. Problem (2.10) is equivalent to the following problem: find µ =

(µ1,µ2)∈ L2(Ω)×L2(Ω), u= (u1,u2)∈H1
0(Ω)×H1

0(Ω),

a(u,v)+(µ,v)+(f−,v)= 0 ∀v ∈H1
0(Ω)×H1

0(Ω), µ ∈ ∂ϕ(u). (2.12)

Proof. If u ∈ H1
0(Ω)×H1

0(Ω) and µ ∈ L2(Ω)×L2(Ω) are the solution of (2.12),
then by definition of µ ∈ ∂ϕ(u), we have

a(u,v−u)+ϕ(v)−ϕ(u)+(f−,v−u)≥ 0 ∀v ∈H1
0(Ω)×H1

0(Ω). (2.13)

Conversely, letu be the solution of problem (2.10). For v =u±w, withw ∈H1
0(Ω)×

H1
0(Ω), the inequality of (2.10) gives

a(u,w)+(f−,w)≥−(f+,w+)≥−∥∥f+∥∥‖w‖,
a(u,w)+(f−,w)≤ (f+,(−w)+)≤ ∥∥f+∥∥‖w‖. (2.14)

We deduce that ∣∣a(u,w)+(f−,w)∣∣≤ ∥∥f+∥∥‖w‖. (2.15)

So the linear form
w � �→ a(u,w)+(f−,w) (2.16)

is continuous on H1
0(Ω)×H1

0(Ω) equipped with the norm of L2(Ω)×L2(Ω). Where µ
is an element of L2(Ω)×L2(Ω).
We set

C = {ν ∈ L2(Ω)×L2(Ω), (ν,v)≤ϕ(v) ∀v ∈ L2(Ω)×L2(Ω)}. (2.17)

Lemma 2.3. Let u∈ L2(Ω)×L2(Ω), then the following properties are equivalent:
(a) µ ∈ ∂ϕ(u).
(b) µ ∈ C and (µ,u)=ϕ(u).
(c) µ ∈ C and (ν−µ,u)≤ 0 for all ν ∈ C .
Proof. (a)⇒(b). Let µ ∈ ∂ϕ(u), we have

ϕ(v)−ϕ(u)≥ (µ,v−u) ∀v ∈ L2(Ω)×L2(Ω). (2.18)
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We put v = 0, next v = 2u in (2.18). Since ϕ is positively homogeneous of degree 1,
we obtain ϕ(u)= (µ,u) and consequently

ϕ(v)≥ (µ,v) ∀v ∈ L2(Ω)×L2(Ω). (2.19)

(c)⇒(a). For all v ∈ V , we have

(µ,v−u)≤ϕ(v)−(µ,u)≤ϕ(v)−(ν,u) ∀ν ∈ C. (2.20)

Hence for ν ∈ ∂ϕ(u), we have (ν,u)=ϕ(u), consequently µ ∈ϕ(u).
We deduce from Lemma 2.3 the following relations:

µ1+µ2 = f+1 +f−2 , f−2 ≤ µ2 ≤ µ1 ≤ f+1 a.e. in Ω. (2.21)

Indeed, the functionϕ being positively homogeneous of degree 1, µ ∈ ∂ϕ(u) implies

(µ,u)=ϕ(u), (2.22)

(µ,v)≤ϕ(v) ∀v ∈ L2(Ω)×L2(Ω). (2.23)

Finally, it is sufficient to take in (2.23) elements v = (v1,v2) with suitable choices on
the components v1 and v2.
Let V =H1

0(Ω)×H1
0(Ω), and taking into account Lemma 2.3, we can write problem

(2.12) as follows: find u∈H1
0(Ω)×H1

0(Ω), µ ∈ C ,

a(u,v)+(µ,v)+(f−,v)= 0 ∀v ∈H1
0(Ω)×H1

0(Ω),

(ν−µ,u)≤ 0 ∀ν ∈ C. (2.24)

Let A be the Riesz-Fréchet representation of H−1(Ω)×H−1(Ω) in H1
0(Ω)×H1

0(Ω). We
set M =A(C), this is a closed convex subset in H1

0(Ω)×H1
0(Ω) characterized by

M = {w ∈H1
0(Ω)×H1

0(Ω) : a(w,v)≤ϕ(v) ∀v ∈H1
0(Ω)×H1

0(Ω)
}
. (2.25)

Problem (2.24) can be written in the following form: find u ∈ H1
0(Ω) × H1

0(Ω),
z ∈M ,

a(u+z+t,v)= 0 ∀v ∈H1
0(Ω)×H1

0(Ω),

a(w−z,u)≤ 0 ∀w ∈M. (2.26)

with z =A(µ) and t =A(f−). Hence

u=−z−t, z = PM(−t), (2.27)

where PM(−t) is the projection of −t onto the closed convex setM with respect to the
scalar product a(·,·) of H1

0(Ω)×H1
0(Ω).

From the equality of Proposition 2.2, we deduce that the solution u of problem (2.9)
verifies the following equations:

∆u1 = µ1+f−1 , ∆u2 = µ2+f+2 in Ω. (2.28)
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We notice that the prior knowledge of µ = (µ1,µ2) in terms of data of problem (2.9)
yields the solutions u1 and u2 as solutions of two independent Dirichlet problems
given by the system (2.28). We recall that for each element f of Lp(Ω), the solution of
the problem

u∈H1
0(Ω), −∆u= f in Ω, (2.29)

verifies the following properties (see [2]):

u∈H2,p(Ω), ‖u‖H2,p ≤ C‖f‖Lp , (2.30)

where C is a constant depending only on p and Ω. We deduce from (2.28) that u1,u2
are in H2(Ω) and ∥∥u1∥∥H2(Ω) ≤ c1∥∥µ1+f−1 ∥∥L2(Ω),∥∥u2∥∥H2(Ω) ≤ c2∥∥µ2+f−2 ∥∥L2(Ω),∥∥u1+u2∥∥H2(Ω) ≤ c∥∥f1+f2∥∥L2(Ω),

(2.31)

where c,c1, and c2 are constants depending only on Ω. We define the domain of non-
coincidence [2] by

Ω+ = {x ∈Ω :u1(x) > u2(x)}. (2.32)

From relations (2.21), (2.22), and (2.23) we deduce that

µ1 = f+1 , µ2 = f−2 a.e. in Ω+. (2.33)

When u1 and u2 are continuous on Ω, the following relations are verified:

∆u1 = f1, ∆u2 = f2 in Ω+. (2.34)

2.1. Algorithm for computing z. We consider the following projection problem:

z ∈H1
0(Ω)×H1

0(Ω), z = PM(t′), where t′ = −t. (2.35)

Let z0 belong to M , we compute the element w0 of M which verifies the following
inequality:

a
(
w−w0,z0−t′

)≥ 0 ∀w ∈M. (2.36)

Next we compute
z1 = P[z0,w0]

(
t′
)
. (2.37)

So, the algorithm is: zn being given in M , we construct wn verifying

a
(
w−wn,zn−t′

)≥ 0 ∀w ∈M. (2.38)

Next zn+1 = P[zn,wn](t′). The sequence {zn} converges in H1
0(Ω)×H1

0(Ω) strongly to
the solution of problem (2.35) [1]. Since M = A(C), then the inequality (2.38) implies
that there exists {νn} in C which verifies

(
ν−νn,t′ −zn

)≤ 0 ∀ν ∈ C (2.39)

and Lemma 2.3 shows that νn is an element of ∂ϕ(t′ −zn).
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2.2. Application. This method of solvability can be applied to the study of a vari-
ational inequality arising from a problem of two membranes [2],

∆u1+λu1 = f1, ∆u2 = f2 in Ω+, u1 =u2,
∂u1
∂xi

= ∂u2
∂xi

, 1≤ i≤n,

∆u1+
(
λ
2

)
u1 = 12

(
f1+f2

)
in Ω−,

(2.40)

where Ω+ and Ω−, are two parts of Ω (unknown) separated by a hypersurface Γ of Rn

such that Ω =Ω+∪Γ∪Ω−; f1, f2 are two regular functions and λ∈R. Formally, Ω+ is
the non-coincidence domain given by (2.32).
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