

ON THE SOLVABILITY OF A VARIATIONAL INEQUALITY PROBLEM AND APPLICATION TO A PROBLEM OF TWO MEMBRANES

A. ADDOU and E. B. MERMRI

(Received 17 March 2000)

ABSTRACT. The purpose of this work is to give a continuous convex function, for which we can characterize the subdifferential, in order to reformulate a variational inequality problem: find $u = (u_1, u_2) \in K$ such that for all $v = (v_1, v_2) \in K$, $\int_{\Omega} \nabla u_1 \nabla (v_1 - u_1) + \int_{\Omega} \nabla u_2 \nabla (v_2 - u_2) + (f, v - u) \geq 0$ as a system of independent equations, where f belongs to $L^2(\Omega) \times L^2(\Omega)$ and $K = \{v \in H_0^1(\Omega) \times H_0^1(\Omega) : v_1 \geq v_2 \text{ a.e. in } \Omega\}$.

2000 Mathematics Subject Classification. Primary 35J85.

1. Introduction. We are interested in the following variational inequality problem: find $u = (u_1, u_2) \in K$ such that for all $v = (v_1, v_2) \in K$,

$$\int_{\Omega} \nabla u_1 \nabla (v_1 - u_1) + \int_{\Omega} \nabla u_2 \nabla (v_2 - u_2) + (f, v - u) \geq 0, \quad (1.1)$$

where f belongs to $L^2(\Omega) \times L^2(\Omega)$ and K is a closed convex set of $H_0^1(\Omega) \times H_0^1(\Omega)$ defined by

$$K = \{v = (v_1, v_2) \in H_0^1(\Omega) \times H_0^1(\Omega) : v_1 \geq v_2 \text{ a.e. in } \Omega\}. \quad (1.2)$$

Thanks to the orthogonal projection of the space $L^2(\Omega) \times L^2(\Omega)$ onto the cone \mathcal{K} defined by

$$\mathcal{K} = \{v = (v_1, v_2) \in L^2(\Omega) \times L^2(\Omega) : v_1 \geq v_2 \text{ a.e. in } \Omega\}, \quad (1.3)$$

we construct a functional φ for which we can characterize the subdifferential at a point u , in order to reformulate problem (1.1) to a variational inequality without constraints; that is, find $u = (u_1, u_2) \in H_0^1(\Omega) \times H_0^1(\Omega)$ such that for all $v \in H_0^1(\Omega) \times H_0^1(\Omega)$,

$$\int_{\Omega} \nabla u_1 \nabla (v_1 - u_1) + \int_{\Omega} \nabla u_2 \nabla (v_2 - u_2) + \varphi(v) - \varphi(u) + (h, v - u) \geq 0, \quad (1.4)$$

where φ is a continuous convex function from $H_0^1(\Omega) \times H_0^1(\Omega)$ to \mathbb{R} and h is an element of $L^2(\Omega) \times L^2(\Omega)$ depending only on f .

We prove that the solution $u = (u_1, u_2)$ can be obtained as a solution of a system of independent two Dirichlet problems

$$u_1, u_2 \in H_0^1(\Omega), \quad \Delta u_1 = g_1, \quad \Delta u_2 = g_2 \text{ in } \Omega, \quad (1.5)$$

where g_1 and g_2 are two functions of $L^2(\Omega)$ determined in terms of f_1 and f_2 . We will give an algorithm for computing these functions.

This approach can be applied to study a variational inequality arising from a problem of two membranes [2].

2. Formulation of the problem. Let Ω be an open bounded set of \mathbb{R}^n with smooth boundary $\partial\Omega$. We equip $H_0^1(\Omega) \times H_0^1(\Omega)$ with the norm

$$a(u, v) = \int_{\Omega} \nabla u_1 \nabla v_1 + \int_{\Omega} \nabla u_2 \nabla v_2, \quad (2.1)$$

where

$$u = (u_1, u_2), v = (v_1, v_2) \in H_0^1(\Omega) \times H_0^1(\Omega). \quad (2.2)$$

For $r \in L^2(\Omega)$, we let

$$r^+ = \max\{r, 0\}, \quad r^- = \min\{r, 0\}. \quad (2.3)$$

For $f = (f_1, f_2) \in L^2(\Omega) \times L^2(\Omega)$, we let

$$f^+ = (f_1^+, f_2^+), \quad f^- = (f_1^-, f_2^-). \quad (2.4)$$

For $v = (v_1, v_2) \in H_0^1(\Omega) \times H_0^1(\Omega)$, we let

$$v_+ = \left(v_1 + \frac{(v_2 - v_1)^+}{2}, v_2 - \frac{(v_2 - v_1)^+}{2} \right), \quad v_- = \left(-\frac{(v_2 - v_1)^+}{2}, \frac{(v_2 - v_1)^+}{2} \right) \quad (2.5)$$

the projection of v onto the cone \mathcal{K} given by (1.3) with respect to the scalar product of $L^2(\Omega) \times L^2(\Omega)$ (respectively, the projection with respect to the scalar product of $L^2(\Omega) \times L^2(\Omega)$ on the polar cone of \mathcal{K} defined by $\mathcal{K}^0 = \{v = (-r, r) \in L^2(\Omega) \times L^2(\Omega) : r \geq 0 \text{ a.e. on } \Omega\}$). We easily verify that

$$a(v_+, v_-) = 0 \quad (2.6)$$

for all $v \in H_0^1(\Omega) \times H_0^1(\Omega)$. A function φ defined from $H_0^1(\Omega) \times H_0^1(\Omega)$ to \mathbb{R} is called lower semi-continuous (l.s.c.) if its epigraph defined by

$$\text{epi}(\varphi) = \{v = (v_1, v_2) \in H_0^1(\Omega) \times H_0^1(\Omega), \lambda \in \mathbb{R} : \varphi(v) \leq \lambda\} \quad (2.7)$$

is closed in $H_0^1(\Omega) \times H_0^1(\Omega) \times \mathbb{R}$. Let $u \in H_0^1(\Omega) \times H_0^1(\Omega)$, we denote by $\partial\varphi(u)$ the subdifferential of φ at u , defined by

$$\partial\varphi(u) = \{\mu \in H^{-1}(\Omega) \times H^{-1}(\Omega) : \varphi(u) - \varphi(v) \leq \langle \mu, u - v \rangle \quad \forall v \in H_0^1(\Omega) \times H_0^1(\Omega)\}. \quad (2.8)$$

If φ is a convex l.s.c. function, then for all $v \in H_0^1(\Omega) \times H_0^1(\Omega)$, $\partial\varphi(v) \neq \emptyset$.

Let $f = (f_1, f_2) \in L^2(\Omega) \times L^2(\Omega)$. We denote by (\cdot, \cdot) and $\|\cdot\|$ the scalar product and the norm of $L^2(\Omega) \times L^2(\Omega)$, respectively. We consider the following variational inequality problem: find $u = (u_1, u_2) \in K$ such that

$$a(u, v - u) + (f, v - u) \geq 0 \quad \forall v = (v_1, v_2) \in K. \quad (2.9)$$

It admits a unique solution. The functional φ defined from $L^2(\Omega) \times L^2(\Omega)$ to \mathbb{R} by $v \mapsto (f^+, v_+)$ is continuous on $H_0^1(\Omega) \times H_0^1(\Omega)$ and convex.

PROPOSITION 2.1. $u = (u_1, u_2)$ is a solution of the problem (2.9) if and only if u is the solution of the following problem: find $u = (u_1, u_2) \in H_0^1(\Omega) \times H_0^1(\Omega)$ such that

$$a(u, v - u) + \varphi(v) - \varphi(u) + (f^-, v - u) \geq 0 \quad \forall v \in H_0^1(\Omega) \times H_0^1(\Omega). \quad (2.10)$$

PROOF. It is well known in the general theory of variational inequalities that problem (2.10) admits a unique solution. So, it is sufficient to show that the solution u of (2.10) is an element of K . Let $v = u_+$, then the inequality of (2.10) becomes

$$a(u, -u_-) + \varphi(u) - \varphi(u) + (f^-, -u_-) \geq 0. \quad (2.11)$$

By the relation (2.6) we deduce that $u_- = 0$, hence $u \in K$. \square

PROPOSITION 2.2. Problem (2.10) is equivalent to the following problem: find $\mu = (\mu_1, \mu_2) \in L^2(\Omega) \times L^2(\Omega)$, $u = (u_1, u_2) \in H_0^1(\Omega) \times H_0^1(\Omega)$,

$$a(u, v) + (\mu, v) + (f^-, v) = 0 \quad \forall v \in H_0^1(\Omega) \times H_0^1(\Omega), \mu \in \partial\varphi(u). \quad (2.12)$$

PROOF. If $u \in H_0^1(\Omega) \times H_0^1(\Omega)$ and $\mu \in L^2(\Omega) \times L^2(\Omega)$ are the solution of (2.12), then by definition of $\mu \in \partial\varphi(u)$, we have

$$a(u, v - u) + \varphi(v) - \varphi(u) + (f^-, v - u) \geq 0 \quad \forall v \in H_0^1(\Omega) \times H_0^1(\Omega). \quad (2.13)$$

Conversely, let u be the solution of problem (2.10). For $v = u \pm w$, with $w \in H_0^1(\Omega) \times H_0^1(\Omega)$, the inequality of (2.10) gives

$$\begin{aligned} a(u, w) + (f^-, w) &\geq -(f^+, w^+) \geq -\|f^+\| \|w\|, \\ a(u, w) + (f^-, w) &\leq (f^+, (-w)^+) \leq \|f^+\| \|w\|. \end{aligned} \quad (2.14)$$

We deduce that

$$|a(u, w) + (f^-, w)| \leq \|f^+\| \|w\|. \quad (2.15)$$

So the linear form

$$w \mapsto a(u, w) + (f^-, w) \quad (2.16)$$

is continuous on $H_0^1(\Omega) \times H_0^1(\Omega)$ equipped with the norm of $L^2(\Omega) \times L^2(\Omega)$. Where μ is an element of $L^2(\Omega) \times L^2(\Omega)$. \square

We set

$$C = \{v \in L^2(\Omega) \times L^2(\Omega), (v, v) \leq \varphi(v) \ \forall v \in L^2(\Omega) \times L^2(\Omega)\}. \quad (2.17)$$

LEMMA 2.3. Let $u \in L^2(\Omega) \times L^2(\Omega)$, then the following properties are equivalent:

- (a) $\mu \in \partial\varphi(u)$.
- (b) $\mu \in C$ and $(\mu, u) = \varphi(u)$.
- (c) $\mu \in C$ and $(v - \mu, u) \leq 0$ for all $v \in C$.

PROOF. (a) \Rightarrow (b). Let $\mu \in \partial\varphi(u)$, we have

$$\varphi(v) - \varphi(u) \geq (\mu, v - u) \quad \forall v \in L^2(\Omega) \times L^2(\Omega). \quad (2.18)$$

We put $v = 0$, next $v = 2u$ in (2.18). Since φ is positively homogeneous of degree 1, we obtain $\varphi(u) = (\mu, u)$ and consequently

$$\varphi(v) \geq (\mu, v) \quad \forall v \in L^2(\Omega) \times L^2(\Omega). \quad (2.19)$$

(c) \Rightarrow (a). For all $v \in V$, we have

$$(\mu, v - u) \leq \varphi(v) - (\mu, u) \leq \varphi(v) - (v, u) \quad \forall v \in C. \quad (2.20)$$

Hence for $v \in \partial\varphi(u)$, we have $(v, u) = \varphi(u)$, consequently $\mu \in \varphi(u)$. \square

We deduce from [Lemma 2.3](#) the following relations:

$$\mu_1 + \mu_2 = f_1^+ + f_2^-, \quad f_2^- \leq \mu_2 \leq \mu_1 \leq f_1^+ \text{ a.e. in } \Omega. \quad (2.21)$$

Indeed, the function φ being positively homogeneous of degree 1, $\mu \in \partial\varphi(u)$ implies

$$(\mu, u) = \varphi(u), \quad (2.22)$$

$$(\mu, v) \leq \varphi(v) \quad \forall v \in L^2(\Omega) \times L^2(\Omega). \quad (2.23)$$

Finally, it is sufficient to take in (2.23) elements $v = (v_1, v_2)$ with suitable choices on the components v_1 and v_2 .

Let $V = H_0^1(\Omega) \times H_0^1(\Omega)$, and taking into account [Lemma 2.3](#), we can write problem (2.12) as follows: find $u \in H_0^1(\Omega) \times H_0^1(\Omega)$, $\mu \in C$,

$$\begin{aligned} a(u, v) + (\mu, v) + (f^-, v) &= 0 \quad \forall v \in H_0^1(\Omega) \times H_0^1(\Omega), \\ (v - \mu, u) &\leq 0 \quad \forall v \in C. \end{aligned} \quad (2.24)$$

Let A be the Riesz-Fréchet representation of $H^{-1}(\Omega) \times H^{-1}(\Omega)$ in $H_0^1(\Omega) \times H_0^1(\Omega)$. We set $M = A(C)$, this is a closed convex subset in $H_0^1(\Omega) \times H_0^1(\Omega)$ characterized by

$$M = \{w \in H_0^1(\Omega) \times H_0^1(\Omega) : a(w, v) \leq \varphi(v) \quad \forall v \in H_0^1(\Omega) \times H_0^1(\Omega)\}. \quad (2.25)$$

Problem (2.24) can be written in the following form: find $u \in H_0^1(\Omega) \times H_0^1(\Omega)$, $z \in M$,

$$\begin{aligned} a(u + z + t, v) &= 0 \quad \forall v \in H_0^1(\Omega) \times H_0^1(\Omega), \\ a(w - z, u) &\leq 0 \quad \forall w \in M. \end{aligned} \quad (2.26)$$

with $z = A(\mu)$ and $t = A(f^-)$. Hence

$$u = -z - t, \quad z = P_M(-t), \quad (2.27)$$

where $P_M(-t)$ is the projection of $-t$ onto the closed convex set M with respect to the scalar product $a(\cdot, \cdot)$ of $H_0^1(\Omega) \times H_0^1(\Omega)$.

From the equality of [Proposition 2.2](#), we deduce that the solution u of problem (2.9) verifies the following equations:

$$\Delta u_1 = \mu_1 + f_1^-, \quad \Delta u_2 = \mu_2 + f_2^+ \quad \text{in } \Omega. \quad (2.28)$$

We notice that the prior knowledge of $\mu = (\mu_1, \mu_2)$ in terms of data of problem (2.9) yields the solutions u_1 and u_2 as solutions of two independent Dirichlet problems given by the system (2.28). We recall that for each element f of $L^p(\Omega)$, the solution of the problem

$$u \in H_0^1(\Omega), \quad -\Delta u = f \quad \text{in } \Omega, \quad (2.29)$$

verifies the following properties (see [2]):

$$u \in H^{2,p}(\Omega), \quad \|u\|_{H^{2,p}} \leq C \|f\|_{L^p}, \quad (2.30)$$

where C is a constant depending only on p and Ω . We deduce from (2.28) that u_1, u_2 are in $H^2(\Omega)$ and

$$\begin{aligned} \|u_1\|_{H^2(\Omega)} &\leq c_1 \|\mu_1 + f_1^-\|_{L^2(\Omega)}, \\ \|u_2\|_{H^2(\Omega)} &\leq c_2 \|\mu_2 + f_2^-\|_{L^2(\Omega)}, \\ \|u_1 + u_2\|_{H^2(\Omega)} &\leq c \|f_1 + f_2\|_{L^2(\Omega)}, \end{aligned} \quad (2.31)$$

where c, c_1 , and c_2 are constants depending only on Ω . We define the domain of non-coincidence [2] by

$$\Omega^+ = \{x \in \Omega : u_1(x) > u_2(x)\}. \quad (2.32)$$

From relations (2.21), (2.22), and (2.23) we deduce that

$$\mu_1 = f_1^+, \quad \mu_2 = f_2^- \quad \text{a.e. in } \Omega^+. \quad (2.33)$$

When u_1 and u_2 are continuous on Ω , the following relations are verified:

$$\Delta u_1 = f_1, \quad \Delta u_2 = f_2 \quad \text{in } \Omega^+. \quad (2.34)$$

2.1. Algorithm for computing z . We consider the following projection problem:

$$z \in H_0^1(\Omega) \times H_0^1(\Omega), \quad z = P_M(t'), \quad \text{where } t' = -t. \quad (2.35)$$

Let z_0 belong to M , we compute the element w_0 of M which verifies the following inequality:

$$a(w - w_0, z_0 - t') \geq 0 \quad \forall w \in M. \quad (2.36)$$

Next we compute

$$z_1 = P_{[z_0, w_0]}(t'). \quad (2.37)$$

So, the algorithm is: z_n being given in M , we construct w_n verifying

$$a(w - w_n, z_n - t') \geq 0 \quad \forall w \in M. \quad (2.38)$$

Next $z_{n+1} = P_{[z_n, w_n]}(t')$. The sequence $\{z_n\}$ converges in $H_0^1(\Omega) \times H_0^1(\Omega)$ strongly to the solution of problem (2.35) [1]. Since $M = A(C)$, then the inequality (2.38) implies that there exists $\{v_n\}$ in C which verifies

$$(v - v_n, t' - z_n) \leq 0 \quad \forall v \in C \quad (2.39)$$

and Lemma 2.3 shows that v_n is an element of $\partial\varphi(t' - z_n)$.

2.2. Application. This method of solvability can be applied to the study of a variational inequality arising from a problem of two membranes [2],

$$\begin{aligned} \Delta u_1 + \lambda u_1 &= f_1, \quad \Delta u_2 = f_2 \text{ in } \Omega^+, \quad u_1 = u_2, \\ \frac{\partial u_1}{\partial x_i} &= \frac{\partial u_2}{\partial x_i}, \quad 1 \leq i \leq n, \\ \Delta u_1 + \left(\frac{\lambda}{2}\right) u_1 &= \frac{1}{2}(f_1 + f_2) \quad \text{in } \Omega^-, \end{aligned} \tag{2.40}$$

where Ω^+ and Ω^- , are two parts of Ω (unknown) separated by a hypersurface Γ of \mathbb{R}^n such that $\Omega = \Omega^+ \cup \Gamma \cup \Omega^-$; f_1, f_2 are two regular functions and $\lambda \in \mathbb{R}$. Formally, Ω^+ is the non-coincidence domain given by (2.32).

REFERENCES

- [1] A. Degueil, *Résolution par une méthode d'éléments finis d'un problème de Stefan en terme de température et en teneur en matériau non gelé*, Thèse 3ème cycle, Université de Bordeaux, Bordeaux, 1977.
- [2] D. Kinderlehrer and G. Stampacchia, *An Introduction to Variational Inequalities and their Applications*, Pure and Applied Mathematics, vol. 88, Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1980. [MR 81g:49013](#). [Zbl 457.35001](#).

A. ADDOU: UNIVERSITY MOHAMED I, FACULTY OF SCIENCES, DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCES, OUJDA, MOROCCO

E-mail address: addou@sciences.univ-oujda.ac.ma

E. B. MERMRI: UNIVERSITY MOHAMED I, FACULTY OF SCIENCES, DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCES, OUJDA, MOROCCO

E-mail address: mermri@sciences.univ-oujda.ac.ma, mermri@hotmail.com

Special Issue on Decision Support for Intermodal Transport

Call for Papers

Intermodal transport refers to the movement of goods in a single loading unit which uses successive various modes of transport (road, rail, water) without handling the goods during mode transfers. Intermodal transport has become an important policy issue, mainly because it is considered to be one of the means to lower the congestion caused by single-mode road transport and to be more environmentally friendly than the single-mode road transport. Both considerations have been followed by an increase in attention toward intermodal freight transportation research.

Various intermodal freight transport decision problems are in demand of mathematical models of supporting them. As the intermodal transport system is more complex than a single-mode system, this fact offers interesting and challenging opportunities to modelers in applied mathematics. This special issue aims to fill in some gaps in the research agenda of decision-making in intermodal transport.

The mathematical models may be of the optimization type or of the evaluation type to gain an insight in intermodal operations. The mathematical models aim to support decisions on the strategic, tactical, and operational levels. The decision-makers belong to the various players in the intermodal transport world, namely, drayage operators, terminal operators, network operators, or intermodal operators.

Topics of relevance to this type of decision-making both in time horizon as in terms of operators are:

- Intermodal terminal design
- Infrastructure network configuration
- Location of terminals
- Cooperation between drayage companies
- Allocation of shippers/receivers to a terminal
- Pricing strategies
- Capacity levels of equipment and labour
- Operational routines and lay-out structure
- Redistribution of load units, railcars, barges, and so forth
- Scheduling of trips or jobs
- Allocation of capacity to jobs
- Loading orders
- Selection of routing and service

Before submission authors should carefully read over the journal's Author Guidelines, which are located at <http://www.hindawi.com/journals/jamds/guidelines.html>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/>, according to the following timetable:

Manuscript Due	June 1, 2009
First Round of Reviews	September 1, 2009
Publication Date	December 1, 2009

Lead Guest Editor

Gerrit K. Janssens, Transportation Research Institute (IMOB), Hasselt University, Agoralaan, Building D, 3590 Diepenbeek (Hasselt), Belgium; Gerrit.Janssens@uhasselt.be

Guest Editor

Cathy Macharis, Department of Mathematics, Operational Research, Statistics and Information for Systems (MOSI), Transport and Logistics Research Group, Management School, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium; Cathy.Macharis@vub.ac.be