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ON AN INCLUSION THEOREM
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Abstract. We have established a relation between θ−|R,pn|k and θ−|R,qn|k summa-
bility methods, k > 1, which generalizes a result of Sunouchi (1949) on |R,pn| and |R,qn|
summability methods.
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1. Introduction. Let (θn) be a sequence of positive numbers and let
∑
an be a given

infinite series with the sequence of partial sums (sn). We say that the series
∑
an is

summable θ−|C,0|k, k≥ 1, if
∞∑
n=1

θk−1n
∣∣an∣∣k <∞. (1.1)

If we take θn =n, then θ−|C,0|k summability is the same as |C,0|k summability. Let
(pn) be a sequence of positive numbers such that

Pn =
n∑
v=0

pv �→∞ as n �→∞, (P−i = p−i = 0, i≥ 1). (1.2)

The sequence-to-sequence transformation

tn = 1
Pn

n∑
v=0

pvsv (1.3)

defines the sequence (tn) of the (R,pn) mean of the sequence (sn), generated by
the sequence of coefficients (pn) (see [3]). We say that the series

∑
an is summable

θ−|R,pn|k, k≥ 1, if
∞∑
n=1

θk−1n
∣∣tn−tn−1∣∣k <∞. (1.4)

In the special case when θn = n (respectively, k = 1), θ−|R,pn|k summability is the
same as |R,pn|k (respectively, |R,pn|) summability. The (R,pn) mean is said to be
absolutely kth power conservative if |C,0|k ⇒ |R,pn|k. We say that the (R,pn) mean
is absolutely kth power θ-conservative if θ−|C,0|k⇒ θ−|R,pn|k.
A summability method P is said to be stronger than another summability methodQ,

if the summability of a series by the methodQ implies its summability by the method
P . If, in addition, the method P sums the series to the same sum as that obtained by
Q, the method P is said to include the method Q. The following theorem is known.
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Theorem 1.1 (see [4]). Suppose that pn > 0, Pn → ∞ and suppose similarly that
qn > 0, Qn→∞. In order that

∣∣R,pn∣∣ �⇒ ∣∣R,qn∣∣ (1.5)

it is sufficient that

qnPn
pnQn

=O(1). (1.6)

In 1950, while reviewing [4], Bosanquet [2], observed that (1.6) is also necessary for
the conclusion and completed Theorem 1.1 in necessary and sufficient form.

2. The main result. The aim of this paper is to generalize Bosanquet’s result for
θ−|R,pn|k and θ−|R,qn|k summability, where k≥ 1. Now, we shall prove the follow-
ing theorem.

Theorem 2.1. Let k > 1. In order that

θ−∣∣R,pn∣∣k �⇒ θ−∣∣R,qn∣∣k (2.1)

should hold (1.6) is necessary. If we suppose that (R,qn) is “absolutely kth power
θ-conservative,” i.e.,

θ−|C,0|k �⇒ θ−
∣∣R,qn∣∣k, (2.2)

then (1.6) is also sufficient.
It should be noted that, if we take k = 1 in this theorem, then we get Bosanquet’s

result. Also if we take θn =n, then we get another result related to |R,pn|k and |R,qn|k
summability methods.

We need the following lemma for the proof of our theorem.

Lemma 2.2 (see [1]). Let k≥ 1 and let A= (anv) be an infinite matrix. In order that
A∈ (lk,lk) it is necessary that

anv =O(1) (all n,v). (2.3)

3. Proof of the theorem

Necessity. For the proof of the necessity, we consider the series-to-series version
of (1.3), i.e., for n≥ 1, let

bn = pn
PnPn−1

n∑
v=1

Pv−1av, (3.1)

cn = qn
QnQn−1

n∑
v=1

Qv−1av. (3.2)

If we consider (3.1), we have

Pn−1an = PnPn−1pn
bn− Pn−1Pn−2pn−1

bn−1. (3.3)
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Hence

an = Pn
pn
bn− Pn−2pn−1

bn−1. (3.4)

A simple calculation shows that for n≥ 1,

cn = qn
QnQn−1

n−1∑
v=1

bv
pv

(
Qv−1Pv−Pv−1Qv

)+ qnPn
pnQn

bn. (3.5)

From this we can write down at once the matrix A that transforms (θ1−1/kn bn) into
(θ1−1/kn cn). Thus every θ−|R,pn|k summable series θ−|R,qn|k summable if and only
if A ∈ (lk,lk). By the lemma, it is necessary that the diagonal terms of A must be
bounded, which gives that (1.6) must hold.

Sufficiency. Let cn,1 denote the sum on the right-hand side of (3.5) and let cn,2
denote the second term on the right-hand side of (3.5). Suppose the conditions are
satisfied. Then it is enough to show that if

∞∑
n=1

θk−1n
∣∣bn∣∣k <∞, (3.6)

we have
∞∑
n=1

θk−1n
∣∣cn,i∣∣k <∞ (i= 1,2). (3.7)

For i= 2 this is an immediate corollary of (1.6). Now consider i= 1. We have
Qv−1Pv−Pv−1Qv =−Pvqv+pvQv =O

(
pvQv

)
(3.8)

by (1.6). Thus

cn,1 =O
(

qn
QnQn−1

n−1∑
v=1

Qv
∣∣bv∣∣

)
. (3.9)

Now the assumption (2.2) can be stated in the form that if
∑
bv ∈ θ−|C,0|k and if

dn = qn
QnQn−1

n∑
v=1

Qv−1bv, (3.10)

then
∞∑
n=1

θk−1n
∣∣dn∣∣k <∞. (3.11)

Now, define

b
′
v =


0 (v = 1),∣∣bv−1∣∣ (v ≥ 2). (3.12)

If
∑
bn∈θ−|C,0|k, then

∑
b′n∈θ−|C,0|k so applying (2.2) with bn replaced by b′n (and

making an obvious change of variable in the sum defining d′n below) we see that if

d
′
n =

qn
QnQn−1

n∑
v=1

Qv
∣∣bv∣∣, (3.13)
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then

∞∑
n=1

θk−1n
∣∣d′n∣∣k <∞. (3.14)

Hence (3.7) (with i= 1) follows from (3.9). This completes the proof of the theorem.
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