

ON AN INCLUSION THEOREM

HÜSEYİN BOR

(Received 12 July 1999)

ABSTRACT. We have established a relation between $\theta - |R, p_n|_k$ and $\theta - |R, q_n|_k$ summability methods, $k > 1$, which generalizes a result of Sunouchi (1949) on $|R, p_n|$ and $|R, q_n|$ summability methods.

Keywords and phrases. Absolute summability, inclusion theorem, infinite series.

2000 Mathematics Subject Classification. Primary 40F05, 40G99.

1. Introduction. Let (θ_n) be a sequence of positive numbers and let $\sum a_n$ be a given infinite series with the sequence of partial sums (s_n) . We say that the series $\sum a_n$ is summable $\theta - |C, 0|_k$, $k \geq 1$, if

$$\sum_{n=1}^{\infty} \theta_n^{k-1} |a_n|^k < \infty. \quad (1.1)$$

If we take $\theta_n = n$, then $\theta - |C, 0|_k$ summability is the same as $|C, 0|_k$ summability. Let (p_n) be a sequence of positive numbers such that

$$P_n = \sum_{v=0}^n p_v \rightarrow \infty \quad \text{as } n \rightarrow \infty, \quad (P_{-i} = p_{-i} = 0, \quad i \geq 1). \quad (1.2)$$

The sequence-to-sequence transformation

$$t_n = \frac{1}{P_n} \sum_{v=0}^n p_v s_v \quad (1.3)$$

defines the sequence (t_n) of the (R, p_n) mean of the sequence (s_n) , generated by the sequence of coefficients (p_n) (see [3]). We say that the series $\sum a_n$ is summable $\theta - |R, p_n|_k$, $k \geq 1$, if

$$\sum_{n=1}^{\infty} \theta_n^{k-1} |t_n - t_{n-1}|^k < \infty. \quad (1.4)$$

In the special case when $\theta_n = n$ (respectively, $k = 1$), $\theta - |R, p_n|_k$ summability is the same as $|R, p_n|_k$ (respectively, $|R, p_n|$) summability. The (R, p_n) mean is said to be absolutely k th power conservative if $|C, 0|_k \Rightarrow |R, p_n|_k$. We say that the (R, p_n) mean is absolutely k th power θ -conservative if $\theta - |C, 0|_k \Rightarrow \theta - |R, p_n|_k$.

A summability method P is said to be stronger than another summability method Q , if the summability of a series by the method Q implies its summability by the method P . If, in addition, the method P sums the series to the same sum as that obtained by Q , the method P is said to include the method Q . The following theorem is known.

THEOREM 1.1 (see [4]). *Suppose that $p_n > 0$, $P_n \rightarrow \infty$ and suppose similarly that $q_n > 0$, $Q_n \rightarrow \infty$. In order that*

$$|R, p_n| \Rightarrow |R, q_n| \quad (1.5)$$

it is sufficient that

$$\frac{q_n P_n}{p_n Q_n} = O(1). \quad (1.6)$$

In 1950, while reviewing [4], Bosanquet [2], observed that (1.6) is also necessary for the conclusion and completed Theorem 1.1 in necessary and sufficient form.

2. The main result. The aim of this paper is to generalize Bosanquet's result for $\theta - |R, p_n|_k$ and $\theta - |R, q_n|_k$ summability, where $k \geq 1$. Now, we shall prove the following theorem.

THEOREM 2.1. *Let $k > 1$. In order that*

$$\theta - |R, p_n|_k \Rightarrow \theta - |R, q_n|_k \quad (2.1)$$

should hold (1.6) is necessary. If we suppose that (R, q_n) is "absolutely k th power θ -conservative," i.e.,

$$\theta - |C, 0|_k \Rightarrow \theta - |R, q_n|_k, \quad (2.2)$$

then (1.6) is also sufficient.

It should be noted that, if we take $k = 1$ in this theorem, then we get Bosanquet's result. Also if we take $\theta_n = n$, then we get another result related to $|R, p_n|_k$ and $|R, q_n|_k$ summability methods.

We need the following lemma for the proof of our theorem.

LEMMA 2.2 (see [1]). *Let $k \geq 1$ and let $A = (a_{nv})$ be an infinite matrix. In order that $A \in (l^k, l^k)$ it is necessary that*

$$a_{nv} = O(1) \quad (\text{all } n, v). \quad (2.3)$$

3. Proof of the theorem

NECESSITY. For the proof of the necessity, we consider the series-to-series version of (1.3), i.e., for $n \geq 1$, let

$$b_n = \frac{p_n}{P_n P_{n-1}} \sum_{v=1}^n P_{v-1} a_v, \quad (3.1)$$

$$c_n = \frac{q_n}{Q_n Q_{n-1}} \sum_{v=1}^n Q_{v-1} a_v. \quad (3.2)$$

If we consider (3.1), we have

$$P_{n-1} a_n = \frac{P_n P_{n-1}}{p_n} b_n - \frac{P_{n-1} P_{n-2}}{p_{n-1}} b_{n-1}. \quad (3.3)$$

Hence

$$a_n = \frac{p_n}{p_n} b_n - \frac{p_{n-2}}{p_{n-1}} b_{n-1}. \quad (3.4)$$

A simple calculation shows that for $n \geq 1$,

$$c_n = \frac{q_n}{Q_n Q_{n-1}} \sum_{v=1}^{n-1} \frac{b_v}{p_v} (Q_{v-1} P_v - P_{v-1} Q_v) + \frac{q_n P_n}{p_n Q_n} b_n. \quad (3.5)$$

From this we can write down at once the matrix A that transforms $(\theta_n^{1-1/k} b_n)$ into $(\theta_n^{1-1/k} c_n)$. Thus every $\theta - |R, p_n|_k$ summable series $\theta - |R, q_n|_k$ summable if and only if $A \in (l^k, l^k)$. By the lemma, it is necessary that the diagonal terms of A must be bounded, which gives that (1.6) must hold.

SUFFICIENCY. Let $c_{n,1}$ denote the sum on the right-hand side of (3.5) and let $c_{n,2}$ denote the second term on the right-hand side of (3.5). Suppose the conditions are satisfied. Then it is enough to show that if

$$\sum_{n=1}^{\infty} \theta_n^{k-1} |b_n|^k < \infty, \quad (3.6)$$

we have

$$\sum_{n=1}^{\infty} \theta_n^{k-1} |c_{n,i}|^k < \infty \quad (i = 1, 2). \quad (3.7)$$

For $i = 2$ this is an immediate corollary of (1.6). Now consider $i = 1$. We have

$$Q_{v-1} P_v - P_{v-1} Q_v = -P_v q_v + p_v Q_v = O(p_v Q_v) \quad (3.8)$$

by (1.6). Thus

$$c_{n,1} = O\left(\frac{q_n}{Q_n Q_{n-1}} \sum_{v=1}^{n-1} Q_v |b_v|\right). \quad (3.9)$$

Now the assumption (2.2) can be stated in the form that if $\sum b_v \in \theta - |C, 0|_k$ and if

$$d_n = \frac{q_n}{Q_n Q_{n-1}} \sum_{v=1}^n Q_{v-1} b_v, \quad (3.10)$$

then

$$\sum_{n=1}^{\infty} \theta_n^{k-1} |d_n|^k < \infty. \quad (3.11)$$

Now, define

$$b'_v = \begin{cases} 0 & (v = 1), \\ |b_{v-1}| & (v \geq 2). \end{cases} \quad (3.12)$$

If $\sum b_n \in \theta - |C, 0|_k$, then $\sum b'_n \in \theta - |C, 0|_k$ so applying (2.2) with b_n replaced by b'_n (and making an obvious change of variable in the sum defining d'_n below) we see that if

$$d'_n = \frac{q_n}{Q_n Q_{n-1}} \sum_{v=1}^n Q_v |b_v|, \quad (3.13)$$

then

$$\sum_{n=1}^{\infty} \theta_n^{k-1} |d'_n|^k < \infty. \quad (3.14)$$

Hence (3.7) (with $i = 1$) follows from (3.9). This completes the proof of the theorem. \square

REFERENCES

- [1] H. Bor, *On the relative strength of two absolute summability methods*, Proc. Amer. Math. Soc. **113** (1991), no. 4, 1009–1012. MR 92c:40006. Zbl 743.40007.
- [2] L. S. Bosanquet, Math. Reviews **11** (1950), 654.
- [3] G. H. Hardy, *Divergent Series*, Oxford University Press, 1949. MR 11:25a. Zbl 032.05801.
- [4] G. Sunouchi, *Notes on Fourier analysis. XVII. Absolute summability of series with constant terms*, Tôhoku Math. J. (2) **1** (1949), 57–65. MR 11:654b. Zbl 041.39101.

HÜSEYİN BOR: DEPARTMENT OF MATHEMATICS, ERCIYES UNIVERSITY, 38039 KAYSERİ, TURKEY
E-mail address: bor@erciyes.edu.tr

Special Issue on Space Dynamics

Call for Papers

Space dynamics is a very general title that can accommodate a long list of activities. This kind of research started with the study of the motion of the stars and the planets back to the origin of astronomy, and nowadays it has a large list of topics. It is possible to make a division in two main categories: astronomy and astrodynamics. By astronomy, we can relate topics that deal with the motion of the planets, natural satellites, comets, and so forth. Many important topics of research nowadays are related to those subjects. By astrodynamics, we mean topics related to spaceflight dynamics.

It means topics where a satellite, a rocket, or any kind of man-made object is travelling in space governed by the gravitational forces of celestial bodies and/or forces generated by propulsion systems that are available in those objects. Many topics are related to orbit determination, propagation, and orbital maneuvers related to those spacecrafts. Several other topics that are related to this subject are numerical methods, nonlinear dynamics, chaos, and control.

The main objective of this Special Issue is to publish topics that are under study in one of those lines. The idea is to get the most recent researches and published them in a very short time, so we can give a step in order to help scientists and engineers that work in this field to be aware of actual research. All the published papers have to be peer reviewed, but in a fast and accurate way so that the topics are not outdated by the large speed that the information flows nowadays.

Before submission authors should carefully read over the journal's Author Guidelines, which are located at <http://www.hindawi.com/journals/mpe/guidelines.html>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/> according to the following timetable:

Manuscript Due	July 1, 2009
First Round of Reviews	October 1, 2009
Publication Date	January 1, 2010

Lead Guest Editor

Antonio F. Bertachini A. Prado, Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, 12227-010 São Paulo, Brazil; prado@dem.inpe.br

Guest Editors

Maria Cecilia Zanardi, São Paulo State University (UNESP), Guaratinguetá, 12516-410 São Paulo, Brazil; cecilia@feg.unesp.br

Tadashi Yokoyama, Universidade Estadual Paulista (UNESP), Rio Claro, 13506-900 São Paulo, Brazil; tadashi@rc.unesp.br

Silvia Maria Giuliatti Winter, São Paulo State University (UNESP), Guaratinguetá, 12516-410 São Paulo, Brazil; silvia@feg.unesp.br